Amparo Querol

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5496252/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of yeasts by RFLP analysis of the 5.8S rRNA gene and the two ribosomal internal transcribed spacers. International Journal of Systematic and Evolutionary Microbiology, 1999, 49, 329-337.	1.7	777
2	Molecular Monitoring of Wine Fermentations Conducted by Active Dry Yeast Strains. Applied and Environmental Microbiology, 1992, 58, 2948-2953.	3.1	449
3	A Comparative Study of Different Methods of Yeast Strain Characterization. Systematic and Applied Microbiology, 1992, 15, 439-446.	2.8	327
4	Rapid identification of wine yeast species based on RFLP analysis of the ribosomal internal transcribed spacer (ITS) region. Archives of Microbiology, 1998, 169, 387-392.	2.2	270
5	Molecular Characterization of a Chromosomal Rearrangement Involved in the Adaptive Evolution of Yeast Strains. Genome Research, 2002, 12, 1533-1539.	5.5	243
6	Natural hybrids fromSaccharomyces cerevisiae,Saccharomyces bayanusandSaccharomyces kudriavzeviiin wine fermentations. FEMS Yeast Research, 2006, 6, 1221-1234.	2.3	237
7	Temperature Adaptation Markedly Determines Evolution within the Genus <i>Saccharomyces</i> . Applied and Environmental Microbiology, 2011, 77, 2292-2302.	3.1	236
8	Role of yeasts in table olive production. International Journal of Food Microbiology, 2008, 128, 189-196.	4.7	235
9	Fermentative stress adaptation of hybrids within the Saccharomyces sensu stricto complex. International Journal of Food Microbiology, 2008, 122, 188-195.	4.7	198
10	Scientific Opinion on the update of the list of QPSâ€recommended biological agents intentionally added to food or feed as notified to EFSAâ€. EFSA Journal, 2017, 15, e04664.	1.8	185
11	Scientific Opinion on the update of the list of QPSâ€recommended biological agents intentionally added to food or feed as notified to EFSA (2017–2019). EFSA Journal, 2020, 18, e05966.	1.8	178
12	Effects of temperature, pH and sugar concentration on the growth parameters of Saccharomyces cerevisiae, S. kudriavzevii and their interspecific hybrid. International Journal of Food Microbiology, 2009, 131, 120-127.	4.7	169
13	Adaptive evolution of wine yeast. International Journal of Food Microbiology, 2003, 86, 3-10.	4.7	160
14	Molecular Characterization of New Natural Hybrids of <i>Saccharomyces cerevisiae</i> and <i>S</i> . <i>kudriavzevii</i> in Brewing. Applied and Environmental Microbiology, 2008, 74, 2314-2320.	3.1	150
15	Physiological characterization of spoilage strains of Zygosaccharomyces bailii and Zygosaccharomyces rouxii isolated from high sugar environments. International Journal of Food Microbiology, 2007, 114, 234-242.	4.7	138
16	Yeast Population Dynamics during the Fermentation and Biological Aging of Sherry Wines. Applied and Environmental Microbiology, 2001, 67, 2056-2061.	3.1	131
17	Enological characterization of natural hybrids from Saccharomyces cerevisiae and S. kudriavzevii. International Journal of Food Microbiology, 2007, 116, 11-18.	4.7	130
18	Qualified presumption of safety (QPS): a generic risk assessment approach for biological agents notified to the European Food Safety Authority (EFSA). Trends in Food Science and Technology, 2010, 21, 425-435.	15.1	129

#	Article	IF	CITATIONS
19	Yeasts in table olive processing: Desirable or spoilage microorganisms?. International Journal of Food Microbiology, 2012, 160, 42-49.	4.7	129
20	Update of the list of QPSâ€recommended biological agents intentionally added to food or feed as notified to EFSA 13: suitability of taxonomic units notified to EFSA until September 2020. EFSA Journal, 2021, 19, e06377.	1.8	127
21	Identification of yeasts isolated from wine-related environments and capable of producing 4-ethylphenol. Food Microbiology, 2003, 20, 567-574.	4.2	122
22	Genetically different wine yeasts isolated from Austrian vine-growing regions influence wine aroma differently and contain putative hybrids betweenSaccharomyces cerevisiaeandSaccharomyces kudriavzevii. FEMS Yeast Research, 2007, 7, 953-965.	2.3	121
23	The prevalence and control of spoilage yeasts in foods and beverages. Trends in Food Science and Technology, 1999, 10, 356-365.	15.1	119
24	RFLP analysis of the ribosomal internal transcribed spacers and the 5.8S rRNA gene region of the genus Saccharomyces: a fast method for species identification and the differentiation of flor yeasts. Antonie Van Leeuwenhoek, 2000, 78, 87-97.	1.7	118
25	The complex and dynamic genomes of industrial yeasts. FEMS Microbiology Letters, 2009, 293, 1-10.	1.8	114
26	The role of indigenous yeasts in traditional Irish cider fermentations. Journal of Applied Microbiology, 2004, 97, 647-655.	3.1	113
27	Differences in the glucose and fructose consumption profiles in diverse Saccharomyces wine species and their hybrids during grape juice fermentation. International Journal of Food Microbiology, 2009, 134, 237-243.	4.7	113
28	Dry Yeast Strain For Use in Fermentation of Alicante Wines: Selection and DNA Patterns. Journal of Food Science, 1992, 57, 183-185.	3.1	100
29	Diversity of Saccharomyces strains in wine fermentations: analysis for two consecutive years. Letters in Applied Microbiology, 1998, 26, 452-455.	2.2	100
30	Analysis of the stress resistance of commercial wine yeast strains. Archives of Microbiology, 2001, 175, 450-457.	2.2	99
31	Study of the authenticity of commercial wine yeast strains by molecular techniques. International Journal of Food Microbiology, 2001, 70, 1-10.	4.7	98
32	Production of aroma compounds by cryotolerant <i>Saccharomyces</i> species and hybrids at low and moderate fermentation temperatures. Journal of Applied Microbiology, 2013, 114, 1405-1414.	3.1	98
33	Rapid Identification and Enumeration of Saccharomyces cerevisiae Cells in Wine by Real-Time PCR. Applied and Environmental Microbiology, 2005, 71, 6823-6830.	3.1	97
34	Population dynamics of natural Saccharomyces strains during wine fermentation. International Journal of Food Microbiology, 1994, 21, 315-323.	4.7	96
35	Saccharomyces kudriavzevii and Saccharomyces uvarum differ from Saccharomyces cerevisiae during the production of aroma-active higher alcohols and acetate esters using their amino acidic precursors. International Journal of Food Microbiology, 2015, 205, 41-46.	4.7	96
36	Mitotic Recombination and Genetic Changes in Saccharomyces cerevisiae during Wine Fermentation. Applied and Environmental Microbiology, 2000, 66, 2057-2061.	3.1	95

