Nico Boon

List of Publications by Citations

Source: https://exaly.com/author-pdf/5496062/nico-boon-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

156 31,743 503 95 h-index g-index citations papers 6.8 36,392 7.31 527 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
503	Biofuel cells select for microbial consortia that self-mediate electron transfer. <i>Applied and Environmental Microbiology</i> , 2004 , 70, 5373-82	4.8	953
502	Microbial phenazine production enhances electron transfer in biofuel cells. <i>Environmental Science & Environmental Science & Environmental Science</i>	10.3	726
501	Initial community evenness favours functionality under selective stress. <i>Nature</i> , 2009 , 458, 623-6	50.4	683
500	Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. <i>Environmental Science & Environmental Science & E</i>	10.3	659
499	Biological denitrification in microbial fuel cells. <i>Environmental Science & Environmental Science & E</i>	- 60 .3	648
498	Environmental factors shaping the ecological niches of ammonia-oxidizing archaea. <i>FEMS Microbiology Reviews</i> , 2009 , 33, 855-69	15.1	517
497	Methanosarcina: the rediscovered methanogen for heavy duty biomethanation. <i>Bioresource Technology</i> , 2012 , 112, 1-9	11	510
496	Chemical and biological technologies for hydrogen sulfide emission control in sewer systems: a review. <i>Water Research</i> , 2008 , 42, 1-12	12.5	496
495	The basics of bio-flocs technology: The added value for aquaculture. <i>Aquaculture</i> , 2008 , 277, 125-137	4.4	432
494	How to get more out of molecular fingerprints: practical tools for microbial ecology. <i>Environmental Microbiology</i> , 2008 , 10, 1571-81	5.2	388
493	Evaluation of nested PCR-DGGE (denaturing gradient gel electrophoresis) with group-specific 16S rRNA primers for the analysis of bacterial communities from different wastewater treatment plants. <i>FEMS Microbiology Ecology</i> , 2002 , 39, 101-12	4.3	335
492	Open air biocathode enables effective electricity generation with microbial fuel cells. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	334
491	Strain-specific ureolytic microbial calcium carbonate precipitation. <i>Applied and Environmental Microbiology</i> , 2003 , 69, 4901-9	4.8	324
490	Microbial fuel cells for sulfide removal. Environmental Science & Environmenta	10.3	321
489	Bioaugmentation of activated sludge by an indigenous 3-chloroaniline-degrading Comamonas testosteroni strain, I2gfp. <i>Applied and Environmental Microbiology</i> , 2000 , 66, 2906-13	4.8	292
488	Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. <i>Applied Microbiology and Biotechnology</i> , 2009 , 84, 741-9	5.7	279
487	Microbial Fuel Cells in Relation to Conventional Anaerobic Digestion Technology. <i>Engineering in Life Sciences</i> , 2006 , 6, 285-292	3.4	276

(2006-2008)

486	Loading rate and external resistance control the electricity generation of microbial fuel cells with different three-dimensional anodes. <i>Bioresource Technology</i> , 2008 , 99, 8895-902	11	260
485	Aggregate size and architecture determine microbial activity balance for one-stage partial nitritation and anammox. <i>Applied and Environmental Microbiology</i> , 2010 , 76, 900-9	4.8	255
484	Alternatives to antibiotics to control bacterial infections: luminescent vibriosis in aquaculture as an example. <i>Trends in Biotechnology</i> , 2007 , 25, 472-9	15.1	255
483	Flue gas compounds and microalgae: (bio-)chemical interactions leading to biotechnological opportunities. <i>Biotechnology Advances</i> , 2012 , 30, 1405-24	17.8	238
482	Microbial fuel cells generating electricity from rhizodeposits of rice plants. <i>Environmental Science & Environmental Science</i> & Environmental Science & Environmental	10.3	233
481	Metabolites produced by Pseudomonas sp. enable a Gram-positive bacterium to achieve extracellular electron transfer. <i>Applied Microbiology and Biotechnology</i> , 2008 , 77, 1119-29	5.7	224
480	Ammonia and temperature determine potential clustering in the anaerobic digestion microbiome. <i>Water Research</i> , 2015 , 75, 312-23	12.5	220
479	Is biological treatment a viable alternative for micropollutant removal in drinking water treatment processes?. <i>Water Research</i> , 2013 , 47, 5955-76	12.5	217
478	Cultivation of denitrifying bacteria: optimization of isolation conditions and diversity study. <i>Applied and Environmental Microbiology</i> , 2006 , 72, 2637-43	4.8	211
477	Bioaugmentation as a tool to protect the structure and function of an activated-sludge microbial community against a 3-chloroaniline shock load. <i>Applied and Environmental Microbiology</i> , 2003 , 69, 1511	-28	209
476	Synergistic degradation of linuron by a bacterial consortium and isolation of a single linuron-degrading variovorax strain. <i>Applied and Environmental Microbiology</i> , 2003 , 69, 1532-41	4.8	204
475	Butyrate-producing bacteria supplemented in vitro to Crohn's disease patient microbiota increased butyrate production and enhanced intestinal epithelial barrier integrity. <i>Scientific Reports</i> , 2017 , 7, 1145	d·9	203
474	Probiotics in aquaculture of China ©urrent state, problems and prospect. Aquaculture, 2009, 290, 15-21	4.4	202
473	Inulin-type fructans of longer degree of polymerization exert more pronounced in vitro prebiotic effects. <i>Journal of Applied Microbiology</i> , 2007 , 102, 452-60	4.7	201
472	Disruption of bacterial quorum sensing: an unexplored strategy to fight infections in aquaculture. <i>Aquaculture</i> , 2004 , 240, 69-88	4.4	187
471	Biogenic metals in advanced water treatment. <i>Trends in Biotechnology</i> , 2009 , 27, 90-8	15.1	185
470	Isolation and characterisation of an equol-producing mixed microbial culture from a human faecal sample and its activity under gastrointestinal conditions. <i>Archives of Microbiology</i> , 2005 , 183, 45-55	3	181
469	The incidence of nirS and nirK and their genetic heterogeneity in cultivated denitrifiers. <i>Environmental Microbiology</i> , 2006 , 8, 2012-21	5.2	180

468	Overnight stagnation of drinking water in household taps induces microbial growth and changes in community composition. <i>Water Research</i> , 2010 , 44, 4868-77	12.5	176
467	Absolute quantification of microbial taxon abundances. <i>ISME Journal</i> , 2017 , 11, 584-587	11.9	169
466	Past, present and future applications of flow cytometry in aquatic microbiology. <i>Trends in Biotechnology</i> , 2010 , 28, 416-24	15.1	168
465	Conceptualizing functional traits and ecological characteristics of methane-oxidizing bacteria as life strategies. <i>Environmental Microbiology Reports</i> , 2013 , 5, 335-45	3.7	165
464	Biologically produced nanosilver: current state and future perspectives. <i>Biotechnology and Bioengineering</i> , 2012 , 109, 2422-36	4.9	165
463	Real-time PCR assay for the simultaneous quantification of nitrifying and denitrifying bacteria in activated sludge. <i>Applied Microbiology and Biotechnology</i> , 2007 , 75, 211-21	5.7	160
462	Quantifying community dynamics of nitrifiers in functionally stable reactors. <i>Applied and Environmental Microbiology</i> , 2008 , 74, 286-93	4.8	158
461	Biodegradation: Updating the concepts of control for microbial cleanup in contaminated aquifers. <i>Environmental Science & Discourse (Control of Science & Control of Science & Co</i>	10.3	155
460	Electrochemical resource recovery from digestate to prevent ammonia toxicity during anaerobic digestion. <i>Environmental Science & Environmental Scienc</i>	10.3	153
459	Microbial fuel cells operating on mixed fatty acids. <i>Bioresource Technology</i> , 2010 , 101, 1233-8	11	153
458	Synthetic microbial ecosystems: an exciting tool to understand and apply microbial communities. <i>Environmental Microbiology</i> , 2014 , 16, 1472-81	5.2	152
457	Can bacteria evolve resistance to quorum sensing disruption?. <i>PLoS Pathogens</i> , 2010 , 6, e1000989	7.6	152
456	Anaerobic digestibility of Scenedesmus obliquus and Phaeodactylum tricornutum under mesophilic and thermophilic conditions. <i>Applied Energy</i> , 2012 , 92, 733-738	10.7	147
455	One-stage partial nitritation/anammox at 15 °C on pretreated sewage: feasibility demonstration at lab-scale. <i>Applied Microbiology and Biotechnology</i> , 2013 , 97, 10199-210	5.7	145
454	A completely anoxic microbial fuel cell using a photo-biocathode for cathodic carbon dioxide reduction. <i>Energy and Environmental Science</i> , 2009 , 2, 498	35.4	143
453	Prebiotic effects of chicory inulin in the simulator of the human intestinal microbial ecosystem. <i>FEMS Microbiology Ecology</i> , 2004 , 51, 143-53	4.3	140
452	Microbial protein: future sustainable food supply route with low environmental footprint. <i>Microbial Biotechnology</i> , 2016 , 9, 568-75	6.3	140
451	Isolation and characterization of low nucleic acid (LNA)-content bacteria. <i>ISME Journal</i> , 2009 , 3, 889-902	11.9	139

(2014-2001)

450	Bioaugmentation of soils by increasing microbial richness: missing links. <i>Environmental Microbiology</i> , 2001 , 3, 649-57	5.2	139	
449	Nitrogen removal from digested black water by one-stage partial nitritation and anammox. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	135	
448	Genetic diversity among 3-chloroaniline- and aniline-degrading strains of the Comamonadaceae. <i>Applied and Environmental Microbiology</i> , 2001 , 67, 1107-15	4.8	135	
447	Flow cytometric bacterial cell counts challenge conventional heterotrophic plate counts for routine microbiological drinking water monitoring. <i>Water Research</i> , 2017 , 113, 191-206	12.5	134	
446	Autotrophic denitrification in microbial fuel cells treating low ionic strength waters. <i>Environmental Science & Environmental</i> (2009), 2012, 46, 2309-15	10.3	133	
445	Degradation of acetaminophen by Delftia tsuruhatensis and Pseudomonas aeruginosa in a membrane bioreactor. <i>Water Research</i> , 2011 , 45, 1829-37	12.5	131	
444	Catabolic mobile genetic elements and their potential use in bioaugmentation of polluted soils and waters. <i>FEMS Microbiology Ecology</i> , 2002 , 42, 199-208	4.3	131	
443	Abundance and composition of indigenous bacterial communities in a multi-step biofiltration-based drinking water treatment plant. <i>Water Research</i> , 2014 , 62, 40-52	12.5	126	
442	The antibacterial activity of biogenic silver and its mode of action. <i>Applied Microbiology and Biotechnology</i> , 2011 , 91, 153-62	5.7	126	
441	Poly-beta-hydroxybutyrate (PHB) increases growth performance and intestinal bacterial range-weighted richness in juvenile European sea bass, Dicentrarchus labrax. <i>Applied Microbiology and Biotechnology</i> , 2010 , 86, 1535-41	5.7	124	
440	Short-chain fatty acids and poly-beta-hydroxyalkanoates: (New) Biocontrol agents for a sustainable animal production. <i>Biotechnology Advances</i> , 2009 , 27, 680-685	17.8	123	
439	The use of microalgae as a high-value organic slow-release fertilizer results in tomatoes with increased carotenoid and sugar levels. <i>Journal of Applied Phycology</i> , 2016 , 28, 2367-2377	3.2	122	
438	Diversity of Bacillus cereus group strains is reflected in their broad range of pathogenicity and diverse ecological lifestyles. <i>FEMS Microbiology Ecology</i> , 2013 , 84, 433-50	4.3	122	
437	The bacterial storage compound poly-beta-hydroxybutyrate protects Artemia franciscana from pathogenic Vibrio campbellii. <i>Environmental Microbiology</i> , 2007 , 9, 445-52	5.2	122	
436	Strategies of aerobic ammonia-oxidizing bacteria for coping with nutrient and oxygen fluctuations. <i>FEMS Microbiology Ecology</i> , 2006 , 58, 1-13	4.3	120	
435	Biomass retention on electrodes rather than electrical current enhances stability in anaerobic digestion. <i>Water Research</i> , 2014 , 54, 211-21	12.5	119	
434	Biogenic silver for disinfection of water contaminated with viruses. <i>Applied and Environmental Microbiology</i> , 2010 , 76, 1082-7	4.8	119	
433	Methanotrophic archaea possessing diverging methane-oxidizing and electron-transporting pathways. <i>ISME Journal</i> , 2014 , 8, 1069-78	11.9	118	

