Sankaran Thayumanavan

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5494818/sankaran-thayumanavan-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

61 289 12,728 104 h-index g-index citations papers 6.67 8.5 13,773 327 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
289	Multichannel dual protein sensing using amphiphilic supramolecular assemblies. <i>Chemical Communications</i> , 2021 , 57, 12828-12831	5.8	
288	Three-Component Dynamic Covalent Chemistry: From Janus Small Molecules to Functional Polymers. <i>Journal of the American Chemical Society</i> , 2021 ,	16.4	1
287	Charge-Conversion Strategies for Nucleic Acid Delivery. <i>Advanced Functional Materials</i> , 2021 , 31, 20111	03 5.6	2
286	ProteinAntibody Conjugates (PACs): A Plug-and-Play Strategy for Covalent Conjugation and Targeted Intracellular Delivery of Pristine Proteins. <i>Angewandte Chemie</i> , 2021 , 133, 12923-12928	3.6	O
285	Protein-Antibody Conjugates (PACs): A Plug-and-Play Strategy for Covalent Conjugation and Targeted Intracellular Delivery of Pristine Proteins. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 12813-12818	16.4	2
284	Synergistic Interplay of Covalent and Non-Covalent Interactions in Reactive Polymer Nanoassembly Facilitates Intracellular Delivery of Antibodies. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 182	1-1 8 30) ¹²
283	Tracking exogenous intracellular casp-3 using split GFP. <i>Protein Science</i> , 2021 , 30, 366-380	6.3	3
282	Synergistic Interplay of Covalent and Non-Covalent Interactions in Reactive Polymer Nanoassembly Facilitates Intracellular Delivery of Antibodies. <i>Angewandte Chemie</i> , 2021 , 133, 1849-1858	3.6	6
281	Understanding functional group and assembly dynamics in temperature responsive systems leads to design principles for enzyme responsive assemblies. <i>Nanoscale</i> , 2021 , 13, 11568-11575	7.7	5
2 80	Excimer-monomer fluorescence changes by supramolecular disassembly for protein sensing and quantification. <i>Chemical Communications</i> , 2021 , 57, 9776-9779	5.8	1
279	Disulfide Bridging Strategies in Viral and Nonviral Platforms for Nucleic Acid Delivery. <i>Biochemistry</i> , 2021 , 60, 966-990	3.2	8
278	Evaluating Endosomal Escape of Caspase-3-Containing Nanomaterials Using Split GFP. <i>Biomacromolecules</i> , 2021 , 22, 1261-1272	6.9	1
277	Hypersound-Assisted Size Sorting of Microparticles on Inkjet-Patterned Protein Films. <i>Langmuir</i> , 2021 , 37, 2826-2832	4	1
276	Exogenous Introduction of Initiator and Executioner Caspases Results in Different Apoptotic Outcomes. <i>Jacs Au</i> , 2021 , 1, 1240-1256		1
275	Toward Chemotactic Supramolecular Nanoparticles: From Autonomous Surface Motion Following Specific Chemical Gradients to Multivalency-Controlled Disassembly. <i>ACS Nano</i> , 2021 , 15, 16149-16161	16.7	3
274	Core Hydrophobicity of Supramolecular Nanoparticles Induces NLRP3 Inflammasome Activation. <i>ACS Applied Materials & District Science (Natural Science)</i> , 13, 45300-45314	9.5	3
273	Molecular bases for temperature sensitivity in supramolecular assemblies and their applications as thermoresponsive soft materials. <i>Materials Horizons</i> , 2021 ,	14.4	5

(2020-2021)

272	Triggered interactions between nanoparticles and lipid membranes: design principles for gel formation or disruption-and-release. <i>Soft Matter</i> , 2021 , 17, 7069-7075	3.6	1
271	Programmable Emulsions via Nucleophile-Induced Covalent Surfactant Modifications. <i>Chemistry of Materials</i> , 2020 , 32, 4663-4671	9.6	12
270	Targeting CD4 Cells with Anti-CD4 Conjugated Mertansine-Loaded Nanogels. <i>Biomacromolecules</i> , 2020 , 21, 2473-2481	6.9	7
269	In Situ Formation of Polymeric Nanoassemblies Using an Efficient Reversible Click Reaction. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 15135-15140	16.4	7
268	Polymer with Competing Depolymerization Pathways: Chain Unzipping versus Chain Scission. <i>ACS Macro Letters</i> , 2020 , 9, 855-859	6.6	3
267	CD28 Signaling Drives Notch Ligand Expression on CD4 T Cells. <i>Frontiers in Immunology</i> , 2020 , 11, 735	8.4	5
266	Disassembly of polymeric nanoparticles with enzyme-triggered polymer unzipping: polyelectrolyte complexes vs. amphiphilic nanoassemblies. <i>Chemical Communications</i> , 2020 , 56, 8456-8459	5.8	3
265	Blended Assemblies of Amphiphilic Random and Block Copolymers for Tunable Encapsulation and Release of Hydrophobic Guest Molecules. <i>Macromolecules</i> , 2020 , 53, 2713-2723	5.5	28
264	Cellular AND Gates: Synergistic Recognition to Boost Selective Uptake of Polymeric Nanoassemblies. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 10456-10460	16.4	12
263	Anionic Polymers Promote Mitochondrial Targeting of Delocalized Lipophilic Cations. <i>Bioconjugate Chemistry</i> , 2020 , 31, 1344-1353	6.3	13
262	Covalent Labeling with an 即Insaturated Carbonyl Scaffold for Studying Protein Structure and Interactions by Mass Spectrometry. <i>Analytical Chemistry</i> , 2020 , 92, 6637-6644	7.8	1
261	Cellular AND Gates: Synergistic Recognition to Boost Selective Uptake of Polymeric Nanoassemblies. <i>Angewandte Chemie</i> , 2020 , 132, 10542-10546	3.6	4
260	Triblock-Diblock Composite Nanoassemblies with Sequentially Addressable Host-Guest Properties for Hydrophobics and Hydrophilics. <i>ACS Macro Letters</i> , 2020 , 9, 1019-1023	6.6	2
259	In Situ Formation of Polymeric Nanoassemblies Using an Efficient Reversible Click Reaction. <i>Angewandte Chemie</i> , 2020 , 132, 15247-15252	3.6	4
258	Optical "Blinking" Triggered by Collisions of Single Supramolecular Assemblies of Amphiphilic Molecules with Interfaces of Liquid Crystals. <i>Journal of the American Chemical Society</i> , 2020 , 142, 6139-	614 8	11
257	Construction from Destruction: Hydrogel Formation from Triggered Depolymerization-Based Release of an Enzymatic Catalyst. <i>ACS Macro Letters</i> , 2020 , 9, 377-381	6.6	9
256	Non-cationic Material Design for Nucleic Acid Delivery. <i>Advanced Therapeutics</i> , 2020 , 3, 1900206	4.9	20
255	Mechanistic Investigation on Oxidative Degradation of ROS-Responsive Thioacetal/Thioketal Moieties and Their Implications. <i>Cell Reports Physical Science</i> , 2020 , 1, 100271	6.1	10