#	Article	IF	CITATIONS
37	Metabolomic Comparison of Saccharomyces cerevisiae and the Cryotolerant Species S. bayanus var. uvarum and S. kudriavzevii during Wine Fermentation at Low Temperature. PLoS ONE, 2013, 8, e60135.	2.5	94
38	Fungemia with Saccharomyces cerevisiae in Two Newborns, Only One of Whom Had Been Treated with Ultra-Levura. European Journal of Clinical Microbiology and Infectious Diseases, 2000, 19, 468-470.	2.9	93
39	Use of molecular methods for the identification of yeast associated with table olives. Food Microbiology, 2006, 23, 791-796.	4.2	92
40	Rapid Characterization of Four Species of the Saccharomyces Sensu Stricto Complex According to Mitochondrial DNA Patterns. International Journal of Systematic Bacteriology, 1994, 44, 708-714.	2.8	90
41	Effect of Temperature on the Prevalence of Saccharomyces Non cerevisiae Species against a S. cerevisiae Wine Strain in Wine Fermentation: Competition, Physiological Fitness, and Influence in Final Wine Composition. Frontiers in Microbiology, 2017, 8, 150.	3.5	90
42	Saccharomyces cerevisiae wine yeast populations in a cold region in Argentinean Patagonia. A study at different fermentation scales. Journal of Applied Microbiology, 2002, 93, 608-615.	3.1	89
43	Comparative genomics among Saccharomyces cerevisiae × Saccharomyces kudriavzevii natural hybrid strains isolated from wine and beer reveals different origins. BMC Genomics, 2012, 13, 407.	2.8	89
44	Exploring the yeast biodiversity of green table olive industrial fermentations for technological applications. International Journal of Food Microbiology, 2011, 147, 89-96.	4.7	87
45	Phylogeny of the genus Kluyveromyces inferred from the mitochondrial cytochrome-c oxidase II gene International Journal of Systematic and Evolutionary Microbiology, 2000, 50, 405-416.	1.7	86
46	Identification of species of the genus Candida by analysis of the 5.8S rRNA gene and the two ribosomal internal transcribed spacers. Antonie Van Leeuwenhoek, 2004, 85, 175-185.	1.7	84
47	Chimeric Genomes of Natural Hybrids of <i>Saccharomyces cerevisiae</i> and <i>Saccharomyces kudriavzevii</i> . Applied and Environmental Microbiology, 2009, 75, 2534-2544.	3.1	83
48	The application of molecular techniques in wine microbiology. Trends in Food Science and Technology, 1996, 7, 73-78.	15.1	82
49	Screening of non-Saccharomyces wine yeasts for the production of β-D-xylosidase activity. International Journal of Food Microbiology, 1999, 46, 105-112.	4.7	82
50	Selection and molecular characterization of wine yeasts isolated from the â€~El PenedÔs' area (Spain). Food Microbiology, 2000, 17, 553-562.	4.2	80
51	A simplified procedure to analyse mitochondrial DNA from industrial yeasts. International Journal of Food Microbiology, 2001, 68, 75-81.	4.7	79
52	Susceptibility and resistance to ethanol in <i>Saccharomyces</i> strains isolated from wild and fermentative environments. Yeast, 2010, 27, 1005-1015.	1.7	79
53	Modulation of the glycerol and ethanol syntheses in the yeast Saccharomyces kudriavzevii differs from that exhibited by Saccharomyces cerevisiae and their hybrid. Food Microbiology, 2010, 27, 628-637.	4.2	76
54	Update of the list of QPSâ€recommended biological agents intentionally added to food or feed as notified to EFSA 12: suitability of taxonomic units notified to EFSA until March 2020. EFSA Journal, 2020, 18, e06174.	1.8	76