432	Quorum sensing and quorum quenching in Vibrio harveyi: lessons learned from in vivo work. <i>ISME Journal</i> , 2008 , 2, 19-26	11.9	117
431	A microbiology-based multi-parametric approach towards assessing biological stability in drinking water distribution networks. <i>Water Research</i> , 2013 , 47, 3015-25	12.5	115
430	Production of polyhydroxyalkanoates in open, mixed cultures from a waste sludge stream containing high levels of soluble organics, nitrogen and phosphorus. <i>Water Research</i> , 2010 , 44, 5196-21	1 ^{12.5}	115
429	Strategies to mitigate N2O emissions from biological nitrogen removal systems. <i>Current Opinion in Biotechnology</i> , 2012 , 23, 474-82	11.4	114
428	Bacterial community structure corresponds to performance during cathodic nitrate reduction. <i>ISME Journal</i> , 2010 , 4, 1443-55	11.9	114
427	High shear enrichment improves the performance of the anodophilic microbial consortium in a microbial fuel cell. <i>Microbial Biotechnology</i> , 2008 , 1, 487-96	6.3	114
426	Bio-palladium: from metal recovery to catalytic applications. <i>Microbial Biotechnology</i> , 2012 , 5, 5-17	6.3	113
425	Diclofenac oxidation by biogenic manganese oxides. <i>Environmental Science & Environmental Science & En</i>	10.3	112
424	Screening of bacteria and concrete compatible protection materials. <i>Construction and Building Materials</i> , 2015 , 88, 196-203	6.7	109
423	Quantification of the filterability of freshwater bacteria through 0.45, 0.22, and 0.1 microm pore size filters and shape-dependent enrichment of filterable bacterial communities. <i>Environmental Science & Environmental Sci</i>	10.3	108
422	Biological control of the size and reactivity of catalytic Pd(0) produced by Shewanella oneidensis. <i>Antonie Van Leeuwenhoek</i> , 2006 , 90, 377-89	2.1	107
421	Chronic cigarette smoke exposure induces microbial and inflammatory shifts and mucin changes in the murine gut. <i>Environmental Microbiology</i> , 2016 , 18, 1352-63	5.2	107
420	Use of Pseudomonas species producing phenazine-based metabolites in the anodes of microbial fuel cells to improve electricity generation. <i>Applied Microbiology and Biotechnology</i> , 2008 , 80, 985-93	5.7	104
419	Denitrification is a common feature among members of the genus Bacillus. <i>Systematic and Applied Microbiology</i> , 2011 , 34, 385-91	4.2	102
418	Accumulation of trans C18:1 fatty acids in the rumen after dietary algal supplementation is associated with changes in the Butyrivibrio community. <i>Applied and Environmental Microbiology</i> , 2008 , 74, 6923-30	4.8	102
417	Up-scaling aquaculture wastewater treatment by microalgal bacterial flocs: from lab reactors to an outdoor raceway pond. <i>Bioresource Technology</i> , 2014 , 159, 342-54	11	101
416	Measuring the biodiversity of microbial communities by flow cytometry. <i>Methods in Ecology and Evolution</i> , 2016 , 7, 1376-1385	7.7	100
415	Bioflocculation of microalgae and bacteria combined with flue gas to improve sewage treatment. <i>New Biotechnology</i> , 2011 , 29, 23-31	6.4	99

(2015-2009)

4	14	Enhanced removal of 1,2-dichloroethane by anodophilic microbial consortia. <i>Water Research</i> , 2009 , 43, 2936-46	12.5	99	
4	13	The more, the merrier: heterotroph richness stimulates methanotrophic activity. <i>ISME Journal</i> , 2014 , 8, 1945-8	11.9	98	
4	12	Biotechnologies for Marine Oil Spill Cleanup: Indissoluble Ties with Microorganisms. <i>Trends in Biotechnology</i> , 2017 , 35, 860-870	15.1	97	
4	11	Microbial carbonate precipitation for the improvement of quality of recycled aggregates. <i>Journal of Cleaner Production</i> , 2017 , 156, 355-366	10.3	96	
4	10	Microbial community analysis of anodes from sediment microbial fuel cells powered by rhizodeposits of living rice plants. <i>Applied and Environmental Microbiology</i> , 2010 , 76, 2002-8	4.8	96	
49	09	Toward energy-neutral wastewater treatment: a high-rate contact stabilization process to maximally recover sewage organics. <i>Bioresource Technology</i> , 2015 , 179, 373-381	11	95	
40	08	Microbial Resource Management: The Road To Go for Environmental Biotechnology. <i>Engineering in Life Sciences</i> , 2007 , 7, 117-126	3.4	94	
49	07	Analysis of the microbial communities on corroded concrete sewer pipesa case study. <i>Applied Microbiology and Biotechnology</i> , 2001 , 57, 776-85	5.7	94	
40	06	Biotechnologies for critical raw material recovery from primary and secondary sources: R&D priorities and future perspectives. <i>New Biotechnology</i> , 2015 , 32, 121-7	6.4	93	
40	05	Routine bacterial analysis with automated flow cytometry. <i>Journal of Microbiological Methods</i> , 2013 , 94, 73-76	2.8	93	
40	04	Outlook for benefits of sediment microbial fuel cells with two bio-electrodes. <i>Microbial Biotechnology</i> , 2008 , 1, 446-62	6.3	93	
40	03	Application of microorganisms in concrete: a promising sustainable strategy to improve concrete durability. <i>Applied Microbiology and Biotechnology</i> , 2016 , 100, 2993-3007	5.7	92	
40	02	Flow cytometry for fast microbial community fingerprinting. Water Research, 2012, 46, 907-19	12.5	92	
40	01	Environmental conditions and community evenness determine the outcome of biological invasion. <i>Nature Communications</i> , 2013 , 4, 1383	17.4	92	
40	00	Biofilm-grown Burkholderia cepacia complex cells survive antibiotic treatment by avoiding production of reactive oxygen species. <i>PLoS ONE</i> , 2013 , 8, e58943	3.7	92	
39	99	Virus disinfection in water by biogenic silver immobilized in polyvinylidene fluoride membranes. <i>Water Research</i> , 2011 , 45, 1856-64	12.5	92	
39	98	Influence of strain-specific parameters on hydrothermal liquefaction of microalgae. <i>Bioresource Technology</i> , 2013 , 146, 463-471	11	91	
39	97	Microbially induced CaCO3 precipitation through denitrification: An optimization study in minimal nutrient environment. <i>Biochemical Engineering Journal</i> , 2015 , 101, 108-118	4.2	91	

396	Necrotrophic growth of Legionella pneumophila. <i>Applied and Environmental Microbiology</i> , 2006 , 72, 43	23 _‡ &	89
395	Biosupported bimetallic Pd-Au nanocatalysts for dechlorination of environmental contaminants. <i>Environmental Science & Environmental Science & Environ</i>	10.3	88
394	Regulation of toxin production by Bacillus cereus and its food safety implications. <i>Critical Reviews in Microbiology</i> , 2011 , 37, 188-213	7.8	87
393	Application of modified-alginate encapsulated carbonate producing bacteria in concrete: a promising strategy for crack self-healing. <i>Frontiers in Microbiology</i> , 2015 , 6, 1088	5.7	85
392	Correlations between molecular and operational parameters in continuous lab-scale anaerobic reactors. <i>Applied Microbiology and Biotechnology</i> , 2011 , 89, 303-14	5.7	85
391	Biological removal of 17alpha-ethinylestradiol by a nitrifier enrichment culture in a membrane bioreactor. <i>Water Research</i> , 2009 , 43, 2493-503	12.5	85
390	Enhanced crack closure performance of microbial mortar through nitrate reduction. <i>Cement and Concrete Composites</i> , 2016 , 70, 159-170	8.6	85
389	Inoculum selection is crucial to ensure operational stability in anaerobic digestion. <i>Applied Microbiology and Biotechnology</i> , 2015 , 99, 189-99	5.7	83
388	Biogenic metals for the oxidative and reductive removal of pharmaceuticals, biocides and iodinated contrast media in a polishing membrane bioreactor. <i>Water Research</i> , 2011 , 45, 1763-73	12.5	83
387	Microbiology and immunology of fish larvae. <i>Reviews in Aquaculture</i> , 2013 , 5, S1-S25	8.9	82
386	17alpha-ethinylestradiol cometabolism by bacteria degrading estrone, 17beta-estradiol and estriol. <i>Biodegradation</i> , 2008 , 19, 683-93	4.1	82
385	Microbial odor profile of polyester and cotton clothes after a fitness session. <i>Applied and Environmental Microbiology</i> , 2014 , 80, 6611-9	4.8	81
384	Repeated pulse feeding induces functional stability in anaerobic digestion. <i>Microbial Biotechnology</i> , 2013 , 6, 414-24	6.3	79
383	Decreased colonization of fecal Clostridium coccoides/Eubacterium rectale species from ulcerative colitis patients in an in vitro dynamic gut model with mucin environment. <i>FEMS Microbiology Ecology</i> , 2012 , 79, 685-96	4.3	79
382	Greenhouse gas emissions from rice microcosms amended with a plant microbial fuel cell. <i>Applied Microbiology and Biotechnology</i> , 2014 , 98, 3205-17	5.7	78
	Described the state severe brokenst by shorted bids and floorist floorists		
381	Decentralized two-stage sewage treatment by chemical-biological flocculation combined with microalgae biofilm for nutrient immobilization in a roof installed parallel plate reactor. <i>Bioresource Technology</i> , 2013 , 130, 152-60	11	78
381	microalgae biofilm for nutrient immobilization in a roof installed parallel plate reactor. <i>Bioresource</i>	4.8	78 78

(2011-2016)