254	Polymeric nanoassemblies for enrichment and detection of peptides and proteins in human breast milk. <i>Analytical and Bioanalytical Chemistry</i> , 2020 , 412, 1027-1035	4.4	1
253	A programmable chemical switch based on triggerable Michael acceptors. <i>Chemical Science</i> , 2020 , 11, 2103-2111	9.4	8
252	A New Strategy for Reporting Specific Protein Binding Events at Aqueous-Liquid Crystal Interfaces in the Presence of Non-Specific Proteins. <i>ACS Applied Materials & amp; Interfaces</i> , 2020 , 12, 7869-7878	9.5	10
251	Supramolecular antibiotics: a strategy for conversion of broad-spectrum to narrow-spectrum antibiotics for. <i>Nanoscale</i> , 2020 , 12, 20693-20698	7.7	3
250	In Situ Forming Injectable Thermoresponsive Hydrogels for Controlled Delivery of Biomacromolecules. <i>ACS Omega</i> , 2020 , 5, 17531-17542	3.9	13
249	Cellular- and Subcellular-Targeted Delivery Using a Simple All-in-One Polymeric Nanoassembly. Angewandte Chemie - International Edition, 2020 , 59, 23466-23470	16.4	8
248	Cellular- and Subcellular-Targeted Delivery Using a Simple All-in-One Polymeric Nanoassembly. <i>Angewandte Chemie</i> , 2020 , 132, 23672-23676	3.6	1
247	Enzyme-Triggered Nanomaterials and Their Applications. <i>ACS Symposium Series</i> , 2020 , 95-107	0.4	1
246	Engineered Interactions with Mesoporous Silica Facilitate Intracellular Delivery of Proteins and Gene Editing. <i>Nano Letters</i> , 2020 , 20, 4014-4021	11.5	26
245	Azide-Terminated RAFT Polymers for Biological Applications. <i>Current Protocols in Chemical Biology</i> , 2020 , 12, e85	1.8	2
244	Disulfide-containing Macromolecules for Therapeutic Delivery. <i>Israel Journal of Chemistry</i> , 2020 , 60, 13	2-31.749	14
243	Tunable enzyme responses in amphiphilic nanoassemblies through alterations in the unimer-aggregate equilibrium. <i>Chemical Science</i> , 2019 , 10, 3018-3024	9.4	10
242	Spatiotemporal control over the host@uest characteristics of a stimulus-triggerable trifunctional polymer assembly. <i>Polymer Chemistry</i> , 2019 , 10, 1423-1430	4.9	3
241	Sequential Nucleophilic "Click" Reactions for Functional Amphiphilic Homopolymers. <i>Polymer Chemistry</i> , 2019 , 10, 187-193	4.9	12
240	Tuning N,N-Diarylanilinosquaraine Crystal Packing: n-Hexylaryl and Fluoroaryl Substitution. <i>Crystal Growth and Design</i> , 2019 , 19, 3633-3638	3.5	
239	Modulating absorption and charge transfer in bodipy-carbazole donor-acceptor dyads through molecular design. <i>Dalton Transactions</i> , 2019 , 48, 8488-8501	4.3	12
238	Role of Oligoethylene Glycol Side Chain Length in Responsive Polymeric Nanoassemblies. <i>Langmuir</i> , 2019 , 35, 7929-7936	4	6
237	Antibody Delivery for Intracellular Targets: Emergent Therapeutic Potential. <i>Bioconjugate Chemistry</i> , 2019 , 30, 1028-1041	6.3	48

(2018-2019)

236	Postfunctionalization of Noncationic RNAPolymer Complexes for RNA Delivery. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 6982-6991	3.9	12
235	Reversible Click Chemistry for Ultrafast and Quantitative Formation of Protein-Polymer Nanoassembly and Intracellular Protein Delivery. <i>ACS Nano</i> , 2019 , 13, 9408-9420	16.7	33
234	Symbiotic Self-Assembly Strategy toward Lipid-Encased Cross-Linked Polymer Nanoparticles for Efficient Gene Silencing. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 24971-24983	9.5	8
233	Three-Component Sequential Reactions for Polymeric Nanoparticles with Tailorable Core and Surface Functionalities. <i>CheM</i> , 2019 , 5, 3166-3183	16.2	4
232	Dynamic Imine Chemistry at Complex Double Emulsion Interfaces. <i>Journal of the American Chemical Society</i> , 2019 , 141, 18048-18055	16.4	31
231	Evaluation of carboxylic, phosphonic, and sulfonic acid protogenic moieties on tunable poly(meta-phenylene oxide) ionomer scaffolds. <i>Journal of Polymer Science Part A</i> , 2019 , 57, 2209-2213	2.5	3
230	Cellular Uptake Evaluation of Amphiphilic Polymer Assemblies: Importance of Interplay between Pharmacological and Genetic Approaches. <i>Biomacromolecules</i> , 2019 , 20, 4407-4418	6.9	16
229	Cascaded Step-Growth Polymerization for Functional Polyamides with Diverse Architectures and Stimuli Responsive Characteristics. <i>ACS Macro Letters</i> , 2019 , 8, 245-249	6.6	11
228	Efficient enrichment of glycopeptides by supramolecular nanoassemblies that use proximity-assisted covalent binding. <i>Analyst, The</i> , 2019 , 144, 6321-6326	5	1
227	F MRI of Polymer Nanogels Aided by Improved Segmental Mobility of Embedded Fluorine Moieties. <i>Biomacromolecules</i> , 2019 , 20, 790-800	6.9	25
226	pH-Sensitive morphological transitions in polymeric tadpole assemblies for programmed tumor therapy. <i>Journal of Controlled Release</i> , 2019 , 293, 1-9	11.7	10
225	Bait-and-Switch Supramolecular Strategy To Generate Noncationic RNA-Polymer Complexes for RNA Delivery. <i>Biomacromolecules</i> , 2019 , 20, 435-442	6.9	21
224	Improved mass spectrometric detection of acidic peptides by variations in the functional group pK values of reverse micelle extraction agents. <i>Analyst, The</i> , 2018 , 143, 1434-1443	5	6
223	Propagation of Enzyme-Induced Surface Events inside Polymer Nanoassemblies for a Fast and Tunable Response. <i>Angewandte Chemie</i> , 2018 , 130, 7229-7233	3.6	
222	Propagation of Enzyme-Induced Surface Events inside Polymer Nanoassemblies for a Fast and Tunable Response. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 7111-7115	16.4	9
221	Biodistribution Analysis of NIR-Labeled Nanogels Using in Vivo FMT Imaging in Triple Negative Human Mammary Carcinoma Models. <i>Molecular Pharmaceutics</i> , 2018 , 15, 1180-1191	5.6	9
220	Supramolecular Assemblies for Transporting Proteins Across an Immiscible Solvent Interface. Journal of the American Chemical Society, 2018 , 140, 2421-2425	16.4	15
219	Matrix Metalloproteinase-9-Responsive Nanogels for Proximal Surface Conversion and Activated Cellular Uptake. <i>Biomacromolecules</i> , 2018 , 19, 860-871	6.9	22

