Sankaran Thayumanavan

List of Publications by Citations

 $\textbf{Source:} \ https://exaly.com/author-pdf/5494818/sankaran-thayumanavan-publications-by-citations.pdf$

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

289 papers

12,728 citations

61 h-index

104 g-index

327 ext. papers

13,773 ext. citations

8.5 avg, IF

6.67 L-index

#	Paper	IF	Citations
289	Structure B roperty Relationships for Two-Photon Absorbing Chromophores: Bis-Donor Diphenylpolyene and Bis(styryl)benzene Derivatives. <i>Journal of the American Chemical Society</i> , 2000 , 122, 9500-9510	16.4	768
288	Multi-stimuli sensitive amphiphilic block copolymer assemblies. <i>Journal of the American Chemical Society</i> , 2009 , 131, 4830-8	16.4	535
287	Regioselective, Diastereoselective, and Enantioselective LithiationBubstitution Sequences: Reaction Pathways and Synthetic Applications. <i>Accounts of Chemical Research</i> , 1996 , 29, 552-560	24.3	495
286	Multi-stimuli responsive macromolecules and their assemblies. <i>Chemical Society Reviews</i> , 2013 , 42, 742	1 -585 5	488
285	Polymer nanogels: a versatile nanoscopic drug delivery platform. <i>Advanced Drug Delivery Reviews</i> , 2012 , 64, 836-51	18.5	459
284	Self-cross-linked polymer nanogels: a versatile nanoscopic drug delivery platform. <i>Journal of the American Chemical Society</i> , 2010 , 132, 17227-35	16.4	443
283	Temperature-sensitive dendritic micelles. <i>Journal of the American Chemical Society</i> , 2005 , 127, 14922-9	16.4	203
282	Configurational stability and transfer of stereochemical information in the reactions of enantioenriched organolithium reagents. <i>Angewandte Chemie - International Edition</i> , 2002 , 41, 717-38	16.4	191
281	Dendrimeric micelles for controlled drug release and targeted delivery. <i>Molecular Pharmaceutics</i> , 2005 , 2, 264-72	5.6	190
2 80	Electrochemistry and Electrogenerated Chemiluminescence Processes of the Components of Aluminum Quinolate/Triarylamine, and Related Organic Light-Emitting Diodes. <i>Journal of the American Chemical Society</i> , 1998 , 120, 9646-9655	16.4	183
279	Surface-functionalizable polymer nanogels with facile hydrophobic guest encapsulation capabilities. <i>Journal of the American Chemical Society</i> , 2010 , 132, 8246-7	16.4	179
278	Supramolecular assemblies from amphiphilic homopolymers: Testing the scope. <i>Journal of the American Chemical Society</i> , 2006 , 128, 16224-30	16.4	176
277	New Triarylamine-Containing Polymers as Hole Transport Materials in Organic Light-Emitting Diodes: Effect of Polymer Structure and Cross-Linking on Device Characteristics. <i>Chemistry of Materials</i> , 1998 , 10, 1668-1676	9.6	175
276	Enzyme-triggered disassembly of dendrimer-based amphiphilic nanocontainers. <i>Journal of the American Chemical Society</i> , 2009 , 131, 14184-5	16.4	170
275	Redox-sensitive disassembly of amphiphilic copolymer based micelles. <i>Langmuir</i> , 2010 , 26, 7086-92	4	168
274	Molecular discrimination inside polymer nanotubules. <i>Nature Nanotechnology</i> , 2008 , 3, 112-7	28.7	152
273	Simultaneous and Reversible Functionalization of Copolymers for Biological Applications Macromolecules, 2006 , 39, 5595-5597	5.5	151

