
Shan Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5495149/publications.pdf Version: 2024-02-01

SHAN ZHOU

#	Article	IF	CITATIONS
1	Oxidative etching for controlled synthesis of metal nanocrystals: atomic addition and subtraction. Chemical Society Reviews, 2014, 43, 6288.	38.1	229
2	Facile Synthesis of Silver Nanocubes with Sharp Corners and Edges in an Aqueous Solution. ACS Nano, 2016, 10, 9861-9870.	14.6	149
3	Tunable Oxygen Activation for Catalytic Organic Oxidation: Schottky Junction versus Plasmonic Effects. Angewandte Chemie - International Edition, 2014, 53, 3205-3209.	13.8	136
4	Decahedral nanocrystals of noble metals: Synthesis, characterization, and applications. Materials Today, 2019, 22, 108-131.	14.2	92
5	Toward a Quantitative Understanding of the Reduction Pathways of a Salt Precursor in the Synthesis of Metal Nanocrystals. Nano Letters, 2017, 17, 334-340.	9.1	87
6	Icosahedral nanocrystals of noble metals: Synthesis and applications. Nano Today, 2017, 15, 121-144.	11.9	83
7	Kinetically Controlled Synthesis of Pd–Cu Janus Nanocrystals with Enriched Surface Structures and Enhanced Catalytic Activities toward CO ₂ Reduction. Journal of the American Chemical Society, 2021, 143, 149-162.	13.7	77
8	Interfacial Superâ€Assembled Porous CeO ₂ /C Frameworks Featuring Efficient and Sensitive Decomposing Li ₂ O ₂ for Smart Li–O ₂ Batteries. Advanced Energy Materials, 2019, 9, 1901751.	19.5	71
9	Super-assembled core-shell mesoporous silica-metal-phenolic network nanoparticles for combinatorial photothermal therapy and chemotherapy. Nano Research, 2020, 13, 1013-1019.	10.4	69
10	Synthesis of Ru Icosahedral Nanocages with a Face-Centered-Cubic Structure and Evaluation of Their Catalytic Properties. ACS Catalysis, 2018, 8, 6948-6960.	11.2	66
11	Autocatalytic surface reduction and its role in controlling seed-mediated growth of colloidal metal nanocrystals. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13619-13624.	7.1	64
12	Kinetics-Controlled Super-Assembly of Asymmetric Porous and Hollow Carbon Nanoparticles as Light-Sensitive Smart Nanovehicles. Journal of the American Chemical Society, 2022, 144, 1634-1646.	13.7	64
13	Sequential Superassembly of Nanofiber Arrays to Carbonaceous Ordered Mesoporous Nanowires and Their Heterostructure Membranes for Osmotic Energy Conversion. Journal of the American Chemical Society, 2021, 143, 6922-6932.	13.7	61
14	Synthesis of Pt nanocrystals with different shapes using the same protocol to optimize their catalytic activity toward oxygen reduction. Materials Today, 2018, 21, 834-844.	14.2	58
15	Interfacial Superâ€Assembly of Ordered Mesoporous Carbonâ€6ilica/AAO Hybrid Membrane with Enhanced Permselectivity for Temperature―and pHâ€Sensitive Smart Ion Transport. Angewandte Chemie - International Edition, 2021, 60, 26167-26176.	13.8	58
16	Tip-Patched Nanoprisms from Formation of Ligand Islands. Journal of the American Chemical Society, 2019, 141, 11796-11800.	13.7	54
17	Superassembly of Surface-Enriched Ru Nanoclusters from Trapping–Bonding Strategy for Efficient Hydrogen Evolution. ACS Nano, 2022, 16, 7993-8004.	14.6	54
18	Enabling Complete Ligand Exchange on the Surface of Gold Nanocrystals through the Deposition and Then Etching of Silver. Journal of the American Chemical Society, 2018, 140, 11898-11901.	13.7	53

