
David S Askew

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5495571/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cell death induction in Aspergillus fumigatus: accentuating drug toxicity through inhibition of the unfolded protein response (UPR). Current Research in Microbial Sciences, 2022, 3, 100119.	2.3	2
2	Characterization of Pulmonary Fibroblast Response to Aspergillosis fumigatus Exposure and Clinical Implications on the Development of Invasive Aspergillosis. FASEB Journal, 2022, 36, .	0.5	0
3	Unveiling the Pathologic Response of Cardiac Fibroblasts During <i>Aspergillus fumigatus</i> Pulmonary Infections. FASEB Journal, 2022, 36, .	0.5	0
4	Pleiotropic Effects of the P5-Type ATPase SpfA on Stress Response Networks Contribute to Virulence in the Pathogenic Mold Aspergillus fumigatus. MBio, 2021, 12, e0273521.	4.1	4
5	A Human IRE1 Inhibitor Blocks the Unfolded Protein Response in the Pathogenic Fungus Aspergillus fumigatus and Suggests Noncanonical Functions within the Pathway. MSphere, 2020, 5, .	2.9	7
6	Functional Coupling between the Unfolded Protein Response and Endoplasmic Reticulum/Golgi Ca ²⁺ -ATPases Promotes Stress Tolerance, Cell Wall Biosynthesis, and Virulence of Aspergillus fumigatus. MBio, 2020, 11, .	4.1	17
7	The Toxicity of a Novel Antifungal Compound Is Modulated by Endoplasmic Reticulum-Associated Protein Degradation Components. Antimicrobial Agents and Chemotherapy, 2016, 60, 1438-1449.	3.2	9
8	The fungal UPR. Virulence, 2014, 5, 334-340.	4.4	39
9	Endoplasmic reticulum stress and fungal pathogenesis converge. Virulence, 2014, 5, 331-333.	4.4	8
10	Advances Against Aspergillosis: Biology, Host response, Diagnosis and Treatment. Mycopathologia, 2014, 178, 321-324.	3.1	4
11	Polysome profiling reveals broad translatome remodeling during endoplasmic reticulum (ER) stress in the pathogenic fungus Aspergillus fumigatus. BMC Genomics, 2014, 15, 159.	2.8	21
12	Endoplasmic reticulum stress and fungal pathogenesis. Fungal Biology Reviews, 2014, 28, 29-35.	4.7	41
13	Aspergillus fumigatus. , 2014, , 695-716.		4
14	Effects of a Defective Endoplasmic Reticulum-Associated Degradation Pathway on the Stress Response, Virulence, and Antifungal Drug Susceptibility of the Mold Pathogen Aspergillus fumigatus. Eukaryotic Cell, 2013, 12, 512-519.	3.4	20
15	Prolyl endopeptidase activity in bronchoalveolar lavage fluid: a novel diagnostic biomarker in a guinea pig model of invasive pulmonary aspergillosis. Medical Mycology, 2013, 51, 592-602.	0.7	5
16	Deletion of the sec4 Homolog srgA from Aspergillus fumigatus Is Associated with an Impaired Stress Response, Attenuated Virulence and Phenotypic Heterogeneity. PLoS ONE, 2013, 8, e66741.	2.5	23
17	Substrate Specifity Profiling of the Aspergillus fumigatus Proteolytic Secretome Reveals Consensus Motifs with Predominance of Ile/Leu and Phe/Tyr. PLoS ONE, 2011, 6, e21001.	2.5	12
18	Divergent Protein Kinase A isoforms coâ€ordinately regulate conidial germination, carbohydrate metabolism and virulence in <i>Aspergillus fumigatus</i> . Molecular Microbiology, 2011, 79, 1045-1062.	2.5	49

