Yu-Feng Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5496228/publications.pdf

Version: 2024-02-01

117625 102487 4,620 101 34 66 citations g-index h-index papers 103 103 103 2834 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Fewâ€layer Bismuthene: Sonochemical Exfoliation, Nonlinear Optics and Applications for Ultrafast Photonics with Enhanced Stability. Laser and Photonics Reviews, 2018, 12, 1700221.	8.7	311
2	Recent progress of study on optical solitons in fiber lasers. Applied Physics Reviews, 2019, 6, .	11.3	295
3	Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability. 2D Materials, 2017, 4, 045010.	4.4	260
4	Broadband Nonlinear Photoresponse of 2D TiS ₂ for Ultrashort Pulse Generation and Allâ€Optical Thresholding Devices. Advanced Optical Materials, 2018, 6, 1701166.	7.3	248
5	Vector soliton fiber laser passively mode locked by few layer black phosphorus-based optical saturable absorber. Optics Express, 2016, 24, 25933.	3.4	200
6	Few-layer bismuthene for ultrashort pulse generation in a dissipative system based on an evanescent field. Nanoscale, 2018, 10, 17617-17622.	5.6	189
7	Allâ€Optical Phosphorene Phase Modulator with Enhanced Stability Under Ambient Conditions. Laser and Photonics Reviews, 2018, 12, 1800016.	8.7	155
8	Vector multi-soliton operation and interaction in a graphene mode-locked fiber laser. Optics Express, 2013, 21, 10010.	3.4	135
9	Fewâ€Layer Phosphoreneâ€Decorated Microfiber for Allâ€Optical Thresholding and Optical Modulation. Advanced Optical Materials, 2017, 5, 1700026.	7. 3	125
10	An Allâ€Optical, Actively Qâ€Switched Fiber Laser by an Antimoneneâ€Based Optical Modulator. Laser and Photonics Reviews, 2019, 13, 1800313.	8.7	122
11	Polarization rotation vector solitons in a graphene mode-locked fiber laser. Optics Express, 2012, 20, 27283.	3.4	118
12	MXene Ti ₃ C ₂ T <i>_x</i> : A Promising Photothermal Conversion Material and Application in Allâ€Optical Modulation and Allâ€Optical Information Loading. Advanced Optical Materials, 2019, 7, 1900060.	7.3	115
13	Few-layer selenium-doped black phosphorus: synthesis, nonlinear optical properties and ultrafast photonics applications. Journal of Materials Chemistry C, 2017, 5, 6129-6135.	5.5	109
14	Two-dimensional tellurium–polymer membrane for ultrafast photonics. Nanoscale, 2019, 11, 6235-6242.	5.6	104
15	Chemistry, Functionalization, and Applications of Recent Monoelemental Two-Dimensional Materials and Their Heterostructures. Chemical Reviews, 2022, 122, 1127-1207.	47.7	103
16	Graphdiyneâ€Polymer Nanocomposite as a Broadband and Robust Saturable Absorber for Ultrafast Photonics. Laser and Photonics Reviews, 2020, 14, 1900367.	8.7	99
17	Nonlinear Fewâ€Layer Antimoneneâ€Based Allâ€Optical Signal Processing: Ultrafast Optical Switching and Highâ€Speed Wavelength Conversion. Advanced Optical Materials, 2018, 6, 1701287.	7.3	97
18	Nonlinear Few‣ayer MXeneâ€Assisted Allâ€Optical Wavelength Conversion at Telecommunication Band. Advanced Optical Materials, 2019, 7, 1801777.	7.3	86

