Maria Jesus Bullido Gomez-Heras

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5495509/publications.pdf

Version: 2024-02-01

Maria Jesus Bullido

#	Article	IF	CITATIONS
1	New insights into the genetic etiology of Alzheimer's disease and related dementias. Nature Genetics, 2022, 54, 412-436.	9.4	700
2	Association of Rare <i>APOE</i> Missense Variants V236E and R251G With Risk of Alzheimer Disease. JAMA Neurology, 2022, 79, 652.	4.5	31
3	Long runs of homozygosity are associated with Alzheimer's disease. Translational Psychiatry, 2021, 11, 142.	2.4	6
4	Common variants in Alzheimer's disease and risk stratification by polygenic risk scores. Nature Communications, 2021, 12, 3417.	5.8	140
5	LAMP2 deficiency attenuates the neurodegeneration markers induced by HSV-1 infection. Neurochemistry International, 2021, 146, 105032.	1.9	5
6	Matrix metalloproteinase 14 regulates HSV-1 infection in neuroblastoma cells. Antiviral Research, 2021, 192, 105116.	1.9	2
7	Genomic Characterization of Host Factors Related to SARS-CoV-2 Infection in People with Dementia and Control Populations: The GR@ACE/DEGESCO Study. Journal of Personalized Medicine, 2021, 11, 1318.	1.1	7
8	Matrix Metalloproteinase 14 Mediates APP Proteolysis and Lysosomal Alterations Induced by Oxidative Stress in Human Neuronal Cells. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-13.	1.9	2
9	Role of the lysosomalâ€associated membrane protein 2 in the ADâ€like neurodegeneration induced by HSVâ€1. Alzheimer's and Dementia, 2020, 16, e039720.	0.4	0
10	Cholesterol content in peripheral blood cells of patients with Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, e045437.	0.4	0
11	Tetraspanin CD81 regulates HSV-1 infection. Medical Microbiology and Immunology, 2020, 209, 489-498.	2.6	10
12	Genomeâ€wide association analysis of dementia and its clinical endophenotypes reveal novel loci associated with Alzheimer's disease and three causality networks: The GR@ACE project. Alzheimer's and Dementia, 2019, 15, 1333-1347.	0.4	111
13	Transethnic meta-analysis of rare coding variants in PLCG2, ABI3, and TREM2 supports their general contribution to Alzheimer's disease. Translational Psychiatry, 2019, 9, 55.	2.4	32
14	The Epistasis Project: A Multi-Cohort Study of the Effects of BDNF, DBH, and SORT1 Epistasis on Alzheimer's Disease Risk. Journal of Alzheimer's Disease, 2019, 68, 1535-1547.	1.2	11
15	Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nature Genetics, 2019, 51, 414-430.	9.4	1,962
16	The lysosome system is severely impaired in a cellular model of neurodegeneration induced by HSV-1 and oxidative stress. Neurobiology of Aging, 2018, 68, 5-17.	1.5	23
17	Genetically elevated highâ€density lipoprotein cholesterol through the cholesteryl ester transfer protein gene does not associate with risk of Alzheimer's disease. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2018, 10, 595-598.	1.2	2
18	A Free Radical-Generating System Regulates Amyloid Oligomers: Involvement of Cathepsin B. Journal of Alzheimer's Disease, 2018, 66, 1397-1408.	1.2	9