Shan Zhou

#	Article	IF	CITATIONS
19	Interfacially Superâ€Assembled Asymmetric and H ₂ O ₂ Sensitive Multilayerâ€Sandwich Magnetic Mesoporous Silica Nanomotors for Detecting and Removing Heavy Metal Ions. Advanced Functional Materials, 2021, 31, 2010694.	14.9	49
20	Three-Dimensional Molecular Mapping of Ionic Liquids at Electrified Interfaces. ACS Nano, 2020, 14, 17515-17523.	14.6	47
21	Interfacial Super-Assembly of Ordered Mesoporous Silica–Alumina Heterostructure Membranes with pH-Sensitive Properties for Osmotic Energy Harvesting. ACS Applied Materials & Interfaces, 2021, 13, 8782-8793.	8.0	44
22	Ultrasensitive Detection of Hydrogen Peroxide Using Bi ₂ Te ₃ Electrochemical Sensors. ACS Applied Materials & amp; Interfaces, 2021, 13, 4761-4767.	8.0	34
23	Interfacial Superâ€Assembly of Tâ€Mode Janus Porous Heterochannels from Layered Graphene and Aluminum Oxide Array for Smart Oriented Ion Transportation. Small, 2021, 17, e2100141.	10.0	30
24	A Rationally Designed Route to the One-Pot Synthesis of Right Bipyramidal Nanocrystals of Copper. Chemistry of Materials, 2018, 30, 6469-6477.	6.7	28
25	Site-selective growth of Ag nanocubes for sharpening their corners and edges, followed by elongation into nanobars through symmetry reduction. Journal of Materials Chemistry C, 2018, 6, 1384-1392.	5.5	27
26	General Synergistic Capture-Bonding Superassembly of Atomically Dispersed Catalysts on Micropore-Vacancy Frameworks. Nano Letters, 2022, 22, 2889-2897.	9.1	27
27	Soft Patch Interface-Oriented Superassembly of Complex Hollow Nanoarchitectures for Smart Dual-Responsive Nanospacecrafts. Journal of the American Chemical Society, 2022, 144, 7778-7789.	13.7	25
28	Ligand-Mediated Spatially Controllable Superassembly of Asymmetric Hollow Nanotadpoles with Fine-Tunable Cavity as Smart H ₂ O ₂ -Sensitive Nanoswimmers. ACS Nano, 2021, 15, 11451-11460.	14.6	24
29	Au@Cu Core–Shell Nanocubes with Controllable Sizes in the Range of 20–30 nm for Applications in Catalysis and Plasmonics. ACS Applied Nano Materials, 2019, 2, 1533-1540.	5.0	22
30	Mechanism and performance relevance of nanomorphogenesis in polyamide films revealed by quantitative 3D imaging and machine learning. Science Advances, 2022, 8, eabk1888.	10.3	22
31	Super-Assembled Chiral Mesostructured Heteromembranes for Smart and Sensitive Couple-Accelerated Enantioseparation. Journal of the American Chemical Society, 2022, 144, 13794-13805.	13.7	22
32	Quantitative Analysis of the Multiple Roles Played by Halide Ions in Controlling the Growth Patterns of Palladium Nanocrystals. ChemNanoMat, 2020, 6, 576-588.	2.8	21
33	Interfacial Super-Assembly of Nanofluidic Heterochannels from Layered Graphene and Alumina Oxide Arrays for Label-Free Histamine-Specific Detection. Analytical Chemistry, 2021, 93, 2982-2987.	6.5	20
34	Facile Synthesis of Pd@Pt _{3–4L} Core–Shell Octahedra with a Clean Surface and Thus Enhanced Activity toward Oxygen Reduction. ChemCatChem, 2017, 9, 414-419.	3.7	18
35	Shape-controlled synthesis of CO-free Pd nanocrystals with the use of formic acid as a reducing agent. Chemical Communications, 2016, 52, 12594-12597.	4.1	17
36	Interfacial Superassembly of Mesoporous Titania Nanopillar-Arrays/Alumina Oxide Heterochannels for Light- and pH-Responsive Smart Ion Transport. ACS Central Science, 2022, 8, 361-369.	11.3	14