#	Article	IF	Citations
19	Coexistence and interaction of vector and bound vector solitons in a dispersion-managed fiber laser mode locked by graphene. Optics Express, 2016, 24, 1814.	3.4	85
20	2D GeP as a Novel Broadband Nonlinear Optical Material for Ultrafast Photonics. Laser and Photonics Reviews, 2019, 13, 1900123.	8.7	76
21	Recent progress on optical rogue waves in fiber lasers: status, challenges, and perspectives. Advanced Photonics, 2020, 2, 1.	11.8	71
22	Recent developments in mid-infrared fiber lasers: Status and challenges. Optics and Laser Technology, 2020, 132, 106497.	4.6	57
23	Graphdiyne as a Promising Midâ€Infrared Nonlinear Optical Material for Ultrafast Photonics. Advanced Optical Materials, 2020, 8, 2000067.	7.3	57
24	Evidence of dark solitons in all-normal-dispersion-fiber lasers. Physical Review A, 2013, 88, .	2.5	52
25	Dark soliton fiber lasers. Optics Express, 2014, 22, 19831.	3.4	51
26	All-optical modulation with 2D layered materials: status and prospects. Nanophotonics, 2020, 9, 2107-2124.	6.0	51
27	MXene saturable absorber enabled hybrid mode-locking technology: a new routine of advancing femtosecond fiber lasers performance. Nanophotonics, 2020, 9, 2451-2458.	6.0	50
28	Two-Dimensional Lead Monoxide: Facile Liquid Phase Exfoliation, Excellent Photoresponse Performance, and Theoretical Investigation. ACS Photonics, 2018, 5, 5055-5067.	6.6	47
29	MXene Photonic Devices for Near-Infrared to Mid-Infrared Ultrashort Pulse Generation. ACS Applied Nano Materials, 2020, 3, 3513-3522.	5.0	42
30	Broadband Nonlinear Photonics in Few‣ayer Borophene. Small, 2021, 17, e2006891.	10.0	42
31	MXene (Ti2NTx): Synthesis, characteristics and application as a thermo-optical switcher for all-optical wavelength tuning laser. Science China Materials, 2021, 64, 259-265.	6.3	40
32	Ti ₃ C ₂ T <i>>_x</i> MXene Quantum Dots with Enhanced Stability for Ultrafast Photonics. ACS Applied Nano Materials, 2020, 3, 11850-11860.	5.0	38
33	Few-layer bismuthene for robust ultrafast photonics in C-Band optical communications. Nanotechnology, 2019, 30, 354002.	2.6	37
34	280  GHz dark soliton fiber laser. Optics Letters, 2014, 39, 3484.	3.3	36
35	Lead monoxide: a promising two-dimensional layered material for applications in nonlinear photonics in the infrared band. Nanoscale, 2019, 11, 12595-12602.	5.6	36
36	Recent Advances of Spatial Selfâ€Phase Modulation in 2D Materials and Passive Photonic Device Applications. Small, 2020, 16, e2002252.	10.0	35

#	Article	IF	Citations
37	Recent advances in real-time spectrum measurement of soliton dynamics by dispersive Fourier transformation. Reports on Progress in Physics, 2020, 83, 116401.	20.1	35
38	NiPS ₃ nanoflakes: a nonlinear optical material for ultrafast photonics. Nanoscale, 2019, 11, 14383-14391.	5.6	34
39	Polarization Domain Formation and Domain Dynamics in a Quasi-Isotropic Cavity Fiber Laser. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 42-50.	2.9	33
40	Beta-lead oxide quantum dot (\hat{l}^2 -PbO QD)/polystyrene (PS) composite films and their applications in ultrafast photonics. Nanoscale, 2019, 11, 6828-6837.	5.6	33
41	Black phosphorus quantum dot based all-optical signal processing: ultrafast optical switching and wavelength converting. Nanotechnology, 2019, 30, 415202.	2.6	30
42	Period-Doubling and Quadrupling Bifurcation of Vector Soliton Bunches in a Graphene Mode Locked Fiber Laser. IEEE Photonics Journal, 2017, 9, 1-8.	2.0	29
43	Recent advances of low-dimensional materials in Mid- and Far-infrared photonics. Applied Materials Today, 2020, 21, 100800.	4.3	27
44	Observation of dark-bright vector solitons in fiber lasers. Optics Letters, 2019, 44, 2185.	3.3	26
45	GHz pulse train generation in fiber lasers by cavity induced modulation instability. Optical Fiber Technology, 2014, 20, 610-614.	2.7	25
46	Temporal cavity soliton formation in an anomalous dispersion cavity fiber laser. Journal of the Optical Society of America B: Optical Physics, 2014, 31, 3050.	2.1	24
47	All-optical signal processing in few-layer bismuthene coated microfiber: towards applications in optical fiber systems. Optics Express, 2019, 27, 16798.	3.4	24
48	Facile Synthesis of 2D Tin Selenide for Near―and Mid―nfrared Ultrafast Photonics Applications. Advanced Optical Materials, 2020, 8, 1902183.	7.3	23
49	Quasi-periodicity of vector solitons in a graphene mode-locked fiber laser. Laser Physics Letters, 2013, 10, 125103.	1.4	22
50	Dissipative dark-bright vector solitons in fiber lasers. Physical Review A, 2020, 101, .	2.5	21
51	Band structure tuning of \hat{l} ±-MoO ₃ by tin intercalation for ultrafast photonic applications. Nanoscale, 2020, 12, 23140-23149.	5. 6	20
52	Observation of incoherently coupled dark-bright vector solitons in single-mode fibers. Optics Express, 2019, 27, 18311.	3.4	19
53	Generation and pulsating behaviors of loosely bound solitons in a passively mode-locked fiber laser. Physical Review A, 2020, 101, .	2.5	18
54	Fast solution method to prepare hexagonal tellurium nanosheets for optoelectronic and ultrafast photonic applications. Journal of Materials Chemistry C, 2021, 9, 508-516.	5 . 5	17