218	Fluorescence Enhancement Through Incorporation of Chromophores in Polymeric Nanoparticles. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 407-413	3.2	2
217	Self-assembly of random co-polymers for selective binding and detection of peptides. <i>Polymer Chemistry</i> , 2018 , 9, 1066-1071	4.9	15
216	Photoactivation of Ligands for Extrinsically and Intrinsically Triggered Disassembly of Amphiphilic Nanoassemblies. <i>Chemistry - A European Journal</i> , 2018 , 24, 1789-1794	4.8	10
215	Dynamic actuation of glassy polymersomes through isomerization of a single azobenzene unit at the block copolymer interface. <i>Nature Chemistry</i> , 2018 , 10, 659-666	17.6	71
214	Molecular Features Influencing the Release of Peptides from Amphiphilic Polymeric Reverse Micelles. <i>Langmuir</i> , 2018 , 34, 4595-4602	4	8
213	Oligomers as Triggers for Responsive Liquid Crystals. <i>Langmuir</i> , 2018 , 34, 10092-10101	4	14
212	BODIPY dyads and triads: synthesis, optical, electrochemical and transistor properties. <i>Chemistry Central Journal</i> , 2018 , 12, 60		5
211	Lipogels for Encapsulation of Hydrophilic Proteins and Hydrophobic Small Molecules. <i>Biomacromolecules</i> , 2018 , 19, 132-140	6.9	7
210	Supramolecular Polymeric Assemblies for the Selective Depletion of Abundant Acidic Proteins in Serum. <i>ACS Applied Materials & Depletion of Abundant Acidic Proteins in Serum. ACS Applied Materials & Depletion of Abundant Acidic Proteins in Serum. ACS Applied Materials & Depletion of Abundant Acidic Proteins in Serum. <i>ACS Applied Materials & Depletion of Abundant Acidic Proteins in Serum. ACS Applied Materials & Depletion of Abundant Acidic Proteins in Serum. ACS Applied Materials & Depletion of Abundant Acidic Proteins in Serum. ACS Applied Materials & Depletion of Abundant Acidic Proteins in Serum. ACS Applied Materials & Depletion of Abundant Acidic Proteins in Serum. ACS Applied Materials & Depletion of Abundant Acidic Proteins in Serum. ACS Applied Materials & Depletion of Abundant Acidic Proteins in Serum. ACS Applied Materials & Depletion of Abundant Acidic Proteins in Serum. ACS Applied Materials & Depletic Proteins in Serum Acid Proteins in </i></i>	9.5	3
209	Amphiphile-Induced Phase Transition of Liquid Crystals at Aqueous Interfaces. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 37618-37624	9.5	11
208	Water Permeability and Elastic Properties of an Archaea Inspired Lipid Synthesized by Click Chemistry. <i>Chemistry of Materials</i> , 2018 , 30, 3618-3622	9.6	6
207	Substituent Effects on the pH Sensitivity of Acetals and Ketals and Their Correlation with Encapsulation Stability in Polymeric Nanogels. <i>Journal of the American Chemical Society</i> , 2017 , 139, 230	6 ⁻¹⁶ 347	120
206	Effect of incorporating flat aromatic molecules on spherical polymeric nanoparticles. <i>Chemical Communications</i> , 2017 , 53, 5190-5192	5.8	2
205	Templated Self-Assembly of a Covalent Polymer Network for Intracellular Protein Delivery and Traceless Release. <i>Journal of the American Chemical Society</i> , 2017 , 139, 5676-5679	16.4	117
204	Programmable Nanoassemblies from Non-Assembling Homopolymers Using Ad Hoc Electrostatic Interactions. <i>Angewandte Chemie</i> , 2017 , 129, 4209-4213	3.6	3
203	Programmable Nanoassemblies from Non-Assembling Homopolymers Using Ad Hoc Electrostatic Interactions. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 4145-4149	16.4	16
202	Utilizing Inverse Emulsion Polymerization To Generate Responsive Nanogels for Cytosolic Protein Delivery. <i>Molecular Pharmaceutics</i> , 2017 , 14, 4515-4524	5.6	18
201	Importance of Evaluating Dynamic Encapsulation Stability of Amphiphilic Assemblies in Serum. <i>Biomacromolecules</i> , 2017 , 18, 4163-4170	6.9	14

(2015-2017)