272	Self-assembly of random copolymers. <i>Chemical Communications</i> , 2014 , 50, 13417-32	5.8	148
271	Noncovalent encapsulation stabilities in supramolecular nanoassemblies. <i>Journal of the American Chemical Society</i> , 2010 , 132, 10683-5	16.4	144
270	Enhancement of anhydrous proton transport by supramolecular nanochannels in comb polymers. <i>Nature Chemistry</i> , 2010 , 2, 503-8	17.6	136
269	BODIPY-Based DonorAcceptor Econjugated Alternating Copolymers. <i>Macromolecules</i> , 2011 , 44, 4767-47	7 7.6,	135
268	Energy and electron transfer in bifunctional non-conjugated dendrimers. <i>Journal of the American Chemical Society</i> , 2005 , 127, 373-83	16.4	134
267	Substituent Effects on the pH Sensitivity of Acetals and Ketals and Their Correlation with Encapsulation Stability in Polymeric Nanogels. <i>Journal of the American Chemical Society</i> , 2017 , 139, 230	6-23417	120
266	Supramolecular assemblies of amphiphilic homopolymers. <i>Langmuir</i> , 2009 , 25, 9660-70	4	120
265	Invertible amphiphilic homopolymers. <i>Journal of the American Chemical Society</i> , 2004 , 126, 9890-1	16.4	12 0
264	Templated Self-Assembly of a Covalent Polymer Network for Intracellular Protein Delivery and Traceless Release. <i>Journal of the American Chemical Society</i> , 2017 , 139, 5676-5679	16.4	117
263	Disassembly of noncovalent amphiphilic polymers with proteins and utility in pattern sensing. Journal of the American Chemical Society, 2008 , 130, 5416-7	16.4	106
262	Fluorescence patterns from supramolecular polymer assembly and disassembly for sensing metallo- and nonmetalloproteins. <i>Journal of the American Chemical Society</i> , 2009 , 131, 7708-16	16.4	105
261	Dendrimers with both polar and apolar nanocontainer characteristics. <i>Journal of the American Chemical Society</i> , 2004 , 126, 15636-7	16.4	102
260	Supramolecular disassembly of facially amphiphilic dendrimer assemblies in response to physical, chemical, and biological stimuli. <i>Accounts of Chemical Research</i> , 2014 , 47, 2200-11	24.3	99
259	Highly ordered gold nanotubes using thiols at a cleavable block copolymer interface. <i>Journal of the American Chemical Society</i> , 2009 , 131, 9870-1	16.4	98
258	Homopolymer micelles in heterogeneous solvent mixtures. <i>Journal of the American Chemical Society</i> , 2005 , 127, 16794-5	16.4	94
257	Light harvesting dendrimers. <i>Photosynthesis Research</i> , 2006 , 87, 133-50	3.7	94
256	Electrogenerated Chemiluminescence from Derivatives of Aluminum Quinolate and Quinacridones: Cross-Reactions with Triarylamines Lead to Singlet Emission through Triplet In Indiana Pathways. <i>Journal of the American Chemical Society</i> , 2000 , 122, 4972-4979	16.4	93
255	Photoregulated release of noncovalent guests from dendritic amphiphilic nanocontainers. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 3038-42	16.4	91

254	Using meta conjugation to enhance charge separation versus charge recombination in phenylacetylene donor-bridge-acceptor complexes. <i>Journal of the American Chemical Society</i> , 2005 , 127, 16348-9	16.4	90
253	Synthesis of Unsymmetrical Triarylamines for Photonic Applications via One-Pot Palladium-Catalyzed Aminations. <i>Chemistry of Materials</i> , 1997 , 9, 3231-3235	9.6	89
252	Disassembly of dendritic micellar containers due to protein binding. <i>Journal of the American Chemical Society</i> , 2010 , 132, 4550-1	16.4	88
251	Noncovalent modification of chymotrypsin surface using an amphiphilic polymer scaffold: implications in modulating protein function. <i>Journal of the American Chemical Society</i> , 2005 , 127, 10693	3-8 ^{6.4}	87
250	A Facile Method for the Synthesis of Cleavable Block Copolymers from ATRP-Based Homopolymers. <i>Macromolecules</i> , 2007 , 40, 8518-8520	5.5	83
249	Synthesis and Characterization of Amine-Functionalized Polystyrene Nanoparticles. <i>Macromolecules</i> , 2005 , 38, 5886-5891	5.5	81
248	Amphiphilic homopolymer as a reaction medium in water: product selectivity within polymeric nanopockets. <i>Journal of the American Chemical Society</i> , 2005 , 127, 13200-6	16.4	78
247	Asymmetric Substitutions: High and Opposite Enantioselective Alkylations of a Racemic Organolithium Intermediate in the Presence of (-)-Sparteine. <i>Journal of the American Chemical Society</i> , 1994 , 116, 9755-9756	16.4	78
246	CC bond formation reactions for biomass-derived molecules. <i>ChemSusChem</i> , 2010 , 3, 1158-61	8.3	77
245	Tunable disassembly of micelles using a redox trigger. <i>Langmuir</i> , 2007 , 23, 7916-9	4	76
244	Small molecule BODIPY dyes as non-fullerene acceptors in bulk heterojunction organic photovoltaics. <i>Chemical Communications</i> , 2014 , 50, 2913-5	5.8	72
243	Protein and enzyme gated supramolecular disassembly. <i>Journal of the American Chemical Society</i> , 2014 , 136, 2220-3	16.4	72
242	Dynamic actuation of glassy polymersomes through isomerization of a single azobenzene unit at the block copolymer interface. <i>Nature Chemistry</i> , 2018 , 10, 659-666	17.6	71
241	Temperature sensitivity trends and multi-stimuli sensitive behavior in amphiphilic oligomers. Journal of the American Chemical Society, 2011 , 133, 13496-503	16.4	71
240	Generating patterns for sensing using a single receptor scaffold. <i>Journal of the American Chemical Society</i> , 2007 , 129, 3506-7	16.4	69
239	A mild deprotection strategy for allyl-protecting groups and its implications in sequence specific dendrimer synthesis. <i>Journal of Organic Chemistry</i> , 2003 , 68, 1146-9	4.2	69
238	Intramolecular electron-transfer rates in mixed-valence triarylamines: measurement by variable-temperature ESR spectroscopy and comparison with optical data. <i>Journal of the American Chemical Society</i> , 2009 , 131, 1717-23	16.4	68
	Controlled polymerization of N-isopropylacrylamide with an activated methacrylic ester. <i>Journal of</i>		