378	Autotrophic nitrogen assimilation and carbon capture for microbial protein production by a novel enrichment of hydrogen-oxidizing bacteria. <i>Water Research</i> , 2016 , 101, 137-146	12.5	76
377	Decoupling Livestock from Land Use through Industrial Feed Production Pathways. <i>Environmental Science & Environmental Science</i>	10.3	76
376	High-rate iron-rich activated sludge as stabilizing agent for the anaerobic digestion of kitchen waste. <i>Water Research</i> , 2013 , 47, 3732-41	12.5	76
375	Bioaugmenting bioreactors for the continuous removal of 3-chloroaniline by a slow release approach. <i>Environmental Science & Environmental Science & E</i>	10.3	75
374	Concomitant microbial generation of palladium nanoparticles and hydrogen to immobilize chromate. <i>Environmental Science & Environmental Science & Envi</i>	10.3	74
373	Treatment of industrial wastewaters by microalgal bacterial flocs in sequencing batch reactors. <i>Bioresource Technology</i> , 2014 , 161, 245-54	11	73
372	Biocatalytic dechlorination of trichloroethylene with bio-palladium in a pilot-scale membrane reactor. <i>Biotechnology and Bioengineering</i> , 2009 , 102, 995-1002	4.9	72
371	Biotic Interactions in Microbial Communities as Modulators of Biogeochemical Processes: Methanotrophy as a Model System. <i>Frontiers in Microbiology</i> , 2016 , 7, 1285	5.7	71
370	Palladium nanoparticles produced by fermentatively cultivated bacteria as catalyst for diatrizoate removal with biogenic hydrogen. <i>Applied Microbiology and Biotechnology</i> , 2011 , 91, 1435-45	5.7	70
369	Enhanced nitrogen removal in bio-electrochemical systems by pH control. <i>Biotechnology Letters</i> , 2009 , 31, 1537-43	3	70
368	Long-chain acylhomoserine lactones increase the anoxic ammonium oxidation rate in an OLAND biofilm. <i>Applied Microbiology and Biotechnology</i> , 2011 , 90, 1511-9	5.7	69
367	Electricity generation by an enriched phototrophic consortium in a microbial fuel cell. <i>Electrochemistry Communications</i> , 2008 , 10, 1392-1395	5.1	69
366	Inoculum selection influences the biochemical methane potential of agro-industrial substrates. <i>Microbial Biotechnology</i> , 2015 , 8, 776-86	6.3	65
365	Stimulation of in vitro anaerobic oxidation of methane rate in a continuous high-pressure bioreactor. <i>Bioresource Technology</i> , 2010 , 101, 3132-8	11	65
364	Poly-beta-hydroxybutyrate-accumulating bacteria protect gnotobiotic Artemia franciscana from pathogenic Vibrio campbellii. <i>FEMS Microbiology Ecology</i> , 2007 , 60, 363-9	4.3	65
363	Geobacter, Anaeromyxobacter and Anaerolineae populations are enriched on anodes of root exudate-driven microbial fuel cells in rice field soil. <i>Environmental Microbiology Reports</i> , 2015 , 7, 489-97	3.7	64
362	PCR-based community structure studies of bacteria associated with eukaryotic organisms: a simple PCR strategy to avoid co-amplification of eukaryotic DNA. <i>Journal of Microbiological Methods</i> , 2011 , 84, 349-51	2.8	64
361	Microalgal bacterial floc properties are improved by a balanced inorganic/organic carbon ratio. <i>Biotechnology and Bioengineering</i> , 2011 , 108, 549-58	4.9	64

360	Reactivation of aerobic and anaerobic ammonium oxidizers in OLAND biomass after long-term storage. <i>Applied Microbiology and Biotechnology</i> , 2007 , 74, 1376-84	5.7	64
359	Resource recovery from used water: the manufacturing abilities of hydrogen-oxidizing bacteria. Water Research, 2015 , 68, 467-78	12.5	63
358	Nitrate reducing CaCO3 precipitating bacteria survive in mortar and inhibit steel corrosion. <i>Cement and Concrete Research</i> , 2016 , 83, 19-30	10.3	63
357	Conversion of biogas to bioproducts by algae and methane oxidizing bacteria. <i>Environmental Science & Environmental Science & </i>	10.3	62
356	Development of a bacterial challenge test for gnotobiotic sea bass (Dicentrarchus labrax) larvae. <i>Environmental Microbiology</i> , 2009 , 11, 526-33	5.2	62
355	Microbial community redundancy in anaerobic digestion drives process recovery after salinity exposure. <i>Water Research</i> , 2017 , 111, 109-117	12.5	61
354	Microbial production and environmental applications of Pd nanoparticles for treatment of halogenated compounds. <i>Current Opinion in Biotechnology</i> , 2012 , 23, 555-61	11.4	61
353	Antimicrobial effects of commensal oral species are regulated by environmental factors. <i>Journal of Dentistry</i> , 2016 , 47, 23-33	4.8	60
352	Optimized cryopreservation of mixed microbial communities for conserved functionality and diversity. <i>PLoS ONE</i> , 2014 , 9, e99517	3.7	60
351	Doping of biogenic Pd catalysts with Au enables dechlorination of diclofenac at environmental conditions. <i>Water Research</i> , 2012 , 46, 2718-26	12.5	60
350	Microbial Resource Management revisited: successful parameters and new concepts. <i>Applied Microbiology and Biotechnology</i> , 2011 , 90, 861-71	5.7	60
349	Partial nitrification achieved by pulse sulfide doses in a sequential batch reactor. <i>Environmental Science & Environmental Sc</i>	10.3	60
348	Failure of the ammonia oxidation process in two pharmaceutical wastewater treatment plants is linked to shifts in the bacterial communities. <i>Journal of Applied Microbiology</i> , 2005 , 99, 997-1006	4.7	60
347	Industrial Application of Biological Self-healing Concrete: Challenges and Economical Feasibility. Journal of Commercial Biotechnology, 2015 , 21,	2	60
346	Bioaugmentation of a 4-chloronitrobenzene contaminated soil with Pseudomonas putida ZWL73. <i>Environmental Pollution</i> , 2009 , 157, 763-71	9.3	59
345	Stereospecific effect of hexachlorocyclohexane on activity and structure of soil methanotrophic communities. <i>Environmental Microbiology</i> , 2005 , 7, 660-9	5.2	59
344	Microbiological, chemical and sensory spoilage analysis of raw Atlantic cod (Gadus morhua) stored under modified atmospheres. <i>Food Microbiology</i> , 2018 , 70, 232-244	6	58
343	Butyricicoccus pullicaecorum, a butyrate producer with probiotic potential, is intrinsically tolerant to stomach and small intestine conditions. <i>Anaerobe</i> , 2014 , 30, 70-4	2.8	58

(2009-2012)

342	Biodeposited Pd/Au bimetallic nanoparticles as novel Suzuki catalysts. <i>Tetrahedron Letters</i> , 2012 , 53, 1410-1412	2	58	
341	A conceptual framework for invasion in microbial communities. <i>ISME Journal</i> , 2016 , 10, 2773-2775	11.9	58	
340	A novel reductive dehalogenase, identified in a contaminated groundwater enrichment culture and in Desulfitobacterium dichloroeliminans strain DCA1, is linked to dehalogenation of 1,2-dichloroethane. <i>Applied and Environmental Microbiology</i> , 2007 , 73, 2990-9	4.8	57	
339	Effects of poly-Ehydroxybutyrate (PHB) on Siberian sturgeon (Acipenser baerii) fingerlings performance and its gastrointestinal tract microbial community. <i>FEMS Microbiology Ecology</i> , 2012 , 79, 25-33	4.3	56	
338	Removal of diatrizoate with catalytically active membranes incorporating microbially produced palladium nanoparticles. <i>Water Research</i> , 2010 , 44, 1498-506	12.5	55	
337	Characterization of Staphylococcus and Corynebacterium clusters in the human axillary region. <i>PLoS ONE</i> , 2013 , 8, e70538	3.7	54	
336	Remediation of trichloroethylene by bio-precipitated and encapsulated palladium nanoparticles in a fixed bed reactor. <i>Chemosphere</i> , 2009 , 76, 1221-5	8.4	54	
335	Live/dead real-time polymerase chain reaction to assess new therapies against dental plaque-related pathologies. <i>Molecular Oral Microbiology</i> , 2011 , 26, 253-61	4.6	52	
334	Production of non-axenic ureolytic spores for self-healing concrete applications. <i>Construction and Building Materials</i> , 2015 , 93, 1034-1041	6.7	51	
333	Effects of chemically and electrochemically dosed chlorine on Escherichia coli and Legionella beliardensis assessed by flow cytometry. <i>Applied Microbiology and Biotechnology</i> , 2010 , 87, 331-41	5.7	51	
332	The phylogeny of the genus Nitrobacter based on comparative rep-PCR, 16S rRNA and nitrite oxidoreductase gene sequence analysis. <i>Systematic and Applied Microbiology</i> , 2007 , 30, 297-308	4.2	51	
331	Development of a Chlamydophila psittaci species-specific and genotype-specific real-time PCR. <i>Veterinary Research</i> , 2005 , 36, 787-97	3.8	51	
330	Cell density related H2 consumption in relation to anoxic Fe(0) corrosion and precipitation of corrosion products by Shewanella oneidensis MR-1. <i>Environmental Microbiology</i> , 2003 , 5, 1192-202	5.2	51	
329	Live Fast, Die Young: Optimizing Retention Times in High-Rate Contact Stabilization for Maximal Recovery of Organics from Wastewater. <i>Environmental Science & Environmental S</i>	10.3	51	
328	Bacillus sphaericus LMG 22257 is physiologically suitable for self-healing concrete. <i>Applied Microbiology and Biotechnology</i> , 2017 , 101, 5101-5114	5.7	50	
327	Self-protected nitrate reducing culture for intrinsic repair of concrete cracks. <i>Frontiers in Microbiology</i> , 2015 , 6, 1228	5.7	50	
326	Niche differentiation in nitrogen metabolism among methanotrophs within an operational taxonomic unit. <i>BMC Microbiology</i> , 2014 , 14, 83	4.5	50	
325	The inoculum effect on the ammonia-oxidizing bacterial communities in parallel sequential batch reactors. <i>Water Research</i> , 2009 , 43, 4149-58	12.5	50	