#	Article	IF	CITATIONS
55	Mitochondrial Import of Subunit Va of Cytochrome c Oxidase Characterized with Yeast Mutants. Journal of Biological Chemistry, 1995, 270, 3788-3795.	3.4	75
56	Evaluation of different genetic procedures for the generation of artificial hybrids in Saccharomyces genus for winemaking. International Journal of Food Microbiology, 2012, 156, 102-111.	4.7	75
57	On the origins and industrial applications of <scp><i>Saccharomyces cerevisiae</i></scp> × <i>Saccharomyces kudriavzevii</i> hybrids. Yeast, 2018, 35, 51-69.	1.7	75
58	Quantifying the individual effects of ethanol and temperature on the fitness advantage of Saccharomyces cerevisiae. Food Microbiology, 2011, 28, 1155-1161.	4.2	74
59	Phylogenetic Relationships Among Colletotrichum Pathogens of Strawberry and Design of PCR Primers for their Identification. Journal of Phytopathology, 2003, 151, 135-143.	1.0	72
60	Natural hybrids of S. cerevisiae×S. kudriavzevii share alleles with European wild populations of Saccharomyces kudriavzevii. FEMS Yeast Research, 2010, 10, 412-421.	2.3	72
61	Multiple Approaches Detect the Presence of Fungi in Human Breastmilk Samples from Healthy Mothers. Scientific Reports, 2017, 7, 13016.	3.3	72
62	Correlation between acetaldehyde and ethanol resistance and expression of HSP genes in yeast strains isolated during the biological aging of sherry wines. Archives of Microbiology, 2002, 177, 304-312.	2.2	71
63	Molecular profiling of yeasts isolated during spontaneous fermentations of Austrian wines. FEMS Yeast Research, 2008, 8, 1063-1075.	2.3	71
64	Molecular characterization of Colletotrichum strains derived from strawberry. Mycological Research, 1999, 103, 385-394.	2.5	70
65	Mycotoxins and mycotoxigenic moulds in nuts and sunflower seeds for human consumption. Mycopathologia, 1991, 115, 121-127.	3.1	68
66	A comparison of clinical and food Saccharomyces cerevisiae isolates on the basis of potential virulence factors. Antonie Van Leeuwenhoek, 2006, 90, 221-231.	1.7	68
67	Molecular typing of the yeast species Dekkera bruxellensis and Pichia guilliermondii recovered from wine related sources. International Journal of Food Microbiology, 2006, 106, 79-84.	4.7	68
68	On the Complexity of the Saccharomyces bayanus Taxon: Hybridization and Potential Hybrid Speciation. PLoS ONE, 2014, 9, e93729.	2.5	68
69	Enhanced Enzymatic Activity of Glycerol-3-Phosphate Dehydrogenase from the Cryophilic Saccharomyces kudriavzevii. PLoS ONE, 2014, 9, e87290.	2.5	66
70	Characterization of Wine Yeast Strains of the Saccharomyces Genus on the Basis of Molecular Markers: Relationships Between Genetic Distance and Geographic or Ecological Origin. Systematic and Applied Microbiology, 1996, 19, 122-132.	2.8	65
71	Alternative yeasts for winemaking: <i>Saccharomyces</i> non- <i>cerevisiae</i> and its hybrids. Critical Reviews in Food Science and Nutrition, 2018, 58, 1780-1790.	10.3	65
72	Sour rot-damaged grapes are sources of wine spoilage yeasts. FEMS Yeast Research, 2008, 8, 1008-1017.	2.3	64

73 O in	pportunistic Strains of Saccharomyces cerevisiae: A Potential Risk Sold in Food Products. Frontiers Microbiology, 2015, 6, 1522.	3.5	64
74 Fc sy	estemic infections. International Journal of Food Microbiology, 2006, 110, 286-290.	4.7	61
75 Lij 75 at	pid composition of wine strains of Saccharomyces kudriavzevii and Saccharomyces cerevisiae grown low temperature. International Journal of Food Microbiology, 2012, 155, 191-198.	4.7	61
Ar 76 ex 17	roma improving in microvinification processes by the use of a recombinant wine yeast strain xpressing the Aspergillus nidulans xInA gene. International Journal of Food Microbiology, 1999, 47, 71-178.	4.7	60
77 Ni ur	itrogen sources preferences of non-Saccharomyces yeasts to sustain growth and fermentation nder winemaking conditions. Food Microbiology, 2020, 85, 103287.	4.2	60
78 Pa ar	atagonian wines: the selection of an indigenous yeast starter. Journal of Industrial Microbiology nd Biotechnology, 2007, 34, 539-546.	3.0	58
79 M Gr	icrobiological and Enological Parameters during Fermentation of Musts from Poor and Normal rape-Harvests in the Region of Alicante (Spain). Journal of Food Science, 1990, 55, 1603-1606.	3.1	57
80 M	olecular and enological characterization of a natural Saccharomyces uvarum and Saccharomyces erevisiae hybrid. International Journal of Food Microbiology, 2015, 204, 101-110.	4.7	57
Ալ 81 ու 20	pdate of the list of QPSâ€recommended biological agents intentionally added to food or feed as otified to EFSA 5: suitability of taxonomic units notified to EFSA until September 2016. EFSA Journal, 017, 15, e04663.	1.8	56
82 A Fc	new PCR-based method for monitoring inoculated wine fermentations. International Journal of pod Microbiology, 2003, 81, 63-71.	4.7	51
83 M de	olecular monitoring of spoilage yeasts during the production of candied fruit nougats to etermine food contamination sources. International Journal of Food Microbiology, 2005, 101, 293-302.	4.7	51
84 Pc M	otential benefits of the application of yeast starters in table olive processing. Frontiers in icrobiology, 2012, 3, .	3.5	51
Ալ 85 ու 20	pdate of the list of QPSâ€recommended biological agents intentionally added to food or feed as otified to EFSA 7: suitability of taxonomic units notified to EFSA until September 2017. EFSA Journal, 018, 16, e05131.	1.8	51
86 Ge M	enetic and phenotypic diversity of autochthonous cider yeasts in a cellar from Asturias. Food icrobiology, 2010, 27, 503-508.	4.2	50
87 Tr ef	anscriptomics of cryophilic Saccharomyces kudriavzevii reveals the key role of gene translation ficiency in cold stress adaptations. BMC Genomics, 2014, 15, 432.	2.8	50
Do 88 fe Er	ominance of wine <i>Saccharomyces cerevisiae</i> strains over <i>S. kudriavzevii</i> in industrial rmentation competitions is related to an acceleration of nutrient uptake and utilization. nvironmental Microbiology, 2019, 21, 1627-1644.	3.8	50
89 Ar 20	nalysis of the genetic variability in the species of theSaccharomyces sensu strictocomplex. Yeast, 203, 20, 1213-1226.	1.7	49