(2019-1997)

236	Two Different Pathways of Stereoinformation Transfer: Asymmetric Substitutions in the (PSparteine Mediated Reactions of Laterally LithiatedN,N-Diisopropyl-o-ethylbenzamide andN-Pivaloyl-o-ethylaniline. <i>Journal of the American Chemical Society</i> , 1997 , 119, 8209-8216	16.4	67
235	Selective sensing of metalloproteins from nonselective binding using a fluorogenic amphiphilic polymer. <i>Journal of the American Chemical Society</i> , 2006 , 128, 10686-7	16.4	67
234	Protein-induced supramolecular disassembly of amphiphilic polypeptide nanoassemblies. <i>Journal of the American Chemical Society</i> , 2015 , 137, 7286-9	16.4	66
233	Concurrent binding and delivery of proteins and lipophilic small molecules using polymeric nanogels. <i>Journal of the American Chemical Society</i> , 2012 , 134, 6964-7	16.4	66
232	Optimizing Two-Photon Initiators and Exposure Conditions for Three-Dimensional Lithographic Microfabrication <i>Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi]</i> , 2001 , 14, 657-668	0.7	65
231	Stimuli Sensitive Amphiphilic Dendrimers. New Journal of Chemistry, 2012, 36, 340-349	3.6	64
230	Asymmetric deprotonation of N,N-dihexyl-1-naphthamides to provide atropisomers of N,N-dihexyl-2-alkyl-1-naphthamides. <i>Tetrahedron Letters</i> , 1996 , 37, 2899-2902	2	63
229	Konfigurative StabilitE und Stereoinformationstransfer in Reaktionen Enantiomeren-angereicherter Organolithium-Reagentien. <i>Angewandte Chemie</i> , 2002 , 114, 740-763	3.6	62
228	Field Guide to Challenges and Opportunities in Antibody-Drug Conjugates for Chemists. <i>Bioconjugate Chemistry</i> , 2015 , 26, 2198-215	6.3	61
227	Ligand-decorated nanogels: fast one-pot synthesis and cellular targeting. <i>Biomacromolecules</i> , 2012 , 13, 1515-22	6.9	61
226	Predictably tuning the frontier molecular orbital energy levels of panchromatic low band gap BODIPY-based conjugated polymers. <i>Chemical Science</i> , 2012 , 3, 3093	9.4	59
225	Poly(arylmethyl) octet ($S = 7/2$) heptaradical and undecet ($S = 5$) decaradical. <i>Journal of the American Chemical Society</i> , 1992 , 114, 1884-1885	16.4	59
224	Design and synthesis of stable triarylamines for hole-transport applications. <i>Tetrahedron Letters</i> , 2001 , 42, 4421-4424	2	58
223	Experimental and theoretical investigations in stimuli responsive dendrimer-based assemblies. <i>Nanoscale</i> , 2015 , 7, 3817-37	7.7	56
222	Guest-release control in enzyme-sensitive, amphiphilic-dendrimer-based nanoparticles through photochemical crosslinking. <i>Chemistry - A European Journal</i> , 2011 , 17, 11752-60	4.8	56
221	Fluorescent polyelectrolytes as protein sensors. <i>Polymer International</i> , 2007 , 56, 474-481	3.3	52
220	Surface charge generation in nanogels for activated cellular uptake at tumor-relevant pH. <i>Chemical Science</i> , 2013 , 4, 3654	9.4	49
219	Antibody Delivery for Intracellular Targets: Emergent Therapeutic Potential. <i>Bioconjugate Chemistry</i> , 2019 , 30, 1028-1041	6.3	48