#	Article	IF	CITATIONS
55	Simultaneous generation and real-time observation of loosely bound solitons and noise-like pulses in a dispersion-managed fiber laser with net-normal dispersion. Optics Express, 2020, 28, 39463.	3.4	17
56	On the interrelations between an optical differentiator and an optical Hilbert transformer. Optics Letters, 2011, 36, 915.	3.3	16
57	Soliton-dark pulse pair formation in birefringent cavity fiber lasers through cross phase coupling. Optics Express, 2015, 23, 26252.	3.4	16
58	Vector soliton and noise-like pulse generation using a Ti3C2 MXene material in a fiber laser. Frontiers of Information Technology and Electronic Engineering, 2021, 22, 318-324.	2.6	16
59	Wavelength tunable passive-mode locked Er-doped fiber laser based on graphene oxide nano-platelet. Optics and Laser Technology, 2021, 140, 106932.	4.6	16
60	Initial conditions for dark soliton generation in normal-dispersion fiber lasers. Applied Optics, 2015, 54, 71.	1.8	15
61	2D GeP-based photonic device for near-infrared and mid-infrared ultrafast photonics. Nanophotonics, 2020, 9, 3645-3654.	6.0	14
62	Boron quantum dots all-optical modulator based on efficient photothermal effect. Opto-Electronic Advances, 2021, 4, 200032-200032.	13.3	13
63	Induced dark solitary pulse in an anomalous dispersion cavity fiber laser. Optics Express, 2015, 23, 28430.	3.4	12
64	Control of dissipative rogue waves in nonlinear cavity optics: Optical injection and time-delayed feedback. Chaos, 2020, 30, 053103.	2.5	12
65	Real-time dynamics of noise-like vector pulses in a figure-eight fiber laser. Optics Express, 2022, 30, 9137.	3.4	12
66	Thermal stress-induced all-optical modulation in MXene-coated polarization maintaining fiber. Laser Physics Letters, 2019, 16, 065107.	1.4	11
67	Cavity-assisted modulation instability lasing of a fiber ring laser. Applied Physics B: Lasers and Optics, 2019, 125, 1.	2.2	11
68	A nano-lateral heterojunction of selenium-coated tellurium for infrared-band soliton fiber lasers. Nanoscale, 2020, 12, 15252-15260.	5.6	11
69	Gold Nanoclusterâ€Modified Titanium Nitride for Ultrafast Photonics Applications. Advanced Electronic Materials, 2021, 7, 2000954.	5.1	11
70	Tailoring the ultrafast and nonlinear photonics of MXenes through elemental replacement. Nanoscale, 2021, 13, 15891-15898.	5.6	11
71	Gigahertz femtosecond laser-by a novel asymmetric one-dimensional photonic crystal saturable absorber device with defect layer. Nanophotonics, 2022, 11, 2939-2951.	6.0	11
72	Passive Q-switched operation of an <i>a</i> -cut Tm,Ho:YAP laser with a few-layer WS ₂ saturable absorber. Laser Physics Letters, 2018, 15, 085806.	1.4	10