MARIA JESUS BULLIDO

#	Article	IF	CITATIONS
19	Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease. Nature Genetics, 2017, 49, 1373-1384.	9.4	783
20	Shared genetic contribution to ischemic stroke and Alzheimer's disease. Annals of Neurology, 2016, 79, 739-747.	2.8	56
21	Microbes and Alzheimer's Disease. Journal of Alzheimer's Disease, 2016, 51, 979-984.	1.2	426
22	A novel Alzheimer disease locus located near the gene encoding tau protein. Molecular Psychiatry, 2016, 21, 108-117.	4.1	260
23	MAPT H1 Haplotype is Associated with Late-Onset Alzheimer's Disease Risk in APOE ɛ4 Noncarriers: Results from the Dementia Genetics Spanish Consortium. Journal of Alzheimer's Disease, 2015, 49, 343-352.	1.2	32
24	Herpes simplex virus type 2 infection induces AD-like neurodegeneration markers in human neuroblastoma cells. Neurobiology of Aging, 2015, 36, 2737-2747.	1.5	45
25	Convergent genetic and expression data implicate immunity in Alzheimer's disease. Alzheimer's and Dementia, 2015, 11, 658-671.	0.4	173
26	Assessing the role of the TREM2 p.R47H variant as a risk factor for Alzheimer's disease and frontotemporal dementia. Neurobiology of Aging, 2014, 35, 444.e1-444.e4.	1.5	92
27	Choroid plexus implants rescue Alzheimer's disease-like pathologies by modulating amyloid-β degradation. Cellular and Molecular Life Sciences, 2014, 71, 2947-2955.	2.4	28
28	A Free Radical-Generating System Regulates AβPP Metabolism/Processing: Involvement of the Ubiquitin/Proteasome and Autophagy/Lysosome Pathways. Journal of Alzheimer's Disease, 2013, 34, 637-647.	1.2	7
29	Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nature Genetics, 2013, 45, 1452-1458.	9.4	3,741
30	Genome-wide haplotype association study identifies the FRMD4A gene as a risk locus for Alzheimer's disease. Molecular Psychiatry, 2013, 18, 461-470.	4.1	103
31	Rare Variants in Calcium Homeostasis Modulator 1 (CALHM1) Found in Early Onset Alzheimer's Disease Patients Alter Calcium Homeostasis. PLoS ONE, 2013, 8, e74203.	1.1	26
32	Oxidative Stress Enhances Neurodegeneration Markers Induced by Herpes Simplex Virus Type 1 Infection in Human Neuroblastoma Cells. PLoS ONE, 2013, 8, e75842.	1.1	44
33	Genetic variability of the gene cluster CALHM1–3 in sporadic Creutzfeldt-Jakob disease. Prion, 2012, 6, 407-412.	0.9	14
34	Herpes Simplex Virus Type I Induces an Incomplete Autophagic Response in Human Neuroblastoma Cells. Journal of Alzheimer's Disease, 2012, 30, 815-831.	1.2	39
35	Herpes simplex virus type I induces the accumulation of intracellular β-amyloid in autophagic compartments and the inhibition of the non-amyloidogenic pathway in human neuroblastoma cells. Neurobiology of Aging, 2012, 33, 430.e19-430.e33.	1.5	94
36	A Common BACE1 Polymorphism Is a Risk Factor for Sporadic Creutzfeldt-Jakob Disease. PLoS ONE, 2012, 7, e43926.	1.1	10

MARIA JESUS BULLIDO

#	Article	IF	CITATIONS
37	Genetic variations in tau-tubulin kinase-1 are linked to Alzheimer's disease in a Spanish case-control cohort. Neurobiology of Aging, 2011, 32, 550.e5-550.e9.	1.5	23
38	IGF-I gene variability is associated with an increased risk for AD. Neurobiology of Aging, 2011, 32, 556.e11.	1.5	36
39	Evidence of the association of BIN1 and PICALM with the AD risk in contrasting European populations. Neurobiology of Aging, 2011, 32, 756.e11-756.e15.	1.5	82
40	Genetic variation in APOE cluster region and Alzheimer's disease risk. Neurobiology of Aging, 2011, 32, 2107.e7-2107.e17.	1.5	59
41	PLA2G3, a Gene Involved in Oxidative Stress Induced Death, is Associated with Alzheimer's Disease. Journal of Alzheimer's Disease, 2011, 22, 1181-1187.	1.2	25
42	Genetic Cross-Interaction between APOE and PRNP in Sporadic Alzheimer's and Creutzfeldt-Jakob Diseases. PLoS ONE, 2011, 6, e22090.	1.1	43
43	Genetic Variation in the Tau Kinases Pathway May Modify the Risk and Age at Onset of Alzheimer's Disease. Journal of Alzheimer's Disease, 2011, 27, 291-297.	1.2	21
44	Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease. Nature Genetics, 2011, 43, 429-435.	9.4	1,708
45	APOE and Alzheimer disease: a major gene with semi-dominant inheritance. Molecular Psychiatry, 2011, 16, 903-907.	4.1	529
46	Genetic variation in the tau protein phosphatase-2A pathway is not associated with Alzheimer's disease risk. BMC Research Notes, 2011, 4, 327.	0.6	16
47	The CALHM1 P86L Polymorphism is a Genetic Modifier of Age at Onset in Alzheimer's Disease: a Meta-Analysis Study. Journal of Alzheimer's Disease, 2010, 22, 247-255.	1.2	54
48	A free radicalâ€generating system regulates APP metabolism/processing. FEBS Letters, 2010, 584, 4611-4618.	1.3	19
49	A megalin polymorphism associated with promoter activity and Alzheimer's disease risk. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153B, 895-902.	1.1	24
50	Caspase-1 genetic variation is not associated with Alzheimer's disease risk. BMC Medical Genetics, 2010, 11, 32.	2.1	8
51	Epistasis Between Intracellular Cholesterol Trafficking-Related Genes (NPC1 and ABCA1) and Alzheimer's Disease Risk. Journal of Alzheimer's Disease, 2010, 21, 619-625.	1.2	21
52	Centro de Biologia Molecular "Severo Ochoa― A Center for Basic Research into Alzheimer's Disease. Journal of Alzheimer's Disease, 2010, 21, 325-335.	1.2	0
53	Genetic screening of Alzheimer's disease genes in Iberian and African samples yields novel mutations in presenilins and APP. Neurobiology of Aging, 2010, 31, 725-731.	1.5	196
54	DYRK1A genetic variants are not linked to Alzheimer's disease in a Spanish case-control cohort. BMC Medical Genetics, 2009, 10, 129.	2.1	11