200	Nano-Armoring of Enzymes: Rational Design of Polymer-Wrapped Enzymes. <i>Methods in Enzymology</i> , 2017 , 590, 381-411	1.7	2	
199	Supramolecular Polymers in Nanomedicine 2017 , 227-254		2	
198	Altering the Peptide Binding Selectivity of Polymeric Reverse Micelle Assemblies via Metal Ion Loading. <i>Langmuir</i> , 2017 , 33, 14004-14010	4	3	
197	Influence of Charge Density on Host G uest Interactions within Amphiphilic Polymer Assemblies in Apolar Media. <i>Macromolecules</i> , 2017 , 50, 9734-9741	5.5	6	
196	Multi-Stimuli-Responsive Amphiphilic Assemblies through Simple Postpolymerization Modifications. <i>Macromolecules</i> , 2016 , 49, 6186-6192	5.5	35	
195	Photophysical and Electrochemical Characterization of BODIPY-Containing Dyads Comparing the Influence of an A-D-A versus D-A Motif on Excited-State Photophysics. <i>Journal of Physical Chemistry A</i> , 2016 , 120, 8794-8803	2.8	12	
194	Temporal and Triggered Evolution of Host-Guest Characteristics in Amphiphilic Polymer Assemblies. <i>Journal of the American Chemical Society</i> , 2016 , 138, 7508-11	16.4	17	
193	Role of Aromatic Interactions in Temperature-Sensitive Amphiphilic Supramolecular Assemblies. <i>Langmuir</i> , 2016 , 32, 2874-81	4	24	
192	Polymer-mediated ternary supramolecular interactions for sensitive detection of peptides. <i>Analyst, The,</i> 2016, 142, 118-122	5	6	
191	Smart Organic Two-Dimensional Materials Based on a Rational Combination of Non-covalent Interactions. <i>Angewandte Chemie</i> , 2016 , 128, 10865-10869	3.6	15	
190	Smart Organic Two-Dimensional Materials Based on a Rational Combination of Non-covalent Interactions. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 10707-11	16.4	34	
189	Activatable Dendritic F Probes for Enzyme Detection. ACS Macro Letters, 2015, 4, 422-425	6.6	20	
188	Influence of backbone conformational rigidity in temperature-sensitive amphiphilic supramolecular assemblies. <i>Journal of the American Chemical Society</i> , 2015 , 137, 5308-11	16.4	28	
187	Supramolecular assembly of crosslinkable monomers for degradable and fluorescent polymer nanoparticles. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 2858-2866	7.3	8	
186	Effective Tuning of Ketocyanine Derivatives through Acceptor Substitution. <i>Chemistry - A European Journal</i> , 2015 , 21, 7721-5	4.8	6	
185	Zwitterionic Amphiphilic Homopolymer Assemblies. <i>Polymer Chemistry</i> , 2015 , 6, 6083-6087	4.9	19	
184	Polyamide Nanogels from Generally Recognized as Safe Components and Their Toxicity in Mouse Preimplantation Embryos. <i>Biomacromolecules</i> , 2015 , 16, 3491-8	6.9	7	
183	A supramolecular dissociation strategy for protein sensing. <i>Chemical Communications</i> , 2015 , 51, 17265-8	3 ₅ .8	26	

182	Dye Encapsulation in Polynorbornene Micelles. <i>Langmuir</i> , 2015 , 31, 9707-17	4	9
181	Field Guide to Challenges and Opportunities in Antibody-Drug Conjugates for Chemists. <i>Bioconjugate Chemistry</i> , 2015 , 26, 2198-215	6.3	61
180	Reactive Self-Assembly of Polymers and Proteins to Reversibly Silence a Killer Protein. <i>Biomacromolecules</i> , 2015 , 16, 3161-71	6.9	30
179	Photoinduced heterodisulfide metathesis for reagent-free synthesis of polymer nanoparticles. <i>Chemical Communications</i> , 2015 , 51, 1425-8	5.8	13
178	Experimental and theoretical investigations in stimuli responsive dendrimer-based assemblies. <i>Nanoscale</i> , 2015 , 7, 3817-37	7.7	56
177	Utilizing Reversible Interactions in Polymeric Nanoparticles To Generate Hollow Metal-Organic Nanoparticles. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 12991-5	16.4	12
176	Utilizing Reversible Interactions in Polymeric Nanoparticles To Generate Hollow Metal@rganic Nanoparticles. <i>Angewandte Chemie</i> , 2015 , 127, 13183-13187	3.6	12
175	Protein-induced supramolecular disassembly of amphiphilic polypeptide nanoassemblies. <i>Journal of the American Chemical Society</i> , 2015 , 137, 7286-9	16.4	66
174	Responsive single-chain polymer nanoparticles with host@uest features. <i>Polymer Chemistry</i> , 2015 , 6, 4828-4834	4.9	43
173	Small molecule BODIPY dyes as non-fullerene acceptors in bulk heterojunction organic photovoltaics. <i>Chemical Communications</i> , 2014 , 50, 2913-5	5.8	72
172	The effect of heteroatom conformation on optoelectronic properties of cyclopentadithiophene derivatives. <i>Organic and Biomolecular Chemistry</i> , 2014 , 12, 2474-8	3.9	8
171	Effect of Substituents on Optical Properties and Charge-Carrier Polarity of Squaraine Dyes. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 1793-1799	3.8	17
170	pH responsive soft nanoclusters with size and charge variation features. <i>Polymer Chemistry</i> , 2014 , 5, 1737-1742	4.9	20
169	Unlocking a caged lysosomal protein from a polymeric nanogel with a pH trigger. <i>Biomacromolecules</i> , 2014 , 15, 4046-53	6.9	41
168	Crystallinity and morphology effects on a solvent-processed solar cell using a triarylamine-substituted squaraine. <i>ACS Applied Materials & District Applied Mate</i>	9.5	15
167	Protein and enzyme gated supramolecular disassembly. <i>Journal of the American Chemical Society</i> , 2014 , 136, 2220-3	16.4	72
166	Thermoresponsive Polymeric Nanoparticles: Nucleation from Cooperative Polymerization Driven by Dative Bonds. <i>Macromolecules</i> , 2014 , 47, 5869-5876	5.5	21
165	Dual Stimuli - Dual Response Nanoassemblies Prepared from a Simple Homopolymer. <i>ACS Macro Letters</i> , 2014 , 3, 1-5	6.6	30

(2012-2014)