#	Article	IF	Citations
73	Rogue wave light bullets of the three-dimensional inhomogeneous nonlinear Schr $ ilde{A}\P$ dinger equation. Photonics Research, 2021, 9, 643.	7.0	10
74	Two-dimensional tin diselenide nanosheets pretreated with an alkaloid for near- and mid-infrared ultrafast photonics. Photonics Research, 2020, 8, 1687.	7.0	10
75	Facile Synthesis of Monodispersed Titanium Nitride Quantum Dots for Harmonic Mode-Locking Generation in an Ultrafast Fiber Laser. Nanomaterials, 2022, 12, 2280.	4.1	10
76	Observation of vector solitons supported by third-order dispersion. Physical Review A, 2019, 99, .	2.5	9
77	Dual-wavelength dissipative solitons in an anomalous-dispersion-cavity fiber laser. Nanophotonics, 2020, 9, 2361-2366.	6.0	9
78	Broadband and ultrafast all-optical switching based on transition metal carbide. Nanophotonics, 2021, 10, 2617-2623.	6.0	9
79	Tellurium@Selenium core-shell hetero-junction: Facile synthesis, nonlinear optics, and ultrafast photonics applications towards mid-infrared regime. Applied Materials Today, 2020, 20, 100657.	4.3	9
80	Wavelength tunable Q-switched Er-doped fiber laser based on ZrSe2. Optics and Laser Technology, 2022, 147, 107598.	4.6	8
81	Analysis of inverse-Gaussian apodized fiber Bragg grating. Applied Optics, 2010, 49, 4715.	2.1	6
82	Characterization of Dark Soliton Sidebands in All-Normal-Dispersion Fiber Lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24, 1-7.	2.9	6
83	Vector dark solitons in a single mode fibre laser. Laser Physics Letters, 2019, 16, 085110.	1.4	6
84	Discrete light bullets in coupled optical resonators. Optics Letters, 2021, 46, 4072.	3.3	6
85	Tin selenide: A promising black-phosphorus-analogue nonlinear optical material and its application as all-optical switcher and all-optical logic gate. Materials Today Physics, 2021, 21, 100500.	6.0	6
86	Graphene-enhanced polarization-insensitive all-optical wavelength conversion based on four-wave mixing. Optics Express, 2022, 30, 10168.	3.4	5
87	Controlled Generation of Bright or Dark Solitons in a Fiber Laser by Intracavity Nonlinear Absorber. IEEE Photonics Journal, 2016, 8, 1-12.	2.0	4
88	Design of Hilbert transformers with tunable THz bandwidths using a reconfigurable integrated optical FIR filter. Optics Communications, 2011, 284, 787-794.	2.1	3
89	Dissipative peregrine solitons in fiber lasers. JPhys Photonics, 2020, 2, 034011.	4.6	3
90	Vector gain-guided dissipative solitons in a net normal dispersive fiber laser. IEEE Photonics Technology Letters, 2016, , 1-1.	2.5	2

#	Article	IF	CITATIONS
91	Temporal vector cavity solitons in a net anomalous dispersion fiber laser. Laser Physics Letters, 2016, 13, 025103.	1.4	2
92	Editorial: Ultrafast Photonics of Low-Dimensional Materials. Frontiers in Physics, 2021, 8, .	2.1	2
93	Few-layer antimonene decorated microfiber as an all optical thresholder and wavelength converter for optical signal processing. , 2017, , .		2
94	Optical Modulation: Fewâ€Layer Phosphoreneâ€Decorated Microfiber for Allâ€Optical Thresholding and Optical Modulation (Advanced Optical Materials 9/2017). Advanced Optical Materials, 2017, 5, .	7. 3	1
95	Dark solitons embedded in a stable periodic pulse train emitted by a fiber ring laser. JPhys Photonics, 2020, 2, 034009.	4.6	1
96	Observation of anti-dark solitons in fiber lasers. , 2016, , .		1
97	PbO-based ultrafast fiber lasers. , 2018, , .		1
98	Dark soliton operation fiber lasers. , 2013, , .		0
99	Cavity solitons in fiber lasers. , 2015, , .		O
100	Black-white vector solitons in a fiber ring laser. , 2016, , .		0
101	Investigation and demonstration of allâ€optical hybrid fiberâ€FSOâ€fiber CDMA communication system. IET Communications, 0, , .	2.2	O