324	Biogenic palladium enhances diatrizoate removal from hospital wastewater in a microbial electrolysis cell. <i>Environmental Science & Environmental & En</i>	10.3	48
323	Influence of manganese and ammonium oxidation on the removal of 17 alpha-ethinylestradiol (EE2). <i>Water Research</i> , 2009 , 43, 77-86	12.5	48
322	The full-scale anaerobic digestion microbiome is represented by specific marker populations. <i>Water Research</i> , 2016 , 104, 101-110	12.5	48
321	N-acyl homoserine lactone-degrading microbial enrichment cultures isolated from Penaeus vannamei shrimp gut and their probiotic properties in Brachionus plicatilis cultures. <i>FEMS Microbiology Ecology</i> , 2007 , 62, 45-53	4.3	47
320	Deodorants and antiperspirants affect the axillary bacterial community. <i>Archives of Dermatological Research</i> , 2014 , 306, 701-10	3.3	46
319	The impact of quorum sensing on the virulence of Aeromonas hydrophila and Aeromonas salmonicida towards burbot (Lota lota L.) larvae. <i>Veterinary Microbiology</i> , 2012 , 159, 77-82	3.3	46
318	Biocathodic nitrous oxide removal in bioelectrochemical systems. <i>Environmental Science & Environmental Science & Technology</i> , 2011 , 45, 10557-66	10.3	46
317	Biological removal of 17\textrackethinylestradiol (EE2) in an aerated nitrifying fixed bed reactor during ammonium starvation. <i>Journal of Chemical Technology and Biotechnology</i> , 2009 , 84, 119-125	3.5	46
316	Differential mucosal expression of Th17-related genes between the inflamed colon and ileum of patients with inflammatory bowel disease. <i>BMC Immunology</i> , 2010 , 11, 61	3.7	46
315	Changes in rumen biohydrogenation intermediates and ciliate protozoa diversity after algae supplementation to dairy cattle. <i>European Journal of Lipid Science and Technology</i> , 2007 , 109, 767-777	3	46
314	Dysbiotic Biofilms Deregulate the Periodontal Inflammatory Response. <i>Journal of Dental Research</i> , 2018 , 97, 547-555	8.1	45
313	Exploration and prediction of interactions between methanotrophs and heterotrophs. <i>Research in Microbiology</i> , 2013 , 164, 1045-54	4	44
312	Stability and activity of an Enterobacter aerogenes-specific bacteriophage under simulated gastro-intestinal conditions. <i>Applied Microbiology and Biotechnology</i> , 2004 , 65, 465-72	5.7	44
311	Follow the N and P road: High-resolution nutrient flow analysis of the Flanders region as precursor for sustainable resource management. <i>Resources, Conservation and Recycling</i> , 2016 , 115, 9-21	11.9	44
310	Effect of Operational Parameters in the Continuous Anaerobic Fermentation of Cheese Whey on Titers, Yields, Productivities, and Microbial Community Structures. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 1400-1407	8.3	43
309	Enterotoxin production by Bacillus cereus under gastrointestinal conditions and their immunological detection by commercially available kits. <i>Foodborne Pathogens and Disease</i> , 2012 , 9, 113	30 ³ 6 ⁸	43
308	Nitric oxide reductase (norB) gene sequence analysis reveals discrepancies with nitrite reductase (nir) gene phylogeny in cultivated denitrifiers. <i>Environmental Microbiology</i> , 2007 , 9, 1072-7	5.2	43
307	High-rate activated sludge communities have a distinctly different structure compared to low-rate sludge communities, and are less sensitive towards environmental and operational variables. <i>Water Research</i> , 2016 , 100, 137-145	12.5	43

(2013-2017)

306	Impact of air entraining admixtures on biogenic calcium carbonate precipitation and bacterial viability. <i>Cement and Concrete Research</i> , 2017 , 98, 44-49	10.3	42
305	Monophyletic group of unclassified EProteobacteria dominates in mixed culture biofilm of high-performing oxygen reducing biocathode. <i>Bioelectrochemistry</i> , 2015 , 106, 167-76	5.6	42
304	Inter-bacterial correlations in subgingival biofilms: a large-scale survey. <i>Journal of Clinical Periodontology</i> , 2014 , 41, 1-10	7.7	42
303	Anaerobic oxidation of methane in hypersaline cold seep sediments. <i>FEMS Microbiology Ecology</i> , 2013 , 83, 214-31	4.3	42
302	A sustainable, carbon neutral methane oxidation by a partnership of methane oxidizing communities and microalgae. <i>Water Research</i> , 2011 , 45, 2845-54	12.5	42
301	Microbial services and their management: Recent progresses in soil bioremediation technology. <i>Applied Soil Ecology</i> , 2010 , 46, 157-167	5	42
300	Quorum sensing negatively regulates chitinase in Vibrio harveyi. <i>Environmental Microbiology Reports</i> , 2010 , 2, 44-9	3.7	42
299	Nitrogen cycling in Bioregenerative Life Support Systems: Challenges for waste refinery and food production processes. <i>Progress in Aerospace Sciences</i> , 2017 , 91, 87-98	8.8	41
298	Bacterial Exchange in Household Washing Machines. Frontiers in Microbiology, 2015, 6, 1381	5.7	41
297	Nitrate-reducing, sulfide-oxidizing bacteria as microbial oxidants for rapid biological sulfide removal. <i>FEMS Microbiology Ecology</i> , 2009 , 67, 151-61	4.3	41
296	Mineral and organic growing media have distinct community structure, stability and functionality in soilless culture systems. <i>Scientific Reports</i> , 2016 , 6, 18837	4.9	40
295	Anaerobic digestibility of marine microalgae Phaeodactylum tricornutum in a lab-scale anaerobic membrane bioreactor. <i>Applied Microbiology and Biotechnology</i> , 2012 , 93, 859-69	5.7	40
294	Reconciliation between operational taxonomic units and species boundaries. <i>FEMS Microbiology Ecology</i> , 2017 , 93,	4.3	40
293	Bioreceptivity evaluation of cementitious materials designed to stimulate biological growth. <i>Science of the Total Environment</i> , 2014 , 481, 232-41	10.2	40
292	Planktonic versus biofilm catabolic communities: importance of the biofilm for species selection and pesticide degradation. <i>Applied and Environmental Microbiology</i> , 2011 , 77, 4728-35	4.8	40
291	Nitrification and microalgae cultivation for two-stage biological nutrient valorization from source separated urine. <i>Bioresource Technology</i> , 2016 , 211, 41-50	11	39
29 0	Artificial sweat composition to grow and sustain a mixed human axillary microbiome. <i>Journal of Microbiological Methods</i> , 2014 , 103, 6-8	2.8	39
289	Revisiting methanotrophic communities in sewage treatment plants. <i>Applied and Environmental Microbiology</i> , 2013 , 79, 2841-6	4.8	39

288	Nitric oxide production by the human intestinal microbiota by dissimilatory nitrate reduction to ammonium. <i>Journal of Biomedicine and Biotechnology</i> , 2009 , 2009, 284718		39
287	Slow-release inoculation allows sustained biodegradation of gamma-hexachlorocyclohexane. <i>Applied and Environmental Microbiology</i> , 2006 , 72, 622-7	4.8	39
286	Diclofenac and 2-anilinophenylacetate degradation by combined activity of biogenic manganese oxides and silver. <i>Microbial Biotechnology</i> , 2012 , 5, 388-95	6.3	38
285	Enrichment of a microbial community performing anaerobic oxidation of methane in a continuous high-pressure bioreactor. <i>BMC Microbiology</i> , 2011 , 11, 137	4.5	38
284	Gold nanoparticle formation using Shewanella oneidensis: a fast biosorption and slow reduction process. <i>Journal of Chemical Technology and Biotechnology</i> , 2011 , 86, 547-553	3.5	38
283	Granular biomass capable of partial nitritation and anammox. <i>Water Science and Technology</i> , 2008 , 58, 1113-20	2.2	38
282	Inoculation and start-up of a biotricking filter removing dimethyl sulfide. <i>Chemical Engineering Journal</i> , 2005 , 113, 127-134	14.7	38
281	Methyloparacoccus murrellii gen. nov., sp. nov., a methanotroph isolated from pond water. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2014 , 64, 2100-2107	2.2	37
280	Interindividual differences in response to treatment with butyrate-producing Butyricicoccus pullicaecorum 25-3T studied in an in vitro gut model. <i>FEMS Microbiology Ecology</i> , 2015 , 91,	4.3	37
279	Killing of anaerobic pathogens by predatory bacteria. <i>Molecular Oral Microbiology</i> , 2011 , 26, 52-61	4.6	37
278	A time-course analysis of four full-scale anaerobic digesters in relation to the dynamics of change of their microbial communities. <i>Water Science and Technology</i> , 2011 , 63, 769-75	2.2	37
277	Microbial oil-degradation under mild hydrostatic pressure (10 MPa): which pathways are impacted in piezosensitive hydrocarbonoclastic bacteria?. <i>Scientific Reports</i> , 2016 , 6, 23526	4.9	36
276	Formate oxidation-driven calcium carbonate precipitation by Methylocystis parvus OBBP. <i>Applied and Environmental Microbiology</i> , 2014 , 80, 4659-67	4.8	36
275	Performance of a lab-scale bio-electrochemical assisted septic tank for the anaerobic treatment of black water. <i>New Biotechnology</i> , 2013 , 30, 573-80	6.4	36
274	Multi-method approach indicates no presence of sub-lethally injured Listeria monocytogenes cells after mild heat treatment. <i>International Journal of Food Microbiology</i> , 2008 , 123, 262-8	5.8	36
273	Community dynamics of methanotrophic bacteria during composting of organic matter. <i>Journal of Bioscience and Bioengineering</i> , 2006 , 101, 297-302	3.3	36
272	PHB-degrading bacteria isolated from the gastrointestinal tract of aquatic animals as protective actors against luminescent vibriosis. <i>FEMS Microbiology Ecology</i> , 2010 , 74, 196-204	4.3	35
271	Denitrification in Gram-positive bacteria: an underexplored trait. <i>Biochemical Society Transactions</i> , 2011 , 39, 254-8	5.1	34

270	N-acylhomoserine lactone-degrading Bacillus strains isolated from aquaculture animals. <i>Aquaculture</i> , 2011 , 311, 258-260	4.4	34
269	Survival and germination of Bacillus cereus spores without outgrowth or enterotoxin production during in vitro simulation of gastrointestinal transit. <i>Applied and Environmental Microbiology</i> , 2012 , 78, 7698-705	4.8	34
268	Novel approach of using homoserine lactone-degrading and poly-Ehydroxybutyrate-accumulating bacteria to protect Artemia from the pathogenic effects of Vibrio harveyi. <i>Aquaculture</i> , 2009 , 291, 23-30	o ^{4·4}	34
267	Production of acylated homoserine lactones by Aeromonas and Pseudomonas strains isolated from municipal activated sludge. <i>Canadian Journal of Microbiology</i> , 2005 , 51, 924-33	3.2	34
266	Monitoring of the evolving diversity of the microbial community present in rotifer cultures. <i>Aquaculture</i> , 2001 , 198, 237-252	4.4	34
265	New Methyloceanibacter diversity from North Sea sediments includes methanotroph containing solely the soluble methane monooxygenase. <i>Environmental Microbiology</i> , 2016 , 18, 4523-4536	5.2	34
264	Nutritional stimulation of commensal oral bacteria suppresses pathogens: the prebiotic concept. Journal of Clinical Periodontology, 2017 , 44, 344-352	7.7	33
263	Anaerobic digestion of molasses by means of a vibrating and non-vibrating submerged anaerobic membrane bioreactor. <i>Biomass and Bioenergy</i> , 2014 , 68, 95-105	5.3	33
262	Suitability of granular carbon as an anode material for sediment microbial fuel cells. <i>Journal of Soils and Sediments</i> , 2012 , 12, 1197-1206	3.4	33
261	Bioreactor technology in marine microbiology: from design to future application. <i>Biotechnology Advances</i> , 2011 , 29, 312-21	17.8	33
260	Dehalogenation of environmental pollutants in microbial electrolysis cells with biogenic palladium nanoparticles. <i>Biotechnology Letters</i> , 2011 , 33, 89-95	3	33
259	Effect of germ-free rearing environment on gut development of larval sea bass (Dicentrarchus labrax L.). <i>Aquaculture</i> , 2009 , 293, 8-15	4.4	33
258	Minireview: The Potential of Enhanced Manganese Redox Cycling for Sediment Oxidation. <i>Geomicrobiology Journal</i> , 2007 , 24, 547-558	2.5	33
257	Reevaluating multicolor flow cytometry to assess microbial viability. <i>Applied Microbiology and Biotechnology</i> , 2016 , 100, 9037-9051	5.7	33
256	Synergistic Exposure of Return-Sludge to Anaerobic Starvation, Sulfide, and Free Ammonia to Suppress Nitrite Oxidizing Bacteria. <i>Environmental Science & Environmental Scienc</i>	10.3	33
255	Siberian sturgeon (Acipenser baerii) larvae fed Artemia nauplii enriched with poly-Ehydroxybutyrate (PHB): effect on growth performance, body composition, digestive enzymes, gut microbial community, gut histology and stress tests. <i>Aquaculture Research</i> , 2015 , 46, 801-	1.9 812	32
254	Biogenic nanopalladium based remediation of chlorinated hydrocarbons in marine environments. <i>Environmental Science & Environmental Science & Environm</i>	10.3	32
253	Biofilm models for the food industry: hot spots for plasmid transfer?. <i>Pathogens and Disease</i> , 2014 , 70, 332-8	4.2	31