Molecular identification and characterization of wine yeasts isolated from Tenerife (Canary Island,) Tj ETQq0 0 0 rg $g_{.1}^{T}$ /Overlock 10 Tf 50

Amparo Querol

#	Article	IF	CITATIONS
91	Identification of species in the genus Pichia by restriction of the internal transcribed spacers (ITS1 and) Tj ETQq1 1	0.78431 1.7	4 ₄ gBT /Ove
92	Stabilization process in Saccharomyces intra and interspecific hybrids in fermentative conditions. International Microbiology, 2014, 17, 213-24.	2.4	49
93	A rapid and simple method for the preparation of yeast mitochondrial DNA. Nucleic Acids Research, 1990, 18, 1657-1657.	14.5	47
94	Inter- and intraspecific chromosome pattern variation in the yeast genusKluyveromyces. Yeast, 1998, 14, 1341-1354.	1.7	47
95	Authentication and identification of Saccharomyces cerevisiaeâ€~flor' yeast races involved in sherry ageing. Antonie Van Leeuwenhoek, 2004, 85, 151-158.	1.7	46
96	Molecular Identification of Yeasts Associated with Traditional Egyptian Dairy Products. Journal of Food Science, 2009, 74, M341-6.	3.1	46
97	Monoterpene alcohols release and bioconversion by Saccharomyces species and hybrids. International Journal of Food Microbiology, 2011, 145, 92-97.	4.7	46
98	Ethanol Cellular Defense Induce Unfolded Protein Response in Yeast. Frontiers in Microbiology, 2016, 7, 189.	3.5	46
99	New Trends in the Uses of Yeasts in Oenology. Advances in Food and Nutrition Research, 2018, 85, 177-210.	3.0	46
100	The molecular characterization of new types of <i>Saccharomyces cerevisiae</i> × <i>S. kudriavzevii</i> hybrid yeasts unveils a high genetic diversity. Yeast, 2012, 29, 81-91.	1.7	45
101	The qualified presumption of safety assessment and its role in EFSA risk evaluations: 15 years past. FEMS Microbiology Letters, 2019, 366, .	1.8	44
102	Update of the list of QPSâ€recommended biological agents intentionally added to food or feed as notified to EFSA 8: suitability of taxonomic units notified to EFSA until March 2018. EFSA Journal, 2018, 16, e05315.	1.8	43
103	Dynamics of the yeast flora in artisanal country style and industrial dry cured sausage (yeast in) Tj ETQq1 1 0.7843	314 rgBT /	Overlock 1 42
104	Improving the Cryotolerance of Wine Yeast by Interspecific Hybridization in the Genus Saccharomyces. Frontiers in Microbiology, 2018, 9, 3232.	3.5	42
105	Mitochondrial introgression suggests extensive ancestral hybridization events among Saccharomyces species. Molecular Phylogenetics and Evolution, 2017, 108, 49-60.	2.7	40
106	Molecular Characterization of Clinical Saccharomyces cerevisiae Isolates and their Association with Non-Clinical Strains. Systematic and Applied Microbiology, 2004, 27, 427-435.	2.8	39
107	Alternative Glycerol Balance Strategies among Saccharomyces Species in Response to Winemaking Stress. Frontiers in Microbiology, 2016, 7, 435.	3.5	39
108	An analysis of inter- and intraspecific genetic variabilities in theKluyveromyces marxianusgroup of yeast species for the reconsideration of theK. lactistaxon. Yeast, 2002, 19, 257-268.	1.7	38