164	Supramolecular disassembly of facially amphiphilic dendrimer assemblies in response to physical, chemical, and biological stimuli. <i>Accounts of Chemical Research</i> , 2014 , 47, 2200-11	24.3	99
163	Protein-triggered supramolecular disassembly: insights based on variations in ligand location in amphiphilic dendrons. <i>Journal of the American Chemical Society</i> , 2014 , 136, 5385-99	16.4	48
162	Improved performances in polymer BHJ solar cells through frontier orbital tuning of small molecule additives in ternary blends. <i>ACS Applied Materials & Description</i> (2014), 6, 9920-4	9.5	22
161	Self-assembly of random copolymers. <i>Chemical Communications</i> , 2014 , 50, 13417-32	5.8	148
160	Environment-dependent guest exchange in supramolecular hosts. <i>Langmuir</i> , 2014 , 30, 12384-90	4	15
159	Composite supramolecular nanoassemblies with independent stimulus sensitivities. <i>Chemical Science</i> , 2014 , 5, 229-234	9.4	33
158	Advances in Polymer and Polymeric Nanostructures for Protein Conjugation. <i>European Polymer Journal</i> , 2013 , 49, 2906-2918	5.2	25
157	Surface charge generation in nanogels for activated cellular uptake at tumor-relevant pH. <i>Chemical Science</i> , 2013 , 4, 3654	9.4	49
156	Functionalizable Amine-based Polymer Nanoparticles. ACS Macro Letters, 2013, 2, 948-951	6.6	16
155	Electrostatic control of peptide side-chain reactivity using amphiphilic homopolymer-based supramolecular assemblies. <i>Journal of the American Chemical Society</i> , 2013 , 135, 14179-88	16.4	15
154	Synthesis of Nanogel-Protein Conjugates. <i>Polymer Chemistry</i> , 2013 , 4, 2464-2469	4.9	38
153	Effect of Hofmeister ions on the size and encapsulation stability of polymer nanogels. <i>Langmuir</i> , 2013 , 29, 50-5	4	29
152	Multi-stimuli responsive macromolecules and their assemblies. <i>Chemical Society Reviews</i> , 2013 , 42, 7421	1 -585 5	488
151	Temperature-sensitive transitions below LCST in amphiphilic dendritic assemblies: host-guest implications. <i>Journal of the American Chemical Society</i> , 2013 , 135, 8947-54	16.4	42
150	Zwitterionic moieties from the Huisgen reaction: a case study with amphiphilic dendritic assemblies. <i>Chemistry - A European Journal</i> , 2013 , 19, 16374-81	4.8	11
149	Effect of titanium oxidepolystyrene nanocomposite dielectrics on morphology and thin film transistor performance for organic and polymeric semiconductors. <i>Thin Solid Films</i> , 2012 , 520, 6262-626	7.2	3
148	Accessing lipophilic ligands in dendrimer-based amphiphilic supramolecular assemblies for protein-induced disassembly. <i>Chemistry - A European Journal</i> , 2012 , 18, 223-9	4.8	27
147	Concurrent binding and delivery of proteins and lipophilic small molecules using polymeric nanogels. <i>Journal of the American Chemical Society</i> , 2012 , 134, 6964-7	16.4	66

146	Synthesis and properties of thienopyrrole based heteroacenesindolodibenzothienopyrrole and dicarbazolodithienopyrrole. <i>Organic and Biomolecular Chemistry</i> , 2012 , 10, 3455-62	3.9	8
145	Characterisation of a dipolar chromophore with third-harmonic generation applications in the near-IR. <i>Journal of Materials Chemistry</i> , 2012 , 22, 4371		15
144	Interconnected roles of scaffold hydrophobicity, drug loading, and encapsulation stability in polymeric nanocarriers. <i>Molecular Pharmaceutics</i> , 2012 , 9, 3569-78	5.6	26
143	Inclusion complexes between amphiphilic phenyleneethynylene fluorophores and cyclodextrins in aqueous media. <i>Journal of Physical Chemistry B</i> , 2012 , 116, 12268-74	3.4	5
142	Ligand-decorated nanogels: fast one-pot synthesis and cellular targeting. <i>Biomacromolecules</i> , 2012 , 13, 1515-22	6.9	61
141	Predictably tuning the frontier molecular orbital energy levels of panchromatic low band gap BODIPY-based conjugated polymers. <i>Chemical Science</i> , 2012 , 3, 3093	9.4	59
140	Selective enrichment and sensitive detection of peptide and protein biomarkers in human serum using polymeric reverse micelles and MALDI-MS. <i>Analyst, The</i> , 2012 , 137, 1024-30	5	29
139	Stimuli Sensitive Amphiphilic Dendrimers. <i>New Journal of Chemistry</i> , 2012 , 36, 340-349	3.6	64
138	Supramolecular displacement-mediated activation of a silent fluorescence probe for label-free ligand screening. <i>Journal of the American Chemical Society</i> , 2012 , 134, 7235-7	16.4	7
137	Macromolecular architectures for organic photovoltaics. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 4043-57	3.6	17
136	Synthesis and characterization of phenol-based biaryl proton conducting polymers. <i>Journal of Polymer Science Part A</i> , 2012 , 50, 1187-1196	2.5	9
135	Polymer nanogels: a versatile nanoscopic drug delivery platform. <i>Advanced Drug Delivery Reviews</i> , 2012 , 64, 836-51	18.5	459
134	Bioinspired Dendritic Light-Harvesting Systems 2012 , 397-417		
133	Facile Preparation of Nanogels Using Activated Ester Containing Polymers. <i>ACS Macro Letters</i> , 2011 , 1, 175-179	6.6	40
132	Temperature sensitivity trends and multi-stimuli sensitive behavior in amphiphilic oligomers. Journal of the American Chemical Society, 2011 , 133, 13496-503	16.4	71
131	Cyclopentadithiophene-Based Organic Semiconductors: Effect of Fluorinated Substituents on Electrochemical and Charge Transport Properties. <i>Journal of Physical Chemistry Letters</i> , 2011 , 2, 648-654	4 ^{6.4}	35
130	Low band gap thiophene-perylene diimide systems with tunable charge transport properties. <i>Organic Letters</i> , 2011 , 13, 18-21	6.2	37
129	Photoregulated Release of Noncovalent Guests from Dendritic Amphiphilic Nanocontainers. <i>Angewandte Chemie</i> , 2011 , 123, 3094-3098	3.6	12

128	Photoregulated release of noncovalent guests from dendritic amphiphilic nanocontainers. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 3038-42	16.4	91
127	Guest-release control in enzyme-sensitive, amphiphilic-dendrimer-based nanoparticles through photochemical crosslinking. <i>Chemistry - A European Journal</i> , 2011 , 17, 11752-60	4.8	56
126	Importance of dynamic hydrogen bonds and reorientation barriers in proton transport. <i>Chemical Communications</i> , 2011 , 47, 6638-40	5.8	21
125	BODIPY-Based DonorAcceptor Econjugated Alternating Copolymers. <i>Macromolecules</i> , 2011 , 44, 4767-4	7 36	135
124	Enhancement of anhydrous proton transport by supramolecular nanochannels in comb polymers. <i>Nature Chemistry</i> , 2010 , 2, 503-8	17.6	136
123	Feedback regulated drug delivery vehicles: carbon dioxide responsive cationic hydrogels for antidote release. <i>Biomacromolecules</i> , 2010 , 11, 1735-40	6.9	41
122	Redox-sensitive disassembly of amphiphilic copolymer based micelles. <i>Langmuir</i> , 2010 , 26, 7086-92	4	168
121	Surface-functionalizable polymer nanogels with facile hydrophobic guest encapsulation capabilities. <i>Journal of the American Chemical Society</i> , 2010 , 132, 8246-7	16.4	179
120	Self-cross-linked polymer nanogels: a versatile nanoscopic drug delivery platform. <i>Journal of the American Chemical Society</i> , 2010 , 132, 17227-35	16.4	443
119	Noncovalent encapsulation stabilities in supramolecular nanoassemblies. <i>Journal of the American Chemical Society</i> , 2010 , 132, 10683-5	16.4	144
118	Matrix-assisted laser desorption ionization-mass spectrometry signal enhancement of peptides after selective extraction with polymeric reverse micelles. <i>Analytical Chemistry</i> , 2010 , 82, 3686-91	7.8	14
117	Selective enrichment and analysis of acidic peptides and proteins using polymeric reverse micelles and MALDI-MS. <i>Analytical Chemistry</i> , 2010 , 82, 8686-91	7.8	18
116	Broadening Absorption in Conductive Polymers through Cross-linkable Side Chains in a Nonconjugated Polymer Backbone. <i>Macromolecules</i> , 2010 , 43, 37-43	5.5	21
115	Disassembly of dendritic micellar containers due to protein binding. <i>Journal of the American Chemical Society</i> , 2010 , 132, 4550-1	16.4	88
114	Charge Mobility in Nonconjugated Dendrons with Charge Transport Functionality in Every Layer. Journal of Physical Chemistry Letters, 2010 , 1, 1116-1121	6.4	4
113	CC bond formation reactions for biomass-derived molecules. <i>ChemSusChem</i> , 2010 , 3, 1158-61	8.3	77
112	Proton conduction in 1H-1,2,3-triazole polymers: Imidazole-like or pyrazole-like?. <i>Journal of Polymer Science Part A</i> , 2010 , 48, 1851-1858	2.5	31
111	Functional Group Density and Recognition in Polymer Nanotubes. <i>Angewandte Chemie</i> , 2009 , 121, 116-	13,66	5

