Huan Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5495045/publications.pdf Version: 2024-02-01

ΗμλΝ ΖΗΛΟ

#	Article	IF	CITATIONS
1	Fast site-to-site electron transfer of high-entropy alloy nanocatalyst driving redox electrocatalysis. Nature Communications, 2020, 11, 5437.	12.8	288
2	Controlled nâ€Đoping in Air‣table CsPbl ₂ Br Perovskite Solar Cells with a Record Efficiency of 16.79%. Advanced Functional Materials, 2020, 30, 1909972.	14.9	282
3	Multifunctional Enhancement for Highly Stable and Efficient Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2005776.	14.9	273
4	Precursor Engineering for Allâ€Inorganic CsPbI ₂ Br Perovskite Solar Cells with 14.78% Efficiency. Advanced Functional Materials, 2018, 28, 1803269.	14.9	264
5	A Novel Anion Doping for Stable CsPbI ₂ Br Perovskite Solar Cells with an Efficiency of 15.56% and an Open Circuit Voltage of 1.30 V. Advanced Energy Materials, 2019, 9, 1902279.	19.5	166
6	Demonstration of Orbital Angular Momentum Multiplexing and Demultiplexing Based on a Metasurface in the Terahertz Band. ACS Photonics, 2018, 5, 1726-1732.	6.6	111
7	Precursor Engineering for Ambientâ€Compatible Antisolventâ€Free Fabrication of Highâ€Efficiency CsPbl ₂ Br Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 2000691.	19.5	106
8	Multiâ€Site Electrocatalysts Boost pHâ€Universal Nitrogen Reduction by Highâ€Entropy Alloys. Advanced Functional Materials, 2021, 31, 2006939.	14.9	99
9	Europium and Acetate Coâ€doping Strategy for Developing Stable and Efficient CsPbI ₂ Br Perovskite Solar Cells. Small, 2019, 15, e1904387.	10.0	95
10	The facile oil-phase synthesis of a multi-site synergistic high-entropy alloy to promote the alkaline hydrogen evolution reaction. Journal of Materials Chemistry A, 2021, 9, 889-893.	10.3	80
11	Low-temperature and facile solution-processed two-dimensional TiS ₂ as an effective electron transport layer for UV-stable planar perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 9132-9138.	10.3	78
12	Advanced Ultrathin RuPdM (M = Ni, Co, Fe) Nanosheets Electrocatalyst Boosts Hydrogen Evolution. ACS Central Science, 2019, 5, 1991-1997.	11.3	78
13	Reconfigurable Terahertz Metasurface Pure Phase Holograms. Advanced Optical Materials, 2019, 7, 1801696.	7.3	76
14	Simultaneous Cesium and Acetate Coalloying Improves Efficiency and Stability of FA _{0.85} MA _{0.15} PbI ₃ Perovskite Solar Cell with an Efficiency of 21.95%. Solar Rrl, 2019, 3, 1900220.	5.8	74
15	Surface oxygen-mediated ultrathin PtRuM (Ni, Fe, and Co) nanowires boosting methanol oxidation reaction. Journal of Materials Chemistry A, 2020, 8, 2323-2330.	10.3	67
16	Coupling photoelectrochemical and electrochemical strategies in one probe electrode: Toward sensitive and reliable dual-signal bioassay for uracil-DNA glycosylase activity. Biosensors and Bioelectronics, 2019, 142, 111569.	10.1	62
17	High-performance nitrogen electroreduction at low overpotential by introducing Pb to Pd nanosponges. Applied Catalysis B: Environmental, 2020, 265, 118481.	20.2	62
18	A High Mobility Conjugated Polymer Enables Air and Thermally Stable CsPbI ₂ Br Perovskite Solar Cells with an Efficiency Exceeding 15%. Advanced Materials Technologies, 2019, 4, 1900311.	5.8	59

HUAN ZHAO

#	Article	IF	CITATIONS
19	Chemically coupled NiCoS/C nanocages as efficient electrocatalysts for nitrogen reduction reactions. Journal of Materials Chemistry A, 2020, 8, 543-547.	10.3	52
20	Exposure of Definite Palladium Facets Boosts Electrocatalytic Nitrogen Fixation at Low Overpotential. Advanced Energy Materials, 2020, 10, 2002131.	19.5	45
21	Facet-controlled palladium nanocrystalline for enhanced nitrate reduction towards ammonia. Journal of Colloid and Interface Science, 2021, 600, 620-628.	9.4	43
22	High-efficiency terahertz devices based on cross-polarization converter. Scientific Reports, 2017, 7, 17882.	3.3	37
23	Generation of Radial Polarized Lorentz Beam with Single Layer Metasurface. Advanced Optical Materials, 2018, 6, 1700925.	7.3	29
24	Noble Metal (Pt, Rh, Pd, Ir) Doped Ru/CNT Ultraâ€5mall Alloy for Acidic Hydrogen Evolution at High Current Density. Small, 2022, 18, e2104559.	10.0	28
25	Photoelectrochemical cell enhanced by ternary heterostructured photoanode: Toward high-performance self-powered cathodic cytosensing. Biosensors and Bioelectronics, 2019, 137, 52-57.	10.1	25
26	Mixture Phases Engineering of PtFe Nanofoams for Efficient Hydrogen Evolution. Small, 2022, 18, e2106947.	10.0	24
27	Homeotropic alignment through charge-transfer-induced columnar mesophase formation in an unsymmetrically substituted triphenylene derivative. Pure and Applied Chemistry, 2010, 82, 1993-2003.	1.9	21
28	Rapid and large-scale synthesis of ultra-small immiscible alloy supported catalysts. Applied Catalysis B: Environmental, 2022, 304, 120916.	20.2	20
29	Efficient nitrogen reduction to ammonia by fluorine vacancies with a multi-step promoting effect. Journal of Materials Chemistry A, 2021, 9, 894-899.	10.3	18
30	Significantly enhanced electrocatalytic N ₂ reduction to NH ₃ by surface selenization with multiple functions. Journal of Materials Chemistry A, 2020, 8, 20331-20336.	10.3	16
31	Ordered Vacancies on the Body-Centered Cubic PdCu Nanocatalysts. Nano Letters, 2021, 21, 9580-9586.	9.1	16
32	Hydrothermal deglycosylation and deconstruction effect of steam explosion: Application to high-valued glycyrrhizic acid derivatives from liquorice. Food Chemistry, 2020, 307, 125558.	8.2	13
33	Electron transporting organic materials with an exceptional large scale homeotropic molecular orientation. Physical Chemistry Chemical Physics, 2016, 18, 8554-8560.	2.8	12
34	A distance-triggered signaling on–off mechanism by plasmonic Au nanoparticles: toward advanced photocathodic DNA bioanalysis. Chemical Communications, 2020, 56, 1345-1348.	4.1	12
35	Ultrafast Generation of Nanostructured Noble Metal Aerogels by a Microwave Method for Electrocatalytic Hydrogen Evolution and Ethanol Oxidation. ACS Applied Nano Materials, 2021, 4, 11221-11230.	5.0	10
36	Introduction of an antifouling photoelectrode: an effective strategy for a high-performance photoelectrochemical cytosensor. Journal of Materials Chemistry B, 2020, 8, 4836-4840.	5.8	5

#	Article	IF	CITATIONS
37	New design model for high efficiency cylindrical diffractive microlenses. Scientific Reports, 2017, 7, 16334.	3.3	4
38	Highâ€Efficiency Phase and Polarization Modulation Metasurfaces. Advanced Photonics Research, 2022, 3, .	3.6	4