#	Article	IF	CITATIONS
109	Effect of aromatic precursor addition to wine fermentations carried out with different Saccharomyces species and their hybrids. International Journal of Food Microbiology, 2011, 147, 33-44.	4.7	38
110	Genetic improvement of non-GMO wine yeasts: Strategies, advantages and safety. Trends in Food Science and Technology, 2015, 45, 1-11.	15.1	38
111	<scp><i>Saccharomyces cerevisiae</i></scp> × <i>Saccharomyces uvarum</i> hybrids generated under different conditions share similar winemaking features. Yeast, 2018, 35, 157-171.	1.7	38
112	Ecological interactions among Saccharomyces cerevisiae strains: insight into the dominance phenomenon. Scientific Reports, 2017, 7, 43603.	3.3	37
113	Update of the list of QPSâ€recommended biological agents intentionally added to food or feed as notified to EFSA 10: Suitability of taxonomic units notified to EFSA until March 2019. EFSA Journal, 2019, 17, e05753.	1.8	37
114	Update of the list of QPSâ€recommended biological agents intentionally added to food or feed as notified to EFSA 9: suitability of taxonomic units notified to EFSA until September 2018. EFSA Journal, 2019, 17, e05555.	1.8	37
115	Patagonian wines: implantation of an indigenous strain of Saccharomyces cerevisiae in fermentations conducted in traditional and modern cellars. Journal of Industrial Microbiology and Biotechnology, 2007, 34, 139-149.	3.0	36
116	A time course metabolism comparison among Saccharomyces cerevisiae, S. uvarum and S. kudriavzevii species in wine fermentation. Food Microbiology, 2020, 90, 103484.	4.2	36
117	Molecular characterisation of Hanseniaspora species. Antonie Van Leeuwenhoek, 2001, 80, 85-92.	1.7	35
118	In vivo virulence of commercial Saccharomyces cerevisiae strains with pathogenicity-associated phenotypical traits. International Journal of Food Microbiology, 2011, 144, 393-399.	4.7	35
119	Differences in Enzymatic Properties of the Saccharomyces kudriavzevii and Saccharomyces uvarum Alcohol Acetyltransferases and Their Impact on Aroma-Active Compounds Production. Frontiers in Microbiology, 2016, 7, 897.	3.5	34
120	Update of the list of QPSâ€recommended biological agents intentionally added to food or feed as notified to EFSA 11: suitability of taxonomic units notified to EFSA until September 2019. EFSA Journal, 2020, 18, e05965.	1.8	34
121	Characterisation of Four Species of the Genus Kluyveromyces by Mitochondrial DNA Restriction Analysis. Systematic and Applied Microbiology, 1997, 20, 397-408.	2.8	33
122	Phylogenetic Reconstruction of the Yeast Genus Kluyveromyces: Restriction Map Analysis of the 5.8S rRNA Gene and the Two Ribosomal Internal Transcribed Spacers. Systematic and Applied Microbiology, 1998, 21, 266-273.	2.8	33
123	Membrane fluidification by ethanol stress activates unfolded protein response in yeasts. Microbial Biotechnology, 2018, 11, 465-475.	4.2	33
124	Exclusion of <i>Saccharomyces kudriavzevii</i> from a wine model system mediated by <i>Saccharomyces cerevisiae</i> . Yeast, 2011, 28, 423-435.	1.7	32
125	Fermentative behaviour and competition capacity of cryotolerant Saccharomyces species in different nitrogen conditions. International Journal of Food Microbiology, 2019, 291, 111-120.	4.7	32
126	Sequence-based identification of species belonging to the genus. FEMS Yeast Research, 2005, 5, 1157-1165.	2.3	31

#	Article	IF	CITATIONS
127	Application of a substrate inhibition model to estimate the effect of fructose concentration on the growth of diverse Saccharomyces cerevisiae strains. Journal of Industrial Microbiology and Biotechnology, 2009, 36, 663-669.	3.0	31
128	Update of the list of QPSâ€recommended biological agents intentionally added to food or feed as notified to EFSA 15: suitability of taxonomic units notified to EFSA until September 2021. EFSA Journal, 2022, 20, e07045.	1.8	31
129	Molecular Analysis of the Genes Involved in Aroma Synthesis in the Species S. cerevisiae, S. kudriavzevii and S. bayanus var. uvarum in Winemaking Conditions. PLoS ONE, 2014, 9, e97626.	2.5	30
130	A comparative study of the wine fermentation performance of Saccharomyces paradoxus under different nitrogen concentrations and glucose/fructose ratios. Journal of Applied Microbiology, 2010, 108, 73-80.	3.1	29
131	Update of the list of QPSâ€recommended biological agents intentionally added to food or feed as notified to EFSA 6: suitability of taxonomic units notified to EFSA until March 2017. EFSA Journal, 2017, 15, e04884.	1.8	29
132	Pathogenic Potential of Saccharomyces Strains Isolated from Dietary Supplements. PLoS ONE, 2014, 9, e98094.	2.5	29
133	Combined use of killer biotype and mtDNA-RFLP patterns in a Patagonian wine Saccharomyces cerevisiae diversity study. Antonie Van Leeuwenhoek, 2006, 89, 147-156.	1.7	28
134	Yeast Microflora Isolated From Brazilian Cassava Roots: Taxonomical Classification Based on Molecular Identification. Current Microbiology, 2010, 60, 287-293.	2.2	27
135	Identification ofColletotrichumspecies responsible for anthracnose of strawberry based on the internal transcribed spacers of the ribosomal region FEMS Microbiology Letters, 2000, 189, 97-101.	1.8	26
136	Probabilistic model for the spoilage wine yeast Dekkera bruxellensis as a function of pH, ethanol and free SO2 using time as a dummy variable. International Journal of Food Microbiology, 2014, 170, 83-90.	4.7	26
137	Statement on the update of the list of QPSâ€recommended biological agents intentionally added to food or feed as notified to EFSA 1: Suitability of taxonomic units notified to EFSA until October 2014. EFSA Journal, 2014, 12, 3938.	1.8	26
138	The Use of Mixed Populations of Saccharomyces cerevisiae and S. kudriavzevii to Reduce Ethanol Content in Wine: Limited Aeration, Inoculum Proportions, and Sequential Inoculation. Frontiers in Microbiology, 2017, 8, 2087.	3.5	26
139	Update of the list of QPSâ€recommended biological agents intentionally added to food or feed as notified to EFSA 14: suitability of taxonomic units notified to EFSA until March 2021. EFSA Journal, 2021, 19, e06689.	1.8	26
140	PCR-RFLP analysis of the IGS region of rDNA: a useful tool for the practical discrimination between species of the genus Debaryomyces. Antonie Van Leeuwenhoek, 2006, 90, 211-219.	1.7	25
141	A molecular genetic study of natural strains ofSaccharomycesisolated from Asturian cider fermentations. Journal of Applied Microbiology, 2007, 103, 778-786.	3.1	25
142	Spoilage yeasts from Patagonian cellars: characterization and potential biocontrol based on killer interactions. World Journal of Microbiology and Biotechnology, 2008, 24, 945-953.	3.6	25
143	<i>Saccharomyces uvarum</i> is Responsible for the Traditional Fermentation of Apple <i>CHICHA</i> in Patagonia. FEMS Yeast Research, 2017, 17, fow109.	2.3	25
144	Genome-wide gene expression of a natural hybrid between Saccharomyces cerevisiae and S. kudriavzevii under enological conditions. International Journal of Food Microbiology, 2012, 157, 340-345.	4.7	23