DAVID S ASKEW

#	Article	lF	CITATIONS
19	Secretion stress and antifungal resistance: An Achilles' heel of <i>Aspergillus fumigatus?</i> . Medical Mycology, 2011, 49, S101-S106.	0.7	6
20	The virulence of the opportunistic fungal pathogen <i>Aspergillus fumigatus</i> requires cooperation between the endoplasmic reticulum-associated degradation pathway (ERAD) and the unfolded protein response (UPR). Virulence, 2011, 2, 12-21.	4.4	40
21	HacA-Independent Functions of the ER Stress Sensor IreA Synergize with the Canonical UPR to Influence Virulence Traits in Aspergillus fumigatus. PLoS Pathogens, 2011, 7, e1002330.	4.7	101
22	Impact of the Lectin Chaperone Calnexin on the Stress Response, Virulence and Proteolytic Secretome of the Fungal Pathogen Aspergillus fumigatus. PLoS ONE, 2011, 6, e28865.	2.5	11
23	A Role for the Unfolded Protein Response (UPR) in Virulence and Antifungal Susceptibility in Aspergillus fumigatus. PLoS Pathogens, 2009, 5, e1000258.	4.7	150
24	Aspergillus fumigatus: virulence genes in a street-smart mold. Current Opinion in Microbiology, 2008, 11, 331-337.	5.1	83
25	Impaired Ribosome Biogenesis Disrupts the Integration between Morphogenesis and Nuclear Duplication during the Germination of <i>Aspergillus fumigatus</i> . Eukaryotic Cell, 2008, 7, 575-583.	3.4	11
26	Unexpected Link between Metal Ion Deficiency and Autophagy in <i>Aspergillus fumigatus</i> . Eukaryotic Cell, 2007, 6, 2437-2447.	3.4	121
27	TheAspergillus fumigatusmetacaspases CasA and CasB facilitate growth under conditions of endoplasmic reticulum stress. Molecular Microbiology, 2007, 63, 591-604.	2.5	86
28	Nucleolar localization of Aspergillus fumigatus CgrA is temperature-dependent. Fungal Genetics and Biology, 2006, 43, 1-7.	2.1	10
29	Deletion of the Regulatory Subunit of Protein Kinase A in Aspergillus fumigatus Alters Morphology, Sensitivity to Oxidative Damage, andVirulence. Infection and Immunity, 2006, 74, 4865-4874.	2.2	92
30	Doxycycline-regulated gene expression in the opportunistic fungal pathogen Aspergillus fumigatus. BMC Microbiology, 2005, 5, 1.	3.3	140
31	Disruption of the Aspergillus fumigatus Gene Encoding Nucleolar Protein CgrA Impairs Thermotolerant Growth and Reduces Virulence. Infection and Immunity, 2004, 72, 4731-4740.	2.2	124
32	Aspergillus fumigatus rasA and rasB regulate the timing and morphology of asexual development. Fungal Genetics and Biology, 2004, 41, 129-139.	2.1	93
33	Deletion of the Aspergillus fumigatus Gene Encoding the Ras-Related Protein RhbA Reduces Virulence in a Model of Invasive Pulmonary Aspergillosis. Infection and Immunity, 2003, 71, 2819-2826.	2.2	72
34	Expression of the Aspergillus fumigatus rheb homologue, rhbA, is induced by nitrogen starvation. Fungal Genetics and Biology, 2002, 36, 207-214.	2.1	43
35	Identification of a role for Saccharomyces cerevisiae Cgr1p in pre-rRNA processing and 60S ribosome subunit synthesis. Microbiology (United Kingdom), 2002, 148, 1081-1090.	1.8	27
36	cAMP alteration of growth rate of Aspergillus fumigatus and Aspergillus niger is carbon-source dependent. Microbiology (United Kingdom), 2002, 148, 2627-2633.	1.8	35

DAVID S ASKEW

#	Article	IF	CITATIONS
37	Molecular Cloning of cgrA, the Gene Encoding the Aspergillus nidulans Ortholog of Saccharomyces cerevisiae CGR1. Current Microbiology, 2001, 42, 403-407.	2.2	4
38	Cgr1p, a Novel Nucleolar Protein Encoded by Saccharomyces cerevisiae Orf YGL0292w. Current Microbiology, 2001, 42, 65-69.	2.2	11
39	Identification of a cell type-specific silencer in the first exon of theHis-1 gene. Journal of Cellular Biochemistry, 2000, 76, 615-624.	2.6	8
40	Graduate education in microscopic anatomy. , 1998, 253, 143-146.		6
41	Sequencing of a Gene Encoding a Member of the Mitochondrial Carrier Family of Transport Proteins from Aspergillus nidulans. DNA Sequence, 1998, 9, 1-8.	0.7	2
42	Evolutionary conservation of putative functional domains in the human homolog of the murine His-1 gene. Gene, 1997, 184, 169-176.	2.2	9
43	A novel flow cytometric method for quantifying phagocytosis of apoptotic cells. Cytometry, 1997, 27, 145-152.	1.8	39
44	Aspergillus fumigatus: Survival and Death under Stress. , 0, , 201-213.		0