Shan Zhou

#	Article	IF	CITATIONS
37	Interfacial Superassembly of Light-Responsive Mechanism-Switchable Nanomotors with Tunable Mobility and Directionality. ACS Applied Materials & Interfaces, 2022, 14, 15517-15528.	8.0	14
38	Gold icosahedral nanocages: Facile synthesis, optical properties, and fragmentation under ultrasonication. Chemical Physics Letters, 2017, 683, 613-618.	2.6	13
39	Facile synthesis of gold trisoctahedral nanocrystals with controllable sizes and dihedral angles. Nanoscale, 2018, 10, 11034-11042.	5.6	13
40	Interfacial Superâ€Assembly of Ordered Mesoporous Carbon‧ilica/AAO Hybrid Membrane with Enhanced Permselectivity for Temperature―and pH‧ensitive Smart Ion Transport. Angewandte Chemie, 2021, 133, 26371-26380.	2.0	12
41	Quantitative analysis of the reduction kinetics of a Pt(II) precursor in the context of Pt nanocrystal synthesis. Chinese Journal of Chemical Physics, 2018, 31, 370-374.	1.3	11
42	A Quantitative Analysis of the Reduction Kinetics Involved in the Synthesis of Au@Pd Concave Nanocubes. Chemistry - A European Journal, 2019, 25, 16397-16404.	3.3	11
43	Interfacially Super-Assembled Tyramine-Modified Mesoporous Silica-Alumina Oxide Heterochannels for Label-Free Tyrosinase Detection. Analytical Chemistry, 2022, 94, 2589-2596.	6.5	10
44	Facile Synthesis of Silver Icosahedral Nanocrystals with Uniform and Controllable Sizes. ChemNanoMat, 2018, 4, 1071-1077.	2.8	9
45	Super-assembly of freestanding graphene oxide-aramid fiber membrane with T-mode subnanochannels for sensitive ion transport. Analyst, The, 2022, 147, 652-660.	3.5	8
46	3D Mapping of the Structural Transitions in Wrinkled 2D Membranes: Implications for Reconfigurable Electronics, Memristors, and Bioelectronic Interfaces. ACS Applied Nano Materials, 2019, 2, 5779-5786.	5.0	7
47	Colloidal Nanospheres of Amorphous Selenium: Facile Synthesis, Size Control, and Optical Properties. ChemNanoMat, 2021, 7, 620-625.	2.8	5
48	Sol-gel Transition of Methylcellulose Solution in the Coexistence of Hexadecyltrimethylammonium Bromide and Sodium Chloride. Chinese Journal of Chemical Physics, 2011, 24, 489-496.	1.3	4
49	Nonclassical Crystallization Observed by Liquid-Phase Transmission Electron Microscopy. ACS Symposium Series, 2020, , 115-146.	0.5	4
50	Mechanistic Study of Seed-Mediated Growth of Gold Rhombic Dodecahedra. Journal of Physical Chemistry C, 2021, 125, 27394-27402.	3.1	4
51	Patchy Nanoparticle Synthesis and Self-Assembly. , 2020, , .		3
52	Spectroscopic investigation of the structure of a pyrrolidinium-based ionic liquid at electrified interfaces. Journal of Chemical Physics, 2022, 156, 114701.	3.0	3
53	Li–O ₂ Batteries: Interfacial Superâ€Assembled Porous CeO ₂ /C Frameworks Featuring Efficient and Sensitive Decomposing Li ₂ O ₂ for Smart Li–O ₂ Batteries (Adv. Energy Mater. 40/2019). Advanced Energy Materials, 2019, 9, 1970157.	19.5	2
54	Facile Synthesis of Pd@Pt3- 4L Core-Shell Octahedra with a Clean Surface and Thus Enhanced Activity toward Oxygen Reduction. ChemCatChem, 2017, 9, 376-376.	3.7	0

#	Article	IF	CITATIONS
55	Characterizing Self-Assembly of Plasmonic Nanostructures in Real Space and Reciprocal Space. , 2022, , 209-238.		0