252	Bacterial host interaction of GFP-labelled Vibrio anguillarum HI-610 with gnotobiotic sea bass, Dicentrarchus labrax (L.), larvae. <i>Journal of Fish Diseases</i> , 2012 , 35, 265-73	2.6	31
251	Molecular, biochemical and ecological characterisation of a bio-catalytic calcification reactor. <i>Applied Microbiology and Biotechnology</i> , 2003 , 62, 191-201	5.7	31
250	Comparison of the spatial homogeneity of physico-chemical parameters and bacterial 16S rRNA genes in sediment samples from a dumping site for dredging sludge. <i>Applied Microbiology and Biotechnology</i> , 2000 , 53, 742-7	5.7	31
249	Online flow cytometric monitoring of microbial water quality in a full-scale water treatment plant. <i>Npj Clean Water</i> , 2018 , 1,	11.2	31
248	Miniaturized extinction culturing is the preferred strategy for rapid isolation of fast-growing methane-oxidizing bacteria. <i>Microbial Biotechnology</i> , 2012 , 5, 368-78	6.3	30
247	Quantification of an Eikelboom type 021N bulking event with fluorescence in situ hybridization and real-time PCR. <i>Applied Microbiology and Biotechnology</i> , 2005 , 68, 695-704	5.7	30
246	Bioremediation of Southern Mediterranean oil polluted sites comes of age. <i>New Biotechnology</i> , 2013 , 30, 743-8	6.4	29
245	Isolation and characterization of human intestinal bacteria capable of transforming the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine. <i>Applied and Environmental Microbiology</i> , 2008 , 74, 1469-77	4.8	29
244	Exploring methane-oxidizing communities for the co-metabolic degradation of organic micropollutants. <i>Applied Microbiology and Biotechnology</i> , 2015 , 99, 3609-18	5.7	28
243	Bacterial Diversity in Bentonites, Engineered Barrier for Deep Geological Disposal of Radioactive Wastes. <i>Microbial Ecology</i> , 2015 , 70, 922-35	4.4	28
242	Microalgal bacterial flocs originating from aquaculture wastewater treatment as diet ingredient for Litopenaeus vannamei (Boone). <i>Aquaculture Research</i> , 2016 , 47, 1075-1089	1.9	28
241	A chitosan based pH-responsive hydrogel for encapsulation of bacteria for self-sealing concrete. <i>Cement and Concrete Composites</i> , 2018 , 93, 309-322	8.6	28
240	Comparing metabolic functionalities, community structures, and dynamics of herbicide-degrading communities cultivated with different substrate concentrations. <i>Applied and Environmental Microbiology</i> , 2013 , 79, 367-75	4.8	28
239	Survival or revival: long-term preservation induces a reversible viable but non-culturable state in methane-oxidizing bacteria. <i>PLoS ONE</i> , 2012 , 7, e34196	3.7	28
238	Bacterial invasion potential in water is determined by nutrient availability and the indigenous community. <i>FEMS Microbiology Ecology</i> , 2013 , 85, 593-603	4.3	28
237	High reproducibility of ammonia-oxidizing bacterial communities in parallel sequential batch reactors. <i>Journal of Applied Microbiology</i> , 2009 , 107, 385-94	4.7	28
236	AggA is required for aggregation and increased biofilm formation of a hyper-aggregating mutant of Shewanella oneidensis MR-1. <i>Microbiology (United Kingdom)</i> , 2006 , 152, 721-729	2.9	28
235	Challenging Oil Bioremediation at Deep-Sea Hydrostatic Pressure. <i>Frontiers in Microbiology</i> , 2016 , 7, 17	20 3 .7	28

(2011-2020)

234	Oral biofilms exposure to chlorhexidine results in altered microbial composition and metabolic profile. <i>Npj Biofilms and Microbiomes</i> , 2020 , 6, 13	8.2	27	
233	An impaired metabolic response to hydrostatic pressure explains Alcanivorax borkumensis recorded distribution in the deep marine water column. <i>Scientific Reports</i> , 2016 , 6, 31316	4.9	27	
232	High-resolution mapping and modeling of anammox recovery from recurrent oxygen exposure. <i>Water Research</i> , 2018 , 144, 522-531	12.5	27	
231	Survival of Bacillus cereus vegetative cells and spores during in vitro simulation of gastric passage. <i>Journal of Food Protection</i> , 2012 , 75, 690-4	2.5	27	
230	Copper enhances the activity and salt resistance of mixed methane-oxidizing communities. <i>Applied Microbiology and Biotechnology</i> , 2010 , 87, 2355-63	5.7	27	
229	Microbial sulfate reduction with acetate: process performance and composition of the bacterial communities in the reactor at different salinity levels. <i>Applied Microbiology and Biotechnology</i> , 2001 , 55, 787-93	5.7	27	
228	Growing media constituents determine the microbial nitrogen conversions in organic growing media for horticulture. <i>Microbial Biotechnology</i> , 2016 , 9, 389-99	6.3	27	
227	Flow cytometric fingerprinting for microbial strain discrimination and physiological characterization. <i>Cytometry Part A: the Journal of the International Society for Analytical Cytology</i> , 2018 , 93, 201-212	4.6	26	
226	Termites facilitate methane oxidation and shape the methanotrophic community. <i>Applied and Environmental Microbiology</i> , 2013 , 79, 7234-40	4.8	26	
225	Quantification methods for Bacillus cereus vegetative cells and spores in the gastrointestinal environment. <i>Journal of Microbiological Methods</i> , 2010 , 83, 202-10	2.8	26	
224	Development and performance of a quantitative PCR for the enumeration of Bdellovibrionaceae. <i>Environmental Microbiology Reports</i> , 2009 , 1, 228-33	3.7	26	
223	Development of antiseptic adaptation and cross-adapatation in selected oral pathogens in vitro. <i>Scientific Reports</i> , 2019 , 9, 8326	4.9	25	
222	Platinum Recovery from Synthetic Extreme Environments by Halophilic Bacteria. <i>Environmental Science & Environmental Science &</i>	10.3	25	
221	Control of nitratation in an oxygen-limited autotrophic nitrification/denitrification rotating biological contactor through disc immersion level variation. <i>Bioresource Technology</i> , 2014 , 155, 182-8	11	25	
220	C & N isotope analysis of diclofenac to distinguish oxidative and reductive transformation and to track commercial products. <i>Environmental Science & Environmental & </i>	10.3	25	
219	Bacterial antagonism against periodontopathogens. <i>Journal of Periodontology</i> , 2013 , 84, 801-11	4.6	25	
218	Convergent dynamics of the juvenile European sea bass gut microbiota induced by poly-Ehydroxybutyrate. <i>Environmental Microbiology</i> , 2011 , 13, 1042-51	5.2	25	
217	Upgrading of straw hydrolysate for production of hydrogen and phenols in a microbial electrolysis cell (MEC). <i>Applied Microbiology and Biotechnology</i> , 2011 , 89, 855-65	5.7	25	

216	Virus removal by biogenic cerium. Environmental Science & Environmental Scienc	10.3	25
215	Strain-specific transfer of antibiotic resistance from an environmental plasmid to foodborne pathogens. <i>Journal of Biomedicine and Biotechnology</i> , 2012 , 2012, 834598		25
214	Temporal and spatial stability of ammonia-oxidizing archaea and bacteria in aquarium biofilters. <i>PLoS ONE</i> , 2014 , 9, e113515	3.7	25
213	Commensal E. coli rapidly transfer antibiotic resistance genes to human intestinal microbiota in the Mucosal Simulator of the Human Intestinal Microbial Ecosystem (M-SHIME). <i>International Journal of Food Microbiology</i> , 2019 , 311, 108357	5.8	24
212	Co-digestion of molasses or kitchen waste with high-rate activated sludge results in a diverse microbial community with stable methane production. <i>Journal of Environmental Management</i> , 2015 , 152, 75-82	7.9	24
211	Distribution of Nitrosomonas europaea and Nitrobacter winogradskyi in an autotrophic nitrifying biofilm reactor as depicted by molecular analyses and mathematical modelling. <i>Water Research</i> , 2008 , 42, 1700-14	12.5	24
210	Introduction of a boost of Legionella pneumophila into a stagnant-water model by heat treatment. <i>FEMS Microbiology Ecology</i> , 2006 , 58, 583-92	4.3	24
209	Flow Cytometric Single-Cell Identification of Populations in Synthetic Bacterial Communities. <i>PLoS ONE</i> , 2017 , 12, e0169754	3.7	24
208	Dysbiosis by neutralizing commensal mediated inhibition of pathobionts. <i>Scientific Reports</i> , 2016 , 6, 38	17499	24
207	The ratio of metabolically active versus total Mycolata populations triggers foaming in a membrane bioreactor. <i>Water Research</i> , 2016 , 92, 208-17	12.5	24
206	Label-free Raman characterization of bacteria calls for standardized procedures. <i>Journal of Microbiological Methods</i> , 2018 , 151, 69-75	2.8	24
205	Plant and soil microbe responses to light, warming and nitrogen addition in a temperate forest. <i>Functional Ecology</i> , 2018 , 32, 1293-1303	5.6	23
204	Laboratory-Scale Simulation and Real-Time Tracking of a Microbial Contamination Event and Subsequent Shock-Chlorination in Drinking Water. <i>Frontiers in Microbiology</i> , 2017 , 8, 1900	5.7	23
203	Pathway of nitrous oxide consumption in isolated Pseudomonas stutzeri strains under anoxic and oxic conditions. <i>Environmental Microbiology</i> , 2014 , 16, 3143-52	5.2	23
202	Performance and microbial analysis of defined and non-defined inocula for the removal of dimethyl sulfide in a biotrickling filter. <i>Biotechnology and Bioengineering</i> , 2007 , 96, 661-72	4.9	23
201	Enrichment of Methanosaetaceae on carbon felt and biochar during anaerobic digestion of a potassium-rich molasses stream. <i>Applied Microbiology and Biotechnology</i> , 2016 , 100, 5177-87	5.7	23
200	Flow cytometry for immediate follow-up of drinking water networks after maintenance. <i>Water Research</i> , 2017 , 111, 66-73	12.5	22
199	Coculturing Bacteria Leads to Reduced Phenotypic Heterogeneities. <i>Applied and Environmental Microbiology</i> , 2019 , 85,	4.8	22

