Hai-Yin Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5496121/publications.pdf

Version: 2024-02-01

218677 243625 1,984 48 26 44 h-index citations g-index papers 48 48 48 1986 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Surface modification of polypropylene microporous membrane to improve its antifouling property in MBR: CO plasma treatment. Journal of Membrane Science, 2005, 254, 219-227.	8.2	176
2	Surface modification of polypropylene microporous membranes to improve their antifouling property in MBR: NH plasma treatment. Separation and Purification Technology, 2005, 45, 8-15.	7.9	143
3	Grafting polyzwitterions onto polyamide by click chemistry and nucleophilic substitution on nitrogen: A novel approach to enhance membrane fouling resistance. Journal of Membrane Science, 2014, 449, 50-57.	8.2	121
4	Improvement of the antifouling characteristics for polypropylene microporous membranes by the sequential photoinduced graft polymerization of acrylic acid. Journal of Membrane Science, 2006, 281, 658-665.	8.2	107
5	Surface modification of polypropylene microporous membrane to improve its antifouling characteristics in an SMBR: Air plasma treatment. Journal of Membrane Science, 2008, 311, 216-224.	8.2	103
6	Photoinduced graft polymerization of acrylamide on polypropylene microporous membranes for the improvement of antifouling characteristics in a submerged membrane-bioreactor. Separation and Purification Technology, 2007, 53, 119-125.	7.9	85
7	Surface modification of polypropylene microporous membrane to improve its antifouling characteristics in an SMBR: N2 plasma treatment. Water Research, 2007, 41, 4703-4709.	11.3	77
8	Plasma surface modification of polypropylene microfiltration membranes and fouling by BSA dispersion. Chemical Engineering Journal, 2008, 145, 218-224.	12.7	75
9	Polypropylene membrane surface modification by RAFT grafting polymerization and TiO2 photocatalysts immobilization for phenol decomposition in a photocatalytic membrane reactor. Separation and Purification Technology, 2011, 83, 157-165.	7.9	74
10	Preliminary Analysis of Strong-Motion Recordings from the Magnitude 8.0 Wenchuan, China, Earthquake of 12 May 2008. Seismological Research Letters, 2008, 79, 844-854.	1.9	68
11	Mitigated membrane fouling in an SMBR by surface modification. Journal of Membrane Science, 2008, 310, 409-417.	8.2	64
12	Layer-by-layer assembly of graphene oxide on polypropylene macroporous membranes via click chemistry to improve antibacterial and antifouling performance. Applied Surface Science, 2015, 332, 300-307.	6.1	60
13	Flux enhancement for polypropylene microporous membrane in a SMBR by the immobilization of poly(N-vinyl-2-pyrrolidone) on the membrane surface. Journal of Membrane Science, 2006, 279, 148-155.	8.2	58
14	Thermo- and pH-responsive polypropylene microporous membrane prepared by the photoinduced RAFT-mediated graft copolymerization. Journal of Membrane Science, 2009, 343, 82-89.	8.2	58
15	Chain-length dependence of the antifouling characteristics of the glycopolymer-modified polypropylene membrane in an SMBR. Journal of Membrane Science, 2009, 326, 145-152.	8.2	49
16	Bioinspired Supramolecular Catalysts from Designed Self-Assembly of DNA or Peptides. ACS Catalysis, 2020, 10, 14937-14958.	11.2	48
17	Surface Modification of Poly(propylene) Microporous Membrane to Improve Its Antifouling Characteristics in an SMBR: O ₂ Plasma Treatment. Plasma Processes and Polymers, 2008, 5, 84-91.	3.0	45
18	Improvement of antifouling characteristics in a bioreactor of polypropylene microporous membrane by the adsorption of Tween 20. Journal of Environmental Sciences, 2007, 19, 1461-1465.	6.1	44