#	Article	IF	CITATIONS
145	Identification of Colletotrichum species responsible for anthracnose of strawberry based on the internal transcribed spacers of the ribosomal region FEMS Microbiology Letters, 2000, 189, 97-101.	1.8	22
146	Saccharomyces cerevisiae and S. kudriavzevii Synthetic Wine Fermentation Performance Dissected by Predictive Modeling. Frontiers in Microbiology, 2018, 9, 88.	3.5	22
147	Differential proteomic analysis by SWATH-MS unravels the most dominant mechanisms underlying yeast adaptation to non-optimal temperatures under anaerobic conditions. Scientific Reports, 2020, 10, 22329.	3.3	22
148	Genome structure reveals the diversity of mating mechanisms in Saccharomyces cerevisiae x Saccharomyces kudriavzevii hybrids, and the genomic instability that promotes phenotypic diversity. Microbial Genomics, 2020, 6, .	2.0	22
149	Clinical Saccharomyces cerevisiae isolates cannot cross the epithelial barrier in vitro. International Journal of Food Microbiology, 2012, 157, 59-64.	4.7	21
150	Characterisation of the broad substrate specificity 2-keto acid decarboxylase Aro10p of Saccharomyces kudriavzevii and its implication in aroma development. Microbial Cell Factories, 2016, 15, 51.	4.0	21
151	Enological characterization of Spanish Saccharomyces kudriavzevii strains, one of the closest relatives to parental strains of winemaking and brewing Saccharomyces cerevisiaeÂ×ÂS.Âkudriavzevii hybrids. Food Microbiology, 2016, 53, 31-40.	4.2	21
152	Molecular profiling of beer wort fermentation diversity across natural <i>Saccharomyces eubayanus</i> isolates. Microbial Biotechnology, 2020, 13, 1012-1025.	4.2	21
153	Cell-Wall Degrading Enzymes in the Release of Grape Aroma Precursors. Food Science and Technology International, 2001, 7, 83-87.	2.2	20
154	Physiological and molecular characterisation of Saccharomyces cerevisiae cachaça strains isolated from different geographic regions in Brazil. World Journal of Microbiology and Biotechnology, 2010, 26, 579-587.	3.6	20
155	Physiological and genomic characterisation of Saccharomyces cerevisiae hybrids with improved fermentation performance and mannoprotein release capacity. International Journal of Food Microbiology, 2015, 205, 30-40.	4.7	20
156	iTRAQ-based proteome profiling of Saccharomyces cerevisiae and cryotolerant species Saccharomyces uvarum and Saccharomyces kudriavzevii during low-temperature wine fermentation. Journal of Proteomics, 2016, 146, 70-79.	2.4	20
157	A Multiphase Multiobjective Dynamic Genome-Scale Model Shows Different Redox Balancing among Yeast Species of the <i>Saccharomyces</i> Genus in Fermentation. MSystems, 2021, 6, e0026021.	3.8	20
158	Screening of Saccharomyces strains for the capacity to produce desirable fermentative compounds under the influence of different nitrogen sources in synthetic wine fermentations. Food Microbiology, 2021, 97, 103763.	4.2	20
159	Genomic Stability of Saccharomyces cerevisiae Baker's Yeasts. Systematic and Applied Microbiology, 1999, 22, 329-340.	2.8	19
160	RAPD Analysis of Colletotrichum Species Isolated from Strawberry and the Design of Specific Primers for the Identification of C. fragariae. Journal of Phytopathology, 2002, 150, 680-686.	1.0	19
161	Statement on the update of the list of QPSâ€recommended biological agents intentionally added to food or feed as notified to EFSA 3: Suitability of taxonomic units notified to EFSA until September 2015. EFSA Journal, 2015, 13, 4331.	1.8	19
162	Evaluation of the use of phase-specific gene promoters for the expression of enological enzymes in an industrial wine yeast strain. Biotechnology Letters, 1996, 18, 887-892.	2.2	18