Effect of Bdellovibrio bacteriovorus HD100 on multispecies oral communities. Anaerobe, 2015, 35, 45-532.8 198 22 Novel biocompatible nanocapsules for slow release of fragrances on the human skin. New 197 6.4 22 Biotechnology, 2015, 32, 40-6 A robust nitrifying community in a bioreactor at 50 LC opens up the path for thermophilic nitrogen 196 11.9 22 removal. ISME Journal, 2016, 10, 2293-303 Transparent exopolymer particle removal in different drinking water production centers. Water 195 12.5 Research, 2012, 46, 3603-11 Microbial community of predatory bugs of the genus Macrolophus (Hemiptera: Miridae). BMC 194 4.5 22 Microbiology, 2012, 12 Suppl 1, S9 Biocatalytic dechlorination of hexachlorocyclohexane by immobilized bio-Pd in a pilot scale 22 193 13.3 fluidized bed reactor. Environmental Chemistry Letters, 2011, 9, 417-422 Occurrence of manganese-oxidizing microorganisms and manganese deposition during biofilm 192 22 4.3 formation on stainless steel in a brackish surface water. FEMS Microbiology Ecology, 2002, 39, 41-55 Characterization of spoilage markers in modified atmosphere packaged iceberg lettuce. 191 5.8 21 International Journal of Food Microbiology, 2018, 279, 1-13 Pinpointing wastewater and process parameters controlling the AOB to NOB activity ratio in 190 12.5 21 sewage treatment plants. Water Research, 2018, 138, 37-46 Kinetic exploration of nitrate-accumulating microalgae for nutrient recovery. Applied Microbiology 189 5.7 and Biotechnology, **2014**, 98, 8377-87 Primers for overlooked nirK, qnorB, and nosZ genes of thermophilic Gram-positive denitrifiers. 188 21 4.3 FEMS Microbiology Ecology, 2014, 89, 162-80 Impact of intestinal microbiota and gastrointestinal conditions on the in vitro survival and growth 187 5.8 21 of Bacillus cereus. International Journal of Food Microbiology, 2012, 155, 241-6 Selection of associated heterotrophs by methane-oxidizing bacteria at different copper 186 2.1 20 concentrations. Antonie Van Leeuwenhoek, 2013, 103, 527-37 Ingestion of bacteria overproducing DnaK attenuates Vibrio infection of Artemia franciscana 185 4 20 larvae. Cell Stress and Chaperones, 2009, 14, 603-9 Diversity of activated sludge bacteria receiving the 3-chloroaniline-degradative plasmid pC1gfp. 184 4.3 20 FEMS Microbiology Ecology, 2003, 46, 221-30 Online microbial fingerprinting for quality management of drinking water: Full-scale event 183 12.5 20 detection. Water Research, 2020, 170, 115353 Nitric oxide preferentially inhibits nitrite oxidizing communities with high affinity for nitrite. 182 19 3.7 Journal of Biotechnology, 2015, 193, 120-2 Mainstream partial nitritation/anammox with integrated fixed-film activated sludge: Combined aeration and floc retention time control strategies limit nitrate production. Bioresource Technology, 181 11 19 **2020**, 314, 123711

180	Flow cytometric monitoring of bacterioplankton phenotypic diversity predicts high population-specific feeding rates by invasive dreissenid mussels. <i>Environmental Microbiology</i> , 2018 , 20, 521-534	5.2	19
179	Tomato plants rather than fertilizers drive microbial community structure in horticultural growing media. <i>Scientific Reports</i> , 2019 , 9, 9561	4.9	19
178	Evolutionary algorithms and flow cytometry to examine the parameters influencing transconjugant formation. <i>FEMS Microbiology Ecology</i> , 2006 , 55, 17-27	4.3	19
177	Hydrocarbonoclastic Isolates Exhibit Different Physiological and Expression Responses to -dodecane. <i>Frontiers in Microbiology</i> , 2016 , 7, 2056	5.7	19
176	A laboratory-scale column study comparing organic micropollutant removal and microbial diversity for two soil types. <i>Science of the Total Environment</i> , 2015 , 536, 632-638	10.2	18
175	Detection of microbial disturbances in a drinking water microbial community through continuous acquisition and advanced analysis of flow cytometry data. <i>Water Research</i> , 2018 , 145, 73-82	12.5	18
174	Trade-off between mesophilic and thermophilic denitrification: rates vs. sludge production, settleability and stability. <i>Water Research</i> , 2014 , 63, 234-44	12.5	18
173	Sulfide- and nitrite-dependent nitric oxide production in the intestinal tract. <i>Microbial Biotechnology</i> , 2012 , 5, 379-87	6.3	18
172	Catalytic dechlorination of diclofenac by biogenic palladium in a microbial electrolysis cell. <i>Microbial Biotechnology</i> , 2012 , 5, 396-402	6.3	18
171	Carbon and nitrogen mass balance during flue gas treatment with Dunaliella salina cultures. Journal of Applied Phycology, 2013 , 25, 359-368	3.2	18
170	Legionella pneumophila in the Environment: The Occurrence of a Fastidious Bacterium in Oligotrophic Conditions. <i>Reviews in Environmental Science and Biotechnology</i> , 2005 , 4, 61-74	13.9	18
169	Nitrite producing bacteria inhibit reinforcement bar corrosion in cementitious materials. <i>Scientific Reports</i> , 2018 , 8, 14092	4.9	18
168	Microbial Protein out of Thin Air: Fixation of Nitrogen Gas by an Autotrophic Hydrogen-Oxidizing Bacterial Enrichment. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	17
167	Oral prebiotics and the influence of environmental conditions in vitro. <i>Journal of Periodontology</i> , 2018 , 89, 708-717	4.6	17
166	Impact of bio-palladium nanoparticles (bio-Pd NPs) on the activity and structure of a marine microbial community. <i>Environmental Pollution</i> , 2017 , 220, 1068-1078	9.3	17
165	Effects of feeding regime and probionts on the diverting microbial communities in rotifer Brachionus culture. <i>Aquaculture International</i> , 2009 , 17, 303-315	2.6	17
164	Biological Recovery of Platinum Complexes from Diluted Aqueous Streams by Axenic Cultures. <i>PLoS ONE</i> , 2017 , 12, e0169093	3.7	17
163	Necrotrophic growth of periodontopathogens is a novel virulence factor in oral biofilms. <i>Scientific Reports</i> , 2017 , 7, 1107	4.9	16

(2017-2013)

162	Barcoded pyrosequencing analysis of the microbial community in a simulator of the human gastrointestinal tract showed a colon region-specific microbiota modulation for two plant-derived polysaccharide blends. <i>Antonie Van Leeuwenhoek</i> , 2013 , 103, 409-20	2.1	16	
161	Contrasting dual (C, Cl) isotope fractionation offers potential to distinguish reductive chloroethene transformation from breakdown by permanganate. <i>Science of the Total Environment</i> , 2017 , 596-597,	169 - 177	15	
160	Germ-free sea bass Dicentrarchus labrax larval model: a valuable tool in the study of host-microbe interactions. <i>Diseases of Aquatic Organisms</i> , 2016 , 117, 177-85	1.7	15	
159	Empowering a mesophilic inoculum for thermophilic nitrification: Growth mode and temperature pattern as critical proliferation factors for archaeal ammonia oxidizers. <i>Water Research</i> , 2016 , 92, 94-	103 ^{12.5}	15	
158	Vibrio lentus protects gnotobiotic sea bass (Dicentrarchus labrax L.) larvae against challenge with Vibrio harveyi. <i>Veterinary Microbiology</i> , 2016 , 185, 41-8	3.3	15	
157	Temperature impact on sludge yield, settleability and kinetics of three heterotrophic conversions corroborates the prospect of thermophilic biological nitrogen removal. <i>Bioresource Technology</i> , 2018 , 269, 104-112	11	15	
156	Atmospheric methane removal by methane-oxidizing bacteria immobilized on porous building materials. <i>Applied Microbiology and Biotechnology</i> , 2014 , 98, 3791-800	5.7	15	
155	Comparison of bacterial cells and amine-functionalized abiotic surfaces as support for Pd nanoparticle synthesis. <i>Colloids and Surfaces B: Biointerfaces</i> , 2013 , 102, 898-904	6	15	
154	Liposomes as an alternative delivery system for investigating dietary metal toxicity to Daphnia magna. <i>Aquatic Toxicology</i> , 2011 , 105, 661-8	5.1	15	
153	Bacterial colonization of pellet softening reactors used during drinking water treatment. <i>Applied and Environmental Microbiology</i> , 2011 , 77, 1041-8	4.8	15	
152	H2S degradation is reflected by both the activity and composition of the microbial community in a compost biofilter. <i>Applied Microbiology and Biotechnology</i> , 2006 , 72, 1090-8	5.7	15	
151	Real time PCR quantification in groundwater of the dehalorespiring Desulfitobacterium dichloroeliminans strain DCA1. <i>Journal of Microbiological Methods</i> , 2006 , 67, 294-303	2.8	15	
150	Osmotic Stress Confers Enhanced Cell Integrity to Hydrostatic Pressure but Impairs Growth in Alcanivorax borkumensis SK2. <i>Frontiers in Microbiology</i> , 2016 , 7, 729	5.7	15	
149	Methane biofiltration using autoclaved aerated concrete as the carrier material. <i>Applied Microbiology and Biotechnology</i> , 2015 , 99, 7307-20	5.7	14	
148	Microbial activity in peat-reduced plant growing media: Identifying influential growing medium constituents and physicochemical properties using fractional factorial design of experiments. <i>Journal of Cleaner Production</i> , 2020 , 256, 120323	10.3	14	
147	Inoculation with a mixed degrading culture improves the pesticide removal of an on-farm biopurification system. <i>Current Microbiology</i> , 2013 , 67, 466-71	2.4	14	
146	Efficient molasses fermentation under high salinity by inocula of marine and terrestrial origin. <i>Biotechnology for Biofuels</i> , 2017 , 10, 23	7.8	14	
145	The Impact of Space Flight on Survival and Interaction of CH34 with Basalt, a Volcanic Moon Analog Rock. <i>Frontiers in Microbiology</i> , 2017 , 8, 671	5.7	14	