#	Article	IF	CITATIONS
19	Surface modification of polypropylene macroporous membrane by marrying RAFT polymerization with click chemistry. Journal of Membrane Science, 2012, 421-422, 60-68.	8.2	42
20	Strong Light–Matter Interactions in Chiral Plasmonic–Excitonic Systems Assembled on DNA Origami. Nano Letters, 2021, 21, 3573-3580.	9.1	38
21	Friedel-Crafts self-crosslinking of sulfonated poly(etheretherketone) composite proton exchange membrane doped with phosphotungstic acid and carbon-based nanomaterials for fuel cell applications. Journal of Membrane Science, 2020, 611, 118381.	8.2	37
22	Surface modification of polypropylene macroporous membrane to improve its antifouling characteristics in a submerged membrane-bioreactor: H2O plasma treatment. Water Research, 2008, 42, 4341-4347.	11.3	35
23	Top-Down Strategy of Implantable Biosensor Using Adaptable, Porous Hollow Fibrous Membrane. ACS Sensors, 2019, 4, 931-937.	7.8	34
24	Reducing protein fouling of a polypropylene microporous membrane by CO2 plasma surface modification. Desalination, 2009, 244, 80-89.	8.2	33
25	Manipulating membrane permeability and protein rejection of UV-modified polypropylene macroporous membrane. Journal of Membrane Science, 2010, 364, 203-210.	8.2	31
26	Photoinduced graft polymerization to improve antifouling characteristics of an SMBR. Journal of Membrane Science, 2007, 302, 235-242.	8.2	27
27	DNA Nanostructureâ€Based Imaging Probes and Drug Carriers. ChemMedChem, 2014, 9, 2013-2020.	3.2	25
28	Development of a novel RAFT-UV grafting technique to modify polypropylene membrane used for NOM removal. Separation and Purification Technology, 2010, 71, 233-240.	7.9	24
29	Antifouling characteristics of sugar immobilized polypropylene microporous membrane by activated sludge and bovine serum albumin. Separation and Purification Technology, 2009, 64, 332-336.	7.9	21
30	Methoxypolyethylene glycol grafting on polypropylene membrane for enhanced antifouling characteristics $\hat{a} \in \text{Effect}$ of pendant length and grafting density. Separation and Purification Technology, 2016, 164, 81-88.	7.9	21
31	Improvement of Surface Properties of Poly(propylene) Hollow Fiber Microporous Membranes by Plasma-Induced Tethering of Sugar Moieties. Plasma Processes and Polymers, 2005, 2, 627-632.	3.0	20
32	Structural parameters reduction in polyamide forward osmosis membranes via click modification of the polysulfone support. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 585, 124082.	4.7	20
33	Preparation of poly(arylene ether ketone) based anion exchange membrane with pendant pyrimidinium and pyridazinium cation derivatives for alkaline fuel cell. Journal of Membrane Science, 2022, 659, 120778.	8.2	19
34	Fouling control in a submerged membraneâ€bioreactor by the membrane surface modification. Journal of Applied Polymer Science, 2010, 115, 2302-2309.	2.6	17
35	Surface modification of polypropylene membrane to improve antifouling characteristics in a submerged membrane-bioreactor: Ar plasma treatment. Membrane Water Treatment, 2010, 1, 83-92.	0.5	16
36	Integration of RAFT polymerization and click chemistry to fabricate PAMPS modified macroporous polypropylene membrane for protein fouling mitigation. Journal of Colloid and Interface Science, 2014, 435, 43-50.	9.4	12

#	Article	IF	CITATIONS
37	Enhancement of the flux for polypropylene hollow fiber membrane in a submerged membrane-bioreactor by surface modification. Journal of Environmental Sciences, 2006, 18, 1050-1055.	6.1	11
38	Grafting Branch Length and Density Dependent Performance of Zwitterionic Polymer Decorated Polypropylene Membrane. Chinese Journal of Polymer Science (English Edition), 2018, 36, 528-535.	3.8	11
39	Controlled Grafting of Poly(methyl methacrylate) Brushes on Poly(vinylidene fluoride) Powders by Surfaceâ€initiated Atom Transfer Radical Polymerization. Chinese Journal of Chemistry, 2009, 27, 419-422.	4.9	6
40	Amphiphilic Block Copolymer of Poly(dimethylsiloxane) and Methoxypolyethylene Glycols for High-Permeable Polysulfone Membrane Preparation. ACS Omega, 2019, 4, 13052-13060.	3 . 5	6
41	Chlorineâ€resistant and internalâ€concentrationâ€polarizationâ€mitigated polyamide membrane via tethering poly(ethylene glycol) methacrylate. Journal of Applied Polymer Science, 2019, 136, 47406.	2.6	5
42	Low protein fouling polypropylene membrane prepared by photoinduced reversible additionâ€fragmentation chain transfer polymerization. Journal of Applied Polymer Science, 2012, 123, 3668-3674.	2.6	4
43	Shape-controllable Synthesis of Functional Nanomaterials on DNA Templates. Chemical Research in Chinese Universities, 2020, 36, 171-176.	2.6	4
44	A FACILE APPROACH FOR THE SURFACE MODIFICATION OF POLY(VINYLIDENE FLUORIDE) MEMBRANE VIA SURFACE-INITIATED ATOM TRANSFER RADICAL POLYMERIZATION. Chinese Journal of Polymer Science (English Edition), 2008, 26, 105.	3.8	4
45	Surface modification of nano-SiO2 by grafting PMMA/PBA. Chinese Journal of Chemistry, 2010, 21, 1297-1299.	4.9	3
46	Prediction of Decomposition Temperature for Lanthanide Complexes Involving Cyclopentadienyl and Benzohydroxamic Acid Ligand by ANNs. Chinese Journal of Chemistry, 2010, 20, 996-999.	4.9	2
47	Title is missing!. Chinese Journal of Polymer Science (English Edition), 2005, 23, 243.	3 . 8	1
48	Polymeric Membrane Science and Technology. International Journal of Polymer Science, 2013, 2013, 1-2.	2.7	0