#	Article	IF	CITATIONS
163	Ethanol Effects Involve Non-canonical Unfolded Protein Response Activation in Yeast Cells. Frontiers in Microbiology, 2017, 8, 383.	3.5	18
164	Impact of Nitrogen Addition on Wine Fermentation by <i>S. cerevisiae</i> Strains with Different Nitrogen Requirements. Journal of Agricultural and Food Chemistry, 2021, 69, 6022-6031.	5.2	18
165	Molecular Characterisation of the Species of the Genus Zygosaccharomyces. Systematic and Applied Microbiology, 2003, 26, 404-411.	2.8	17
166	Molecular evolution in yeast of biotechnological interest. International Microbiology, 2003, 6, 201-205.	2.4	16
167	Comparative genomic analysis of Saccharomyces cerevisiae yeasts isolated from fermentations of traditional beverages unveils different adaptive strategies. International Journal of Food Microbiology, 2014, 171, 129-135.	4.7	16
168	Lipid Composition Analysis Reveals Mechanisms of Ethanol Tolerance in the Model Yeast <i>Saccharomyces cerevisiae</i> . Applied and Environmental Microbiology, 2021, 87, e0044021.	3.1	16
169	Transcriptomics in human blood incubation reveals the importance of oxidative stress response in Saccharomyces cerevisiae clinical strains. BMC Genomics, 2012, 13, 419.	2.8	15
170	Interspecific hybridisation among diverse Saccharomyces species: A combined biotechnological solution for low-temperature and nitrogen-limited wine fermentations. International Journal of Food Microbiology, 2019, 310, 108331.	4.7	15
171	Differential Contribution of the Parental Genomes to a S. cerevisiae × S. uvarum Hybrid, Inferred by Phenomic, Genomic, and Transcriptomic Analyses, at Different Industrial Stress Conditions. Frontiers in Bioengineering and Biotechnology, 2020, 8, 129.	4.1	15
172	Genomic and transcriptomic analysis of aroma synthesis in two hybrids between Saccharomyces cerevisiae and S. kudriavzevii in winemaking conditions. Microbial Cell Factories, 2015, 14, 128.	4.0	14
173	Thermo-adaptive evolution to generate improved Saccharomyces cerevisiae strains for cocoa pulp fermentations. International Journal of Food Microbiology, 2021, 342, 109077.	4.7	14
174	Relationship between molecular and enological features of Patagonian wine yeasts: relevance in selection protocols. World Journal of Microbiology and Biotechnology, 2006, 22, 827-833.	3.6	13
175	Transcriptomic analysis of Saccharomyces cerevisiae x SaccharomycesÂkudriavzevii hybrids during low temperature winemaking. F1000Research, 2017, 6, 679.	1.6	13
176	Modulation of aroma and chemical composition of Albariño semi-synthetic wines by non-wine Saccharomyces yeasts and bottle aging. Food Microbiology, 2022, 104, 103981.	4.2	13
177	Genetic Study of Natural Introgression Supports Delimitation of Biological Species in the Saccharomyces Sensu Stricto Complex. Systematic and Applied Microbiology, 1997, 20, 595-601.	2.8	12
178	Expression of heterologous transporters in Saccharomyces kudriavzevii: A strategy for improving yeast salt tolerance and fermentation performance. International Journal of Food Microbiology, 2018, 268, 27-34.	4.7	12
179	Retrospective analysis of clinical yeast isolates in a hospital in the centre of Portugal: spectrum and revision of the identification procedures. Medical Mycology, 2009, 47, 836-844.	0.7	11
180	RNAseq-based transcriptome comparison of Saccharomyces cerevisiae strains isolated from diverse fermentative environments. International Journal of Food Microbiology, 2017, 257, 262-270.	4.7	11

#	Article	lF	CITATIONS
181	Saccharomyces uvarum isolated from patagonian ciders shows excellent fermentative performance for low temperature cidermaking. Food Research International, 2019, 126, 108656.	6.2	11
182	Metabolome segregation of four strains of <scp><i>Saccharomyces cerevisiae</i></scp> , <i>Saccharomyces uvarum</i> and <i>Saccharomyces kudriavzevii</i> conducted under low temperature oenological conditions. Environmental Microbiology, 2020, 22, 3700-3721.	3.8	11
183	Genome of Saccharomyces cerevisiae and Related Yeasts. , 2009, , 361-378.		11
184	Convergent adaptation of Saccharomyces uvarum to sulfite, an antimicrobial preservative widely used in human-driven fermentations. PLoS Genetics, 2021, 17, e1009872.	3.5	11
185	Genetic and molecular study of the inability of the yeast Kluyveromyces lactis var. drosophilarum to ferment lactose. Microbiology, 2006, 75, 248-252.	1.2	10
186	Mixed growth curve data do not suffice to fully characterize the dynamics of mixed cultures. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 811-813.	7.1	10
187	Differences in activation of MAP kinases and variability in the polyglutamine tract of Slt2 in clinical and nonâ€clinical isolates of <i>Saccharomyces cerevisiae</i> . Yeast, 2010, 27, 549-561.	1.7	9
188	Possible use of Biolog methodology for monitoring yeast presence in alcoholic fermentation for wine-making. Journal of Applied Microbiology, 2010, 108, 1199-1206.	3.1	9
189	Candida cabralensis sp. nov., a yeast species isolated from traditional Spanish blue-veined Cabrales cheese. International Journal of Systematic and Evolutionary Microbiology, 2010, 60, 2671-2674.	1.7	9
190	Comparative Genomic Analysis Reveals a Critical Role of De Novo Nucleotide Biosynthesis for Saccharomyces cerevisiae Virulence. PLoS ONE, 2015, 10, e0122382.	2.5	9
191	Increased mannoprotein content in wines produced by Saccharomyces kudriavzevii×Saccharomyces cerevisiae hybrids. International Journal of Food Microbiology, 2016, 237, 35-38.	4.7	9
192	A comparison of the performance of natural hybrids Saccharomyces cerevisiae  ×  Saccharomyces kudriavzevii at low temperatures reveals the crucial role of their S. kudriavzevii genomic contribution. International Journal of Food Microbiology, 2018, 274, 12-19.	4.7	9
193	Virulence related traits in yeast species associated with food; Debaryomyces hansenii, Kluyveromyces marxianus, and Wickerhamomyces anomalus. Food Control, 2021, 124, 107901.	5.5	9
194	Generation of intra―and interspecific <i>Saccharomyces</i> hybrids with improved oenological and aromatic properties. Microbial Biotechnology, 2022, 15, 2266-2280.	4.2	9
195	Heterologous production insaccharomyces cerevisiae of differentaspergillus nidulans xylanases of potential interest in oenology. Journal of the Science of Food and Agriculture, 1998, 78, 315-320.	3.5	8
196	Aroma production and fermentation performance of S. cerevisiae × S. kudriavzevii natural hybrids under cold oenological conditions. International Journal of Food Microbiology, 2019, 297, 51-59.	4.7	8
197	Inheritance of winemaking stress factors tolerance in Saccharomyces uvarum/S. eubayanusÂ×ÂS. cerevisiae artificial hybrids. International Journal of Food Microbiology, 2020, 320, 108500.	4.7	8
198	The effect of two antifungal commercial formulations on the metabolism of a commercial Saccharomyces cerevisiae strain and their repercussion on fermentation evolution and phenylalanine catabolism. Food Microbiology, 2020, 92, 103554.	4.2	8