144	Efficient total nitrogen removal in an ammonia gas biofilter through high-rate OLAND. <i>Environmental Science & Environmental S</i>	10.3	14
143	Inactivation of Bacillus cereus vegetative cells by gastric acid and bile during in vitro gastrointestinal transit. <i>Gut Pathogens</i> , 2012 , 4, 11	5.4	14
142	Anaerobic oxidation of methane in a cold-water coral carbonate mound from the Gulf of Cadiz. <i>International Journal of Earth Sciences</i> , 2011 , 100, 1413-1422	2.2	14
141	Evaluation of nested PCR assays for the detection of Legionella pneumophila in a wide range of aquatic samples. <i>Journal of Applied Microbiology</i> , 2005 , 99, 916-25	4.7	14
140	Adaptation and characterization of thermophilic anammox in bioreactors. <i>Water Research</i> , 2020 , 172, 115462	12.5	14
139	Microbe-Plant Growing Media Interactions Modulate the Effectiveness of Bacterial Amendments on Lettuce Performance Inside a Plant Factory with Artificial Lighting. <i>Agronomy</i> , 2020 , 10, 1456	3.6	14
138	Characterization of Cefotaxime- and Ciprofloxacin-Resistant Commensal Escherichia coli Originating from Belgian Farm Animals Indicates High Antibiotic Resistance Transfer Rates. <i>Microbial Drug Resistance</i> , 2018 , 24, 707-717	2.9	14
137	Gene Expansion and Positive Selection as Bacterial Adaptations to Oligotrophic Conditions. <i>MSphere</i> , 2019 , 4,	5	13
136	Isotope Fractionation in Biogas Allows Direct Microbial Community Stability Monitoring in Anaerobic Digestion. <i>Environmental Science & Environmental </i>	10.3	13
135	Biofiltration of methane from ruminants gas effluent using Autoclaved Aerated Concrete as the carrier material. <i>Chemical Engineering Journal</i> , 2015 , 277, 318-323	14.7	13
134	Methanotrophs, methanogens and microbial community structure in livestock slurry surface crusts. Journal of Applied Microbiology, 2014 , 117, 1066-78	4.7	13
133	Inactivation of murine norovirus 1 and Bacteroides fragilis phage B40-8 by mesophilic and thermophilic anaerobic digestion of pig slurry. <i>Applied and Environmental Microbiology</i> , 2010 , 76, 2013-7	, 4.8	13
132	Volume Fraction, Thickness, and Permeability of the Sealing Layer in Microbial Self-Healing Concrete Containing Biogranules. <i>Frontiers in Built Environment</i> , 2018 , 4,	2.2	13
131	Enriched hydrogen-oxidizing microbiomes show a high diversity of co-existing hydrogen-oxidizing bacteria. <i>Applied Microbiology and Biotechnology</i> , 2019 , 103, 8241-8253	5.7	12
130	The Urgent Need to Re-engineer Nitrogen-Efficient Food Production for the Planet 2018 , 35-69		12
129	Biofiltration of hexane, acetone and dimethyl sulphide using wood, compost and silicone foam. Journal of Chemical Technology and Biotechnology, 2018 , 93, 2234-2243	3.5	12
128	Taking the technical microbiome into the next decade. <i>Environmental Microbiology</i> , 2018 , 20, 1991-2000)5.2	12
127	Characterization of the Bacterial Community Naturally Present on Commercially Grown Basil Leaves: Evaluation of Sample Preparation Prior to Culture-Independent Techniques. <i>International Journal of Environmental Research and Public Health</i> , 2015 , 12, 10171-97	4.6	12

126	Inhibition of Legionella pneumophila by Bacillus sp Engineering in Life Sciences, 2007, 7, 497-503	3.4	12
125	Platinum recovery from industrial process streams by halophilic bacteria: Influence of salt species and platinum speciation. <i>Water Research</i> , 2016 , 105, 436-443	12.5	12
124	Combined Consumption of Beef-Based Cooked Mince and Sucrose Stimulates Oxidative Stress, Cardiac Hypertrophy, and Colonic Outgrowth of Desulfovibrionaceae in Rats. <i>Molecular Nutrition and Food Research</i> , 2019 , 63, e1800962	5.9	12
123	Microbial community changes induced by uranyl nitrate in bentonite clay microcosms. <i>Applied Clay Science</i> , 2018 , 160, 206-216	5.2	11
122	ULIXES, unravelling and exploiting Mediterranean Sea microbial diversity and ecology for xenobiotics[and pollutants[clean up. <i>Reviews in Environmental Science and Biotechnology</i> , 2012 , 11, 207-	2 ^T 31 ⁹	11
121	The use of liposomes to differentiate between the effects of nickel accumulation and altered food quality in Daphnia magna exposed to dietary nickel. <i>Aquatic Toxicology</i> , 2012 , 109, 80-9	5.1	11
120	Small Bacillus cereus ATCC 14579 subpopulations are responsible for cytotoxin K production. Journal of Applied Microbiology, 2013 , 114, 899-906	4.7	11
119	Adherence and viability of intestinal bacteria to differentiated Caco-2 cells quantified by flow cytometry. <i>Journal of Microbiological Methods</i> , 2011 , 86, 33-41	2.8	11
118	Analysis of the evolution of microbial communities associated with different cultures of rotifer strains belonging to different cryptic species of the Brachionus plicatilis species complex. <i>Aquaculture</i> , 2009 , 292, 23-29	4.4	11
117	Selective leaching of copper and zinc from primary ores and secondary mineral residues using biogenic ammonia. <i>Journal of Hazardous Materials</i> , 2021 , 403, 123842	12.8	11
116	Evaluation of solid polymeric organic materials for use in bioreactive sediment capping to stimulate the degradation of chlorinated aliphatic hydrocarbons. <i>Applied Microbiology and Biotechnology</i> , 2014 , 98, 2255-66	5.7	10
115	Customized media based on miniaturized screening improve growth rate and cell yield of methane-oxidizing bacteria of the genus Methylomonas. <i>Antonie Van Leeuwenhoek</i> , 2014 , 105, 353-66	2.1	10
114	Microbial dechlorination activity during and after chemical oxidant treatment. <i>Journal of Hazardous Materials</i> , 2013 , 262, 598-605	12.8	10
113	Stripping flow cytometry: How many detectors do we need for bacterial identification?. <i>Cytometry Part A: the Journal of the International Society for Analytical Cytology</i> , 2017 , 91, 1184-1191	4.6	10
112	Validation study of 24 deepwell microtiterplates to screen libraries of strains in metabolic engineering. <i>Journal of Bioscience and Bioengineering</i> , 2010 , 110, 646-52	3.3	10
111	Randomized Lasso Links Microbial Taxa with Aquatic Functional Groups Inferred from Flow Cytometry. <i>MSystems</i> , 2019 , 4,	7.6	10
110	Reduced TCA cycle rates at high hydrostatic pressure hinder hydrocarbon degradation and obligate oil degraders in natural, deep-sea microbial communities. <i>ISME Journal</i> , 2019 , 13, 1004-1018	11.9	10
109	Soil microbial community structure and functionality changes in response to long-term metal and radionuclide pollution. <i>Environmental Microbiology</i> , 2021 , 23, 1670-1683	5.2	10

108	MiDAS 4: A global catalogue of full-length 16S rRNA gene sequences and taxonomy for studies of bacterial communities in wastewater treatment plants <i>Nature Communications</i> , 2022 , 13, 1908	17.4	10
107	Differential colonization of microbial communities inhabiting Lede stone in the urban and rural environment. <i>Science of the Total Environment</i> , 2020 , 733, 139339	10.2	9
106	Initial evenness determines diversity and cell density dynamics in synthetic microbial ecosystems. <i>Scientific Reports</i> , 2018 , 8, 340	4.9	9
105	Microbial community dynamics reflect reactor stability during the anaerobic digestion of a very high strength and sulfate-rich vinasse. <i>Journal of Chemical Technology and Biotechnology</i> , 2018 , 93, 975-	9854	9
104	Flow cytometric examination of bacterial growth in a local drinking water network. <i>Water and Environment Journal</i> , 2016 , 30, 167-176	1.7	9
103	Complementing urea hydrolysis and nitrate reduction for improved microbially induced calcium carbonate precipitation. <i>Applied Microbiology and Biotechnology</i> , 2019 , 103, 8825-8838	5.7	9
102	Increased salinity improves the thermotolerance of mesophilic nitrification. <i>Applied Microbiology and Biotechnology</i> , 2014 , 98, 4691-9	5.7	9
101	Integron characterization and typing of Shiga toxin-producing Escherichia coli isolates in Belgium. Journal of Medical Microbiology, 2013 , 62, 712-719	3.2	9
100	sp. nov., from a mixed hydrogen-oxidizing bacteria enrichment reactor for microbial protein production. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2020 , 70, 530-536	2.2	9
99	Discriminating Bacterial Phenotypes at the Population and Single-Cell Level: A Comparison of Flow Cytometry and Raman Spectroscopy Fingerprinting. <i>Cytometry Part A: the Journal of the International Society for Analytical Cytology</i> , 2020 , 97, 713-726	4.6	9
98	Production of isobutyric acid from methanol by Clostridium luticellarii. <i>Green Chemistry</i> , 2020 , 22, 8389-	8402	9
97	Drinking water bacterial communities exhibit specific and selective necrotrophic growth. <i>Npj Clean Water</i> , 2018 , 1,	11.2	9
96	Plant species identity and soil characteristics determine rhizosphere soil bacteria community composition in European temperate forests. <i>FEMS Microbiology Ecology</i> , 2019 , 95,	4.3	8
95	Assessment of catalytic dechlorination activity of suspended and immobilized bio-Pd NPs in different marine conditions. <i>Applied Catalysis B: Environmental</i> , 2015 , 168-169, 62-67	21.8	8
94	A method for the specific detection of resident bacteria in brine shrimp larvae. <i>Journal of Microbiological Methods</i> , 2012 , 89, 33-7	2.8	8
93	Conjoint bioleaching and zinc recovery from an iron oxide mineral residue by a continuous electrodialysis system. <i>Hydrometallurgy</i> , 2020 , 195, 105409	4	8
92	Self-healing capacity of deep-sea ecosystems affected by petroleum hydrocarbons: Understanding microbial oil degradation at hydrocarbon seeps is key to sustainable bioremediation protocols. <i>EMBO Reports</i> , 2017 , 18, 868-872	6.5	7
91	Urine nitrification with a synthetic microbial community. <i>Systematic and Applied Microbiology</i> , 2019 , 42, 126021	4.2	7

(2021-2019)

90	Determining stoichiometry and kinetics of two thermophilic nitrifying communities as a crucial step in the development of thermophilic nitrogen removal. <i>Water Research</i> , 2019 , 156, 34-45	12.5	7	
89	Ureolytic Activity and Its Regulation in Vibrio campbellii and Vibrio harveyi in Relation to Nitrogen Recovery from Human Urine. <i>Environmental Science & Description (2017)</i> , 51, 13335-13343	10.3	7	
88	Increased Respiratory Activity of Selected Oral Bacteria May Explain Competitive and Collaborative Interactions in the Oral Microbiome. <i>Frontiers in Cellular and Infection Microbiology</i> , 2017 , 7, 235	5.9	7	
87	Biogenic concrete protection driven by the formate oxidation by Methylocystis parvus OBBP. <i>Frontiers in Microbiology</i> , 2015 , 6, 786	5.7	7	
86	Addition of an aerated iron-rich waste-activated sludge to control the soluble sulphide concentration in sewage. <i>Water and Environment Journal</i> , 2011 , 25, 106-115	1.7	7	
85	Optimisation of the aminoffarboxy coupling of oligonucleotides to beads used in liquid arrays. Journal of Chemical Technology and Biotechnology, 2006 , 81, 476-480	3.5	7	
84	Hydrogen oxidizing bacteria are capable of removing orthophosphate to ultra-low concentrations in a fed batch reactor configuration. <i>Bioresource Technology</i> , 2020 , 311, 123494	11	7	
83	Genomic and enzymatic evidence of acetogenesis by anaerobic methanotrophic archaea. <i>Nature Communications</i> , 2020 , 11, 3941	17.4	7	
82	In vitro and in vivo digestion of red cured cooked meat: oxidation, intestinal microbiota and fecal metabolites. <i>Food Research International</i> , 2021 , 142, 110203	7	7	
81	Vertical Farming: The Only Way Is Up?. <i>Agronomy</i> , 2022 , 12, 2	3.6	7	
80	Clinical concentrations of peroxidases cause dysbiosis in in vitro or al biofilms. <i>Journal of Periodontal Research</i> , 2018 , 53, 457-466	4.3	6	
79	Microbial Fuel Cells as an Engineered Ecosystem 2014 , 307-320		6	
78	Draft Genome Sequence of the Naphthalene Degrader Herbaspirillum sp. Strain RV1423. <i>Genome Announcements</i> , 2014 , 2,		6	
77	Vertical migration of aggregated aerobic and anaerobic ammonium oxidizers enhances oxygen uptake in a stagnant water layer. <i>Applied Microbiology and Biotechnology</i> , 2007 , 75, 1455-61	5.7	6	
-(
76	Stratified community responses to methane and sulfate supplies in mud volcano deposits: insights from an in vitro experiment. <i>PLoS ONE</i> , 2014 , 9, e113004	3.7	6	
76		3·7 6.2	6	
	from an in vitro experiment. <i>PLoS ONE</i> , 2014 , 9, e113004 Effect of Applying Struvite and Organic N as Recovered Fertilizers on the Rhizosphere Dynamics			