110	Functional group density and recognition in polymer nanotubes. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 110-4	16.4	21
109	Redox, Ionic Strength, and pH Sensitive Supramolecular Polymer Assemblies. <i>Journal of Polymer Science Part A</i> , 2009 , 47, 1052-1060	2.5	31
108	Fluorescence patterns from supramolecular polymer assembly and disassembly for sensing metallo- and nonmetalloproteins. <i>Journal of the American Chemical Society</i> , 2009 , 131, 7708-16	16.4	105
107	Enzyme-triggered disassembly of dendrimer-based amphiphilic nanocontainers. <i>Journal of the American Chemical Society</i> , 2009 , 131, 14184-5	16.4	170
106	Virus-inspired approach to nonviral gene delivery vehicles. <i>Biomacromolecules</i> , 2009 , 10, 2189-93	6.9	19
105	Generating peptide titration-type curves using polymeric reverse micelles as selective extraction agents along with matrix-assisted laser desorption ionization-mass spectrometry detection. <i>Analytical Chemistry</i> , 2009 , 81, 5046-53	7.8	12
104	Site-specific installation and study of electroactive units in every layer of dendrons. <i>Journal of Organic Chemistry</i> , 2009 , 74, 9475-85	4.2	11
103	Intramolecular electron-transfer rates in mixed-valence triarylamines: measurement by variable-temperature ESR spectroscopy and comparison with optical data. <i>Journal of the American Chemical Society</i> , 2009 , 131, 1717-23	16.4	68
102	Supramolecular assemblies of amphiphilic homopolymers. <i>Langmuir</i> , 2009 , 25, 9660-70	4	120
101	Amphiphilic nanoassemblies for the detection of peptides and proteins using fluorescence and mass spectrometry. <i>Analyst, The</i> , 2009 , 134, 635-49	5	13
100	Supramolecular Assemblies from Amphiphilic Dendrons for Sensing Metalloproteins through Pattern Generation. <i>Israel Journal of Chemistry</i> , 2009 , 49, 41-47	3.4	3
99	Multi-stimuli sensitive amphiphilic block copolymer assemblies. <i>Journal of the American Chemical Society</i> , 2009 , 131, 4830-8	16.4	535
98	Amphiphilicity in homopolymer surfaces reduces nonspecific protein adsorption. <i>Langmuir</i> , 2009 , 25, 13795-9	4	34
97	Fluorophore-cored dendrimers for patterns in metalloprotein sensing. <i>Chemical Communications</i> , 2009 , 806-8	5.8	25
96	Highly ordered gold nanotubes using thiols at a cleavable block copolymer interface. <i>Journal of the American Chemical Society</i> , 2009 , 131, 9870-1	16.4	98
95	Dendritic and linear macromolecular architectures for photovoltaics: a photoinduced charge transfer investigation. <i>Journal of the American Chemical Society</i> , 2009 , 131, 2727-38	16.4	28
94	Molecular discrimination inside polymer nanotubules. <i>Nature Nanotechnology</i> , 2008 , 3, 112-7	28.7	152
93	Selective peptide binding using facially amphiphilic dendrimers. <i>Journal of the American Chemical Society</i> , 2008 , 130, 11156-63	16.4	45

(2006-2008)

92	Disassembly of noncovalent amphiphilic polymers with proteins and utility in pattern sensing. Journal of the American Chemical Society, 2008 , 130, 5416-7	16.4	106
91	Controlled functional group presentations in dendrimers as a tool to probe the hyperbranched architecture. <i>New Journal of Chemistry</i> , 2007 , 31, 1052	3.6	10
90	Globular Organization of Multifunctional Linear Homopolymer Using Trifunctional Molecules. <i>Macromolecules</i> , 2007 , 40, 4267-4275	5.5	5
89	Probing the periphery of dendrimers by heterogeneous electron transfer. <i>Chemical Communications</i> , 2007 , 739-41	5.8	9
88	Smaller building blocks form larger assemblies: aggregation behavior of biaryl-based dendritic facial amphiphiles. <i>Journal of Organic Chemistry</i> , 2007 , 72, 8167-74	4.2	8
87	Recognition and modulation of cytochrome c@redox properties using an amphiphilic homopolymer. <i>Langmuir</i> , 2007 , 23, 3891-7	4	16
86	Generating patterns for sensing using a single receptor scaffold. <i>Journal of the American Chemical Society</i> , 2007 , 129, 3506-7	16.4	69
85	Polymeric inverse micelles as selective peptide extraction agents for MALDI-MS analysis. <i>Analytical Chemistry</i> , 2007 , 79, 7124-30	7.8	28
84	A styrene based water soluble polymer as a reaction medium for photodimerization of aromatic hydrocarbons in water. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2007 , 185, 168-171	4.7	9
83	Fluorescent polyelectrolytes as protein sensors. <i>Polymer International</i> , 2007 , 56, 474-481	3.3	52
82	Tunable disassembly of micelles using a redox trigger. <i>Langmuir</i> , 2007 , 23, 7916-9	4	76
81	A Facile Method for the Synthesis of Cleavable Block Copolymers from ATRP-Based Homopolymers. <i>Macromolecules</i> , 2007 , 40, 8518-8520	5.5	83
80	Supramolecular assemblies from amphiphilic homopolymers: Testing the scope. <i>Journal of the American Chemical Society</i> , 2006 , 128, 16224-30	16.4	176
79	Comparison of facially amphiphilic biaryl dendrimers with classical amphiphilic ones using protein surface recognition as the tool. <i>Journal of the American Chemical Society</i> , 2006 , 128, 9231-7	16.4	37
78	Simultaneous and Reversible Functionalization of Copolymers for Biological Applications <i>Macromolecules</i> , 2006 , 39, 5595-5597	5.5	151
77	Self-assembly of facially amphiphilic dendrimers on surfaces. <i>Journal of the American Chemical Society</i> , 2006 , 128, 14760-1	16.4	24
76	Selective sensing of metalloproteins from nonselective binding using a fluorogenic amphiphilic polymer. <i>Journal of the American Chemical Society</i> , 2006 , 128, 10686-7	16.4	67
75	Dendrimer analogues of linear molecules to evaluate energy and charge-transfer properties. Organic Letters, 2006, 8, 2981-4	6.2	26