#	Article	IF	CITATIONS
199	Metabolic differences between a wild and a wine strain of <scp><i>Saccharomyces cerevisiae</i></scp> during fermentation unveiled by multiâ€omic analysis. Environmental Microbiology, 2021, 23, 3059-3076.	3.8	7
200	Phylogenetic relationships among wine yeast strains based on electrophoretic whole-cell protein patterns. International Journal of Food Microbiology, 1993, 18, 115-125.	4.7	6
201	Saccharomyces cerevisiae show low levels of traversal across human endothelial barrier in vitro. F1000Research, 2017, 6, 944.	1.6	6
202	Temperature Shapes Ecological Dynamics in Mixed Culture Fermentations Driven by Two Species of the Saccharomyces Genus. Frontiers in Bioengineering and Biotechnology, 2020, 8, 915.	4.1	6
203	The effects of Saccharomyces cerevisiae strains carrying alcoholic fermentation on the fermentative and varietal aroma profiles of young and aged Tempranillo wines. Food Chemistry: X, 2021, 9, 100116.	4.3	6
204	Effect of non-wine Saccharomyces yeasts and bottle aging on the release and generation of aromas in semi-synthetic Tempranillo wines. International Journal of Food Microbiology, 2022, 365, 109554.	4.7	6
205	Functional divergence in the proteins encoded by <i>ARO80</i> from <i>S. uvarum</i> , <i>S. kudriavzevii</i> and <i>S. cerevisiae</i> explain differences in the aroma production during wine fermentation. Microbial Biotechnology, 2022, 15, 2281-2291.	4.2	6
206	Candida patagonica sp. nov., a new species of yeast from cellar surfaces. Antonie Van Leeuwenhoek, 2007, 92, 77-81.	1.7	5
207	Phenotypic and genomic differences among S. cerevisiae strains in nitrogen requirements during wine fermentations. Food Microbiology, 2021, 96, 103685.	4.2	5
208	Wine, Beer and Cider: Unravelling the Aroma Profile. , 2014, , 261-297.		5
209	Genomic instability in an interspecific hybrid of the genus Saccharomyces: a matter of adaptability. Microbial Genomics, 2020, 6, .	2.0	5
210	Transcriptomic analysis of Saccharomyces cerevisiae x Saccharomyces kudriavzevii hybrids during low temperature winemaking. F1000Research, 2017, 6, 679.	1.6	5
211	Saccharomyces cerevisiae show low levels of traversal across the human blood brain barrier in vitro. F1000Research, 2017, 6, 944.	1.6	5
212	The diverse effects of yeast on the aroma of non-sulfite added white wines throughout aging. LWT - Food Science and Technology, 2022, 158, 113111.	5.2	5
213	Use of non-conventional yeasts to increase total acidity in the Cava base wines. LWT - Food Science and Technology, 2022, 158, 113183.	5.2	5
214	Genome-wide effect of non-optimal temperatures under anaerobic conditions on gene expression in Saccharomyces cerevisiae. Genomics, 2022, 114, 110386.	2.9	5
215	Effect of transient thermal shocks on alcoholic fermentation performance. International Journal of Food Microbiology, 2020, 312, 108362.	4.7	4
216	Human-associated migration of HolarcticÂSaccharomyces uvarumÂstrains to Patagonia. Fungal Ecology, 2020, 48, 100990.	1.6	4

#	Article	IF	CITATIONS
217	Four new Candida cretensis strains isolated from Spanish fermented sausages (chorizo): Taxonomic and phylogenetic implications. FEMS Yeast Research, 2008, 8, 485-491.	2.3	3
218	Stl1 transporter mediating the uptake of glycerol is not a weak point of <i>Saccharomyces kudriavzevii's</i> low osmotolerance. Letters in Applied Microbiology, 2019, 68, 81-86.	2.2	3
219	Mitochondrial DNA polymorphism of the yeast Saccharomyces bayanus var. uvarum. Microbiology, 2010, 79, 520-527.	1.2	2
220	The qualified presumption of safety assessment and its role in EFSA risk evaluations: 15 years past. FEMS Microbiology Letters, 2019, 366, i17-i23.	1.8	2
221	Molecular Identification and Characterization of Wine Yeasts. , 2011, , 111-141.		1
222	Inter―and intraspecific chromosome pattern variation in the yeast genus Kluyveromyces. Yeast, 1998, 14, 1341-1354.	1.7	1
223	Genetics of Yeasts. , 2008, , 167-179.		1
224	Adaptive response to wine selective pressures shapes the genome of a Saccharomyces interspecies hybrid. Microbial Genomics, 2021, 7, .	2.0	0
225	Nuevo dispositivo de deposición digital de solidos K9 SolidJet©. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2014, 53, XI-XIV.	1.9	0
226	Heterologous production in saccharomyces cerevisiae of different aspergillus nidulans xylanases of potential interest in oenology. Journal of the Science of Food and Agriculture, 1998, 78, 315-320.	3.5	0