Organic Matter and Microbial Cell Density Behavior during Ion Exchange Demineralization of

TCE exposure. Biodegradation, 2014, 25, 493-504

Quantitative and functional dynamics of Dehalococcoides spp. and its tceA and vcrA genes under

Surface Water for Boiler Feedwater. Industrial & Engineering Chemistry Research, 2019, 58, 14368-14379

56

(2022-2017)

54	Development of a reliable experimental set-up for Dover sole larvae Solea solea L. and exploring the possibility of implementing this housing system in a gnotobiotic model. <i>Research in Veterinary Science</i> , 2017 , 115, 418-424	2.5	4
53	Intrarectal nitric oxide administration prevents cellular infiltration but not colonic injury during dextran sodium sulfate colitis. <i>Digestive Diseases and Sciences</i> , 2012 , 57, 1832-7	4	4
52	Xylanases from microbial origin induce syrup formation in dough. <i>Journal of Cereal Science</i> , 2008 , 47, 18-28	3.8	4
51	Red and processed meat consumption within two different dietary patterns: Effect on the colon microbial community and volatile metabolites in pigs. <i>Food Research International</i> , 2020 , 129, 108793	7	4
50	Surface Consolidation of Maastricht Limestone by Means of Bacillus Sphaericus under Varying Treatment Conditions. <i>Journal of Materials in Civil Engineering</i> , 2020 , 32, 04020342	3	4
49	Bioleaching of metals from secondary materials using glycolipid biosurfactants. <i>Minerals Engineering</i> , 2021 , 163, 106665	4.9	4
48	C Incorporation as a Tool to Estimate Biomass Yields in Thermophilic and Mesophilic Nitrifying Communities. <i>Frontiers in Microbiology</i> , 2019 , 10, 192	5.7	3
47	Learning Single-Cell Distances from Cytometry Data. <i>Cytometry Part A: the Journal of the International Society for Analytical Cytology</i> , 2019 , 95, 782-791	4.6	3
46	Individual-Based Modelling of Invasion in Bioaugmented Sand Filter Communities. <i>Processes</i> , 2018 , 6, 2	2.9	3
45	Impact of Chemical Oxidants on the Heavy Metals and the Microbial Population in Sediments. <i>Water, Air, and Soil Pollution</i> , 2013 , 224, 1	2.6	3
44	Historic occurrence of parthenogenetic Artemia in Great Salt Lake, USA, as demonstrated by molecular analysis of field samples. <i>Journal of Great Lakes Research</i> , 2013 , 39, 47-55	3	3
43	First Draft Genome Sequence of the Acidovorax caeni sp. nov. Type Strain R-24608 (DSM 19327). <i>Genome Announcements</i> , 2015 , 3,		3
42	Draft Genome Sequence of Rhodococcus sp. Strain 311R. <i>Genome Announcements</i> , 2015 , 3,		3
41	Low Temperature and Modified Atmosphere: Hurdles for Antibiotic Resistance Transfer?. <i>Journal of Food Protection</i> , 2015 , 78, 2191-9	2.5	3
40	Selective metal extraction by biologically produced siderophores during bioleaching from low-grade primary and secondary mineral resources. <i>Minerals Engineering</i> , 2021 , 163, 106774	4.9	3
39	From Biogas and Hydrogen to Microbial Protein Through Co-Cultivation of Methane and Hydrogen Oxidizing Bacteria. <i>Frontiers in Bioengineering and Biotechnology</i> , 2021 , 9, 733753	5.8	3
38	Triangulation of microbial fingerprinting in anaerobic digestion reveals consistent fingerprinting profiles. <i>Water Research</i> , 2021 , 202, 117422	12.5	3
37	Co-cultivation enhanced microbial protein production based on autotrophic nitrogen-fixing hydrogen-oxidizing bacteria. <i>Chemical Engineering Journal</i> , 2022 , 429, 132535	14.7	3

36	In-Depth Observation on the Microbial and Fungal Community Structure of Four Contrasting Tomato Cultivation Systems in Soil Based and Soilless Culture Systems. <i>Frontiers in Plant Science</i> , 2020 , 11, 520834	6.2	2
35	The Ability of Basalt to Leach Nutrients and Support Growth of Cupriavidus metallidurans CH34 Depends on Basalt Composition and Element Release. <i>Geomicrobiology Journal</i> , 2018 , 35, 438-446	2.5	2
34	Inactivation of Viruses in Water by Biogenic Silver: Innovative and Environmentally Friendly Disinfection Technique. <i>International Conference on Bioinformatics and Biomedical Engineering:</i> [proceedings] International Conference on Bioinformatics and Biomedical Engineering, 2010 ,		2
33	Antibiotic affects the gut microbiota composition and expression of genes related to lipid metabolism and myofiber types in skeletal muscle of piglets. <i>BMC Veterinary Research</i> , 2020 , 16, 392	2.7	2
32	Low microbial biomass within the reproductive tract of mid-lactation dairy cows: A study approach. Journal of Dairy Science, 2021 , 104, 6159-6174	4	2
31	Genomic Aromatic Compound Degradation Potential of Novel Species: sp. nov., sp. nov. and sp. nov. <i>International Journal of Molecular Sciences</i> , 2021 , 22,	6.3	2
30	Root-Associated Bacterial Community Shifts in Hydroponic Lettuce Cultured with Urine-Derived Fertilizer. <i>Microorganisms</i> , 2021 , 9,	4.9	2
29	Intracellular quercetin accumulation and its impact on mitochondrial dysfunction in intestinal Caco-2 cells. <i>Food Research International</i> , 2021 , 145, 110430	7	2
28	Citrate-Mediated Hydrometallurgical Lead Extraction and Integrated Electrochemical Recovery from Zinc Leaching Residue. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 9282-9288	8.3	2
27	Cupriavidus metallidurans NA4 actively forms polyhydroxybutyrate-associated uranium-phosphate precipitates. <i>Journal of Hazardous Materials</i> , 2022 , 421, 126737	12.8	2
26	Potential prebiotic substrates modulate composition, metabolism, virulence and inflammatory potential of an in vitro multi-species oral biofilm. <i>Journal of Oral Microbiology</i> , 2021 , 13, 1910462	6.3	2
25	A Viability Quantitative PCR Dilemma: Are Longer Amplicons Better?. <i>Applied and Environmental Microbiology</i> , 2021 , 87, e0265320	4.8	2
24	Online microbial monitoring of drinking water: How do different techniques respond to contaminations in practice?. <i>Water Research</i> , 2021 , 202, 117387	12.5	2
23	Microbial enrichment, functional characterization and isolation from a cold seep yield piezotolerant obligate hydrocarbon degraders. <i>FEMS Microbiology Ecology</i> , 2020 , 96,	4.3	1
22	Pioneering on single-sludge nitrification/denitrification at 50 IIC. Chemosphere, 2020, 252, 126527	8.4	1
21	Flow cytometric fingerprinting to assess the microbial community response to changing water quality and additives. <i>Environmental Science: Water Research and Technology</i> , 2019 , 5, 1672-1682	4.2	1
20	Erratum to "Catabolic mobile genetic elements and their potential use in bioaugmentation of polluted soils and waters". <i>FEMS Microbiology Ecology</i> , 2003 , 44, 137	4.3	1
19	The capabilities of bacteria and archaea to alter natural building stones 🖪 review. <i>International Biodeterioration and Biodegradation</i> , 2021 , 165, 105329	4.8	1

18	Measuring phenotypic heterogeneity in isogenic bacterial populations using flow cytometry and Raman spectroscopy		1
17	PhenoGMM: Gaussian mixture modelling of microbial cytometry data enables efficient predictions of biodiversity		1
16	Evaluating the intrinsic capacity of oral bacteria to produce hydrogen peroxide (HO) in liquid cultures: Interference by bacterial growth media. <i>Journal of Microbiological Methods</i> , 2021 , 182, 106170	2.8	1
15	Draft Genome Sequence of Aeromonas sp. Strain EERV15. <i>Genome Announcements</i> , 2016 , 4,		1
14	Enrichment of Hydrogen Oxidizing Bacteria from High Temperature and Salinity Environments. <i>Applied and Environmental Microbiology</i> , 2020 ,	4.8	1
13	Network Analysis Based on Unique Spectral Features Enables an Efficient Selection of Genomically Diverse Operational Isolation Units. <i>Microorganisms</i> , 2021 , 9,	4.9	1
12	Treatment with nano-silica and bacteria to restore the reduced bond strength between concrete and repair mortar caused by aggressive removal techniques. <i>Cement and Concrete Composites</i> , 2021 , 120, 104064	8.6	1
11	Predicting the Presence and Abundance of Bacterial Taxa in Environmental Communities through Flow Cytometric Fingerprinting. <i>MSystems</i> , 2021 , 6, e0055121	7.6	1
10	Effective orthophosphate removal from surface water using hydrogen-oxidizing bacteria: Moving towards applicability. <i>Science of the Total Environment</i> , 2021 , 800, 149648	10.2	1
9	Molybdate effectively controls sulphide production in a shrimp pond model. <i>Environmental Research</i> , 2022 , 203, 111797	7.9	1
8	Molecular Mechanisms Underlying Bacterial Uranium Resistance <i>Frontiers in Microbiology</i> , 2022 , 13, 822197	5.7	1
7	A combined culture-independent and simulation reactor approach to assess the microbial community of an operational denitrifying bioreactor treating As-bearing metallurgical wastewater. <i>Bioresource Technology Reports</i> , 2021 , 16, 100870	4.1	O
6	Comparison of the modulatory effects of three structurally similar potential prebiotic substrates on an in vitro multi-species oral biofilm. <i>Scientific Reports</i> , 2021 , 11, 15033	4.9	0
5	Combined HydroBolvoBioleaching Approach toward the Valorization of a Sulfidic Copper Mine Tailing. <i>Industrial & Engineering Chemistry Research</i> , 2022 , 61, 684-693	3.9	0
4	Kinetic exploration of intracellular nitrate storage in marine microalgae. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2017 , 52, 1303-13	377	
3	Factors Controlling the Activity of Bacteriophage UZ1 against Enterobacter aerogenes Strain BE1 under Simulated Intestinal Conditions. <i>Engineering in Life Sciences</i> , 2006 , 6, 501-507	3.4	
2	Examining the Potential of Enzyme-Based Detergents to Remove Biofouling from Limestone Heritage. <i>Coatings</i> , 2022 , 12, 375	2.9	
1	Quercetin Mitigates Endothelial Activation in a Novel Intestinal-Endothelial-Monocyte/Macrophage Coculture Setup <i>Inflammation</i> , 2022 , 1	5.1	