Maria Jesus Bullido

#	Article	IF	CITATIONS
55	Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease. Nature Genetics, 2009, 41, 1094-1099.	9.4	2,155
56	A free radicalâ€generating system induces the cholesterol biosynthesis pathway: a role in Alzheimer's disease. Aging Cell, 2009, 8, 128-139.	3.0	36
57	Apolipoprotein E genotyping method by Real Time PCR, a fast and cost-effective alternative to the TaqMan® and FRET assays. Journal of Neuroscience Methods, 2009, 183, 238-240.	1.3	82
58	Presenilin 1 Polymorphism Associated with Alzheimer's Disease in Apolipoprotein E4Carriers. Dementia and Geriatric Cognitive Disorders, 2008, 26, 440-444.	0.7	10
59	Double stranded RNA activated EIF2 α kinase (EIF2AK2; PKR) is associated with Alzheimer's disease. Neurobiology of Aging, 2008, 29, 1160-1166.	1.5	43
60	A TAP2 genotype associated with Alzheimer's disease in APOE4 carriers. Neurobiology of Aging, 2007, 28, 519-523.	1.5	29
61	Association of DSC1, a gene modulated by adrenergic stimulation, with Alzheimer's disease. Neuroscience Letters, 2006, 408, 203-208.	1.0	9
62	Neuronal specific regulatory elements in apolipoprotein E gene proximal promoter. NeuroReport, 2005, 16, 1027-1030.	0.6	19
63	Aβ production as consequence of cellular death of a human neuroblastoma overexpressing APP. FEBS Letters, 2004, 570, 114-118.	1.3	27
64	Polymorphism in genes involved in adrenergic signaling associated with Alzheimer's. Neurobiology of Aging, 2004, 25, 853-859.	1.5	39
65	SNP genotyping with FRET probes. Optimizing the resolution of heterozygotes. Molecular and Cellular Probes, 2004, 18, 211-214.	0.9	8
66	Specific interaction of heterogeneous nuclear ribonucleoprotein A1 with the -219T allelic form modulates APOE promoter activity. Nucleic Acids Research, 2003, 31, 3063-3070.	6.5	37
67	ApoE4 is more efficient than E3 in brain access by herpes simplex virus type 1. NeuroReport, 2003, 14, 1825-1827.	0.6	78
68	Involvement of Apolipoprotein E in the Hematogenous Route of Herpes Simplex Virus Type 1 to the Central Nervous System. Journal of Virology, 2002, 76, 12394-12398.	1.5	55
69	Contribution of <i>APOE</i> promoter polymorphisms to Alzheimer's disease risk. Neurology, 2002, 59, 59-66.	1.5	102
70	Influence of reagents formulation on real-time PCR parameters. Molecular and Cellular Probes, 2002, 16, 257-260.	0.9	32
71	APOE genotype in cerebrovascular disease and vascular dementia. Journal of the Neurological Sciences, 2002, 203-204, 173-176.	0.3	24
72	Apolipoprotein E gene promoter polymorphisms in Alzheimer's disease. Microscopy Research and Technique, 2000, 50, 261-267.	1.2	38