218	Protein-triggered supramolecular disassembly: insights based on variations in ligand location in amphiphilic dendrons. <i>Journal of the American Chemical Society</i> , 2014 , 136, 5385-99	16.4	48
217	Synthesis of Functionalized Organic Second-Order Nonlinear Optical Chromophores for Electrooptic Applications. <i>Journal of Organic Chemistry</i> , 1999 , 64, 4289-4297	4.2	48
216	Joint Experimental and Theoretical Characterization of the Electronic Structure of 4,4EBis(N-m-tolyl-N-phenylamino)biphenyl (TPD) and Substituted Derivatives. <i>Journal of Physical Chemistry A</i> , 2001 , 105, 5206-5211	2.8	47
215	Selective peptide binding using facially amphiphilic dendrimers. <i>Journal of the American Chemical Society</i> , 2008 , 130, 11156-63	16.4	45
214	A Convenient Modular Approach of Functionalizing Aromatic Polyquinolines for Electrooptic Devices. <i>Chemistry of Materials</i> , 1999 , 11, 2218-2225	9.6	44
213	Responsive single-chain polymer nanoparticles with host@uest features. <i>Polymer Chemistry</i> , 2015 , 6, 4828-4834	4.9	43
212	Temperature-sensitive transitions below LCST in amphiphilic dendritic assemblies: host-guest implications. <i>Journal of the American Chemical Society</i> , 2013 , 135, 8947-54	16.4	42
211	High photogeneration efficiency of charge-transfer complexes formed between low ionization potential arylamines and C60. <i>Journal of Chemical Physics</i> , 2000 , 112, 9557-9561	3.9	42
210	Unlocking a caged lysosomal protein from a polymeric nanogel with a pH trigger. <i>Biomacromolecules</i> , 2014 , 15, 4046-53	6.9	41
209	Feedback regulated drug delivery vehicles: carbon dioxide responsive cationic hydrogels for antidote release. <i>Biomacromolecules</i> , 2010 , 11, 1735-40	6.9	41
208	Facile Preparation of Nanogels Using Activated Ester Containing Polymers. <i>ACS Macro Letters</i> , 2011 , 1, 175-179	6.6	40
207	Synthesis of Nanogel-Protein Conjugates. <i>Polymer Chemistry</i> , 2013 , 4, 2464-2469	4.9	38
206	Toward globular macromolecules with functionalized interiors: design and synthesis of dendrons with an interesting twist. <i>Organic Letters</i> , 2001 , 3, 1961-4	6.2	38
205	Low band gap thiophene-perylene diimide systems with tunable charge transport properties. <i>Organic Letters</i> , 2011 , 13, 18-21	6.2	37
204	Comparison of facially amphiphilic biaryl dendrimers with classical amphiphilic ones using protein surface recognition as the tool. <i>Journal of the American Chemical Society</i> , 2006 , 128, 9231-7	16.4	37
203	Multi-Stimuli-Responsive Amphiphilic Assemblies through Simple Postpolymerization Modifications. <i>Macromolecules</i> , 2016 , 49, 6186-6192	5.5	35
202	Cyclopentadithiophene-Based Organic Semiconductors: Effect of Fluorinated Substituents on Electrochemical and Charge Transport Properties. <i>Journal of Physical Chemistry Letters</i> , 2011 , 2, 648-654	1 ^{6.4}	35
201	Amphiphilicity in homopolymer surfaces reduces nonspecific protein adsorption. <i>Langmuir</i> , 2009 , 25, 13795-9	4	34

(2007-2003)

200	Effect of Substitution on the Hole Mobility of Bis(diarylamino)biphenyl Derivatives Doped in Poly(Styrene). <i>Chemistry of Materials</i> , 2003 , 15, 994-999	9.6	34
199	Smart Organic Two-Dimensional Materials Based on a Rational Combination of Non-covalent Interactions. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 10707-11	16.4	34
198	Reversible Click Chemistry for Ultrafast and Quantitative Formation of Protein-Polymer Nanoassembly and Intracellular Protein Delivery. <i>ACS Nano</i> , 2019 , 13, 