74	Energy and charge transfer dynamics in fully decorated benzyl ether dendrimers and their disubstituted analogues. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 24331-9	3.4	26
73	Tuning substrate selectivity of a cationic enzyme using cationic polymers. <i>Langmuir</i> , 2006 , 22, 7695-700	4	13
72	Dendritic Nanostructures for Cancer Therapy 2006 , 509-530		
71	Light harvesting dendrimers. <i>Photosynthesis Research</i> , 2006 , 87, 133-50	3.7	94
70	Dendrimeric micelles for controlled drug release and targeted delivery. <i>Molecular Pharmaceutics</i> , 2005 , 2, 264-72	5.6	190
69	Effect of guest molecule flexibility in access to dendritic interiors. <i>Organic Letters</i> , 2005 , 7, 2809-12	6.2	27
68	Dependence of the two-photon absorption cross section on the conjugation of the phenylacetylene linker in dipolar donor-bridge-acceptor chromophores. <i>Journal of Physical Chemistry A</i> , 2005 , 109, 9767-74	2.8	31
67	Amphiphilic homopolymer as a reaction medium in water: product selectivity within polymeric nanopockets. <i>Journal of the American Chemical Society</i> , 2005 , 127, 13200-6	16.4	78
66	Energy and electron transfer in bifunctional non-conjugated dendrimers. <i>Journal of the American Chemical Society</i> , 2005 , 127, 373-83	16.4	134
65	Probing every layer in dendrons. <i>Journal of the American Chemical Society</i> , 2005 , 127, 2020-1	16.4	33
64	Noncovalent modification of chymotrypsin surface using an amphiphilic polymer scaffold: implications in modulating protein function. <i>Journal of the American Chemical Society</i> , 2005 , 127, 10693	- § 6.4	87
63	Using meta conjugation to enhance charge separation versus charge recombination in phenylacetylene donor-bridge-acceptor complexes. <i>Journal of the American Chemical Society</i> , 2005 , 127, 16348-9	16.4	90
62	Temperature-sensitive dendritic micelles. <i>Journal of the American Chemical Society</i> , 2005 , 127, 14922-9	16.4	203
61	Synthesis and Characterization of Amine-Functionalized Polystyrene Nanoparticles. <i>Macromolecules</i> , 2005 , 38, 5886-5891	5.5	81
60	Homopolymer micelles in heterogeneous solvent mixtures. <i>Journal of the American Chemical Society</i> , 2005 , 127, 16794-5	16.4	94
59	Comparison of AB2 and AB4 monomers in ferrocene-cored benzyl ether dendrimers. <i>Tetrahedron</i> , 2005 , 61, 603-608	2.4	13
58	Ultrafast-pulse diagnostic using third-order frequency-resolved optical gating in organic films. <i>Applied Physics Letters</i> , 2004 , 85, 3348-3350	3.4	11
57	Invertible amphiphilic homopolymers. <i>Journal of the American Chemical Society</i> , 2004 , 126, 9890-1	16.4	120

(2001-2004)

56	Controlled polymerization of N-isopropylacrylamide with an activated methacrylic ester. <i>Journal of Polymer Science Part A</i> , 2004 , 42, 6340-6345	2.5	68
55	Third-order optical autocorrelator for time-domain operationat telecommunication wavelengths. <i>Applied Physics Letters</i> , 2004 , 85, 179-181	3.4	18
54	Dendrimers based on a three-dimensionally disposed AB4 monomer. Organic Letters, 2004, 6, 2547-50	6.2	24
53	Sequences in dendrons and dendrimers. Journal of Organic Chemistry, 2004, 69, 2937-44	4.2	25
52	Dendrimers with both polar and apolar nanocontainer characteristics. <i>Journal of the American Chemical Society</i> , 2004 , 126, 15636-7	16.4	102
51	Molecular Recognition in Dendrimers 2004,		1
50	A mild deprotection strategy for allyl-protecting groups and its implications in sequence specific dendrimer synthesis. <i>Journal of Organic Chemistry</i> , 2003 , 68, 1146-9	4.2	69
49	Towards dendrimers as biomimetic macromolecules. <i>Comptes Rendus Chimie</i> , 2003 , 6, 767-778	2.7	23
48	Effect of Substitution on the Hole Mobility of Bis(diarylamino)biphenyl Derivatives Doped in Poly(Styrene). <i>Chemistry of Materials</i> , 2003 , 15, 994-999	9.6	34
47	Synthesis of nonconjugated dendrons with a redox gradient. <i>Journal of Organic Chemistry</i> , 2003 , 68, 55	5 2. <u>6</u> 7	20
46	Synthesis of dendrimers with multifunctional periphery using an ABB? monomer. <i>Chemical Communications</i> , 2003 , 796-797	5.8	11
45	Konfigurative Stabilitlund Stereoinformationstransfer in Reaktionen Enantiomeren-angereicherter Organolithium-Reagentien. <i>Angewandte Chemie</i> , 2002 , 114, 740-763	3.6	62
44	Configurational stability and transfer of stereochemical information in the reactions of enantioenriched organolithium reagents. <i>Angewandte Chemie - International Edition</i> , 2002 , 41, 717-38	16.4	191
43	Synthesis of difunctionalized dendrimers: an approach to main-chain poly(dendrimers). <i>Tetrahedron Letters</i> , 2002 , 43, 7217-7220	2	11
42	Functional group diversity in dendrimers. <i>Organic Letters</i> , 2002 , 4, 3751-3	6.2	25
41	Optimizing Two-Photon Initiators and Exposure Conditions for Three-Dimensional Lithographic Microfabrication <i>Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi]</i> , 2001 , 14, 657-668	0.7	65
40	Design and synthesis of stable triarylamines for hole-transport applications. <i>Tetrahedron Letters</i> , 2001 , 42, 4421-4424	2	58
39	Photostability of electro-optic polymers possessing chromophores with efficient amino donors and cyano-containing acceptors. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2001 , 18, 1846	1.7	27