Maria Jesus Bullido

#	Article	IF	CITATIONS
73	A polymorphism in the tau gene associated with risk for Alzheimer's disease. Neuroscience Letters, 2000, 278, 49-52.	1.0	66
74	Alzheimer's risk associated with human apolipoprotein E, alpha-2 macroglobulin and lipoprotein receptor related protein polymorphisms: absence of genetic interactions, and modulation by gender. Neuroscience Letters, 2000, 289, 213-216.	1.0	39
75	DGGE method for the mutational analysis of the coding and proximal promoter regions of the Alzheimer's disease presenilin-1 gene: Two novel mutations. , 1999, 14, 433-439.		25
76	Apolipoprotein E promoter and α2-Macroglobulin polymorphisms are not genetically associated with Chinese late onset Alzheimer's disease. Neuroscience Letters, 1999, 269, 173-177.	1.0	51
77	A polymorphism in the regulatory region of APOE associated with risk for Alzheimer's dementia. Nature Genetics, 1998, 18, 69-71.	9.4	291
78	Missense mutation E318C of the presenilin-1 gene appears to be a nonpathogenic polymorphism. Annals of Neurology, 1998, 44, 985-986.	2.8	30
79	Identification of a novel mutation (Leu282Arg) of the human presenilin 1 gene in Alzheimer's disease. Neuroscience Letters, 1998, 240, 174-176.	1.0	25
80	The â^'491 A/T polymorphism in the regulatory region of the Apolipoprotein E gene and early-onset Alzheimer's disease. Neuroscience Letters, 1998, 258, 65-68.	1.0	38
81	Allelic polymorphisms in the transcriptional regulatory region of apolipoprotein E gene. FEBS Letters, 1998, 421, 105-108.	1.3	213
82	Risk for Alzheimer's disease correlates with transcriptional activity of the APOE gene. Human Molecular Genetics, 1998, 7, 1887-1892.	1.4	135
83	Proteolysis of Alzheimer's disease β-amyloid precursor protein by factor Xa. BBA - Proteins and Proteomics, 1997, 1343, 85-94.	2.1	9
84	Alzheimer's amyloid precursor protein is expressed on the surface of hematopoietic cells upon activation. Biochimica Et Biophysica Acta - Molecular Cell Research, 1996, 1313, 54-62.	1.9	20
85	Cooperation between transmissible gastroenteritis coronavirus (TGEV) structural proteins in the in vitro induction of virus-specific antibodies. Virus Research, 1996, 46, 111-124.	1.1	41
86	Location of an epitope shared by Alzheimer's amyloid peptide and brain creatine kinase using a newly developed monoclonal antibody. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1995, 1270, 149-156.	1.8	2
87	Antigenic homology among coronaviruses related to transmissible gastroenteritis virus. Virology, 1990, 174, 410-417.	1.1	152
88	Mechanisms of transmissible gastroenteritis coronavirus neutralization. Virology, 1990, 177, 559-569.	1.1	63
89	Localization of antigenic sites of the E2 glycoprotein of transmissible gastroenteritis coronavirus. Journal of General Virology, 1990, 71, 271-279.	1.3	74
90	Location of Antigenic Sites of the S-Glycoprotein of Transmissible Gastroenteritis Virus and their Conservation in Coronaviruses. Advances in Experimental Medicine and Biology, 1990, 276, 159-172.	0.8	11

#	Article	IF	CITATIONS
91	Induction of Transmissible Gastroenteritis Coronavirus-neutralizing Antibodies in vitro by Virus-specific T Helper Cell Hybridomas. Journal of General Virology, 1989, 70, 659-672.	1.3	8
92	Antigenic structure of the E2 glycoprotein from transmissible gastroenteritis coronavirus. Virus Research, 1988, 10, 77-93.	1.1	98
93	Critical Epitopes in Transmissible Gastroenteritis Virus Neutralization. Advances in Experimental Medicine and Biology, 1987, 218, 351-363.	0.8	4