38	Toward globular macromolecules with functionalized interiors: design and synthesis of dendrons with an interesting twist. <i>Organic Letters</i> , 2001 , 3, 1961-4	6.2	38
37	Design and synthesis of nonconjugated monodendrons with triarylamine repeating units. <i>Organic Letters</i> , 2001 , 3, 2057-60	6.2	11
36	Joint Experimental and Theoretical Characterization of the Electronic Structure of 4,4Ebis(N-m-tolyl-N-phenylamino)biphenyl (TPD) and Substituted Derivatives. <i>Journal of Physical Chemistry A</i> , 2001 , 105, 5206-5211	2.8	47
35	High photogeneration efficiency of charge-transfer complexes formed between low ionization potential arylamines and C60. <i>Journal of Chemical Physics</i> , 2000 , 112, 9557-9561	3.9	42
34	Systematic behavior of electro-optic chromophore photostability. <i>Optics Letters</i> , 2000 , 25, 332-4	3	31
33	High T/sub g/ hole transport polymers for the fabrication of bright and efficient organic light-emitting devices with an air-stable cathode. <i>IEEE Journal of Quantum Electronics</i> , 2000 , 36, 12-17	2	12
32	Structure P roperty Relationships for Two-Photon Absorbing Chromophores: Bis-Donor Diphenylpolyene and Bis(styryl)benzene Derivatives. <i>Journal of the American Chemical Society</i> , 2000 , 122, 9500-9510	16.4	768
31	Electrogenerated Chemiluminescence from Derivatives of Aluminum Quinolate and Quinacridones: Cross-Reactions with Triarylamines Lead to Singlet Emission through Triplet In Indiana Pathways. <i>Journal of the American Chemical Society</i> , 2000 , 122, 4972-4979	16.4	93
30	Hybrid bilayer organic light-emitting devices based on high Tg hole transport polymers 1999 , 3623, 20		
29	Synthesis of Functionalized Organic Second-Order Nonlinear Optical Chromophores for Electrooptic Applications. <i>Journal of Organic Chemistry</i> , 1999 , 64, 4289-4297	4.2	48
28	A Convenient Modular Approach of Functionalizing Aromatic Polyquinolines for Electrooptic Devices. <i>Chemistry of Materials</i> , 1999 , 11, 2218-2225	9.6	44
27	New Triarylamine-Containing Polymers as Hole Transport Materials in Organic Light-Emitting Diodes: Effect of Polymer Structure and Cross-Linking on Device Characteristics. <i>Chemistry of Materials</i> , 1998 , 10, 1668-1676	9.6	175
26	Electrochemistry and Electrogenerated Chemiluminescence Processes of the Components of Aluminum Quinolate/Triarylamine, and Related Organic Light-Emitting Diodes. <i>Journal of the American Chemical Society</i> , 1998 , 120, 9646-9655	16.4	183
25	Electrochemical models for the radical annihilation reactions in organic light-emitting diodes 1998,		2
24	Two Different Pathways of Stereoinformation Transfer: Asymmetric Substitutions in the (Asparteine Mediated Reactions of Laterally Lithiated N.N-Diisopropyl-o-ethylbenzamide and N-Pivaloyl-o-ethylaniline. <i>Journal of the American Chemical Society</i> , 1997 , 119, 8209-8216	16.4	67
23	Synthesis of Unsymmetrical Triarylamines for Photonic Applications via One-Pot Palladium-Catalyzed Aminations. <i>Chemistry of Materials</i> , 1997 , 9, 3231-3235	9.6	89
22	Fluoride activated stereoinformation transfer from a C?Si bond of a chiral benzyl silane to C?C bonds. <i>Tetrahedron Letters</i> , 1997 , 38, 5429-5432	2	16
21	Regioselective, Diastereoselective, and Enantioselective Lithiation Bubstitution Sequences: Reaction Pathways and Synthetic Applications. <i>Accounts of Chemical Research</i> , 1996 , 29, 552-560	24.3	495

20	Asymmetric deprotonation of N,N-dihexyl-1-naphthamides to provide atropisomers of N,N-dihexyl-2-alkyl-1-naphthamides. <i>Tetrahedron Letters</i> , 1996 , 37, 2899-2902	2	63
19	Asymmetric Substitutions: High and Opposite Enantioselective Alkylations of a Racemic Organolithium Intermediate in the Presence of (-)-Sparteine. <i>Journal of the American Chemical Society</i> , 1994 , 116, 9755-9756	16.4	78
18	Poly(arylmethyl) octet (S = 7/2) heptaradical and undecet (S = 5) decaradical. <i>Journal of the American Chemical Society</i> , 1992 , 114, 1884-1885	16.4	59
17	A Brief Introduction to Supramolecular Chemistry in a Polymer Context1-7		
16	Molecular Recognition Using Amphiphilic Macromolecules9-36		1
15	Supramolecular Control of Mechanical Properties in Single Molecules, Interfaces, and Macroscopic Mat	erials3	7-62
14	Hydrogen Bond Functionalized Block Copolymers and Telechelic Oligomers63-102		
13	Noncovalent Side Chain Modification103-136		
12	Polymer-Mediated Assembly of Nanoparticles Using Engineered Interactions137-155		1
11	Metallosupramolecular Polymers, Networks, and Gels157-178		9
10	Polymeric Capsules: Catalysis and Drug Delivery179-205		2
9	Sequence-Specific Hydrogen Bonded Units for Directed Association, Assembly, and Ligation207-234		
8	Bioinspired Supramolecular Design in Polymers for Advanced Mechanical Properties235-258		1
7	Structure and Self-Assembly of Amphiphilic Dendrimers in Water259-306		3
6	Colorimetric Sensing and Biosensing Using Functionalized Conjugated Polymers307-334		
5	Glycodendrimers and other Macromolecules Bearing Multiple Carbohydrates335-358		3
4	Supramolecular Polymerization of Peptides and Peptide Derivatives: Nanofibrous Materials359-393		
3	Molecular Imprinting for Sensor Applications395-429		5

2 Two photon absorbing chromophores for broadband optical limiting

3.3

1

Self-assembly of polymers from multicomponent reactions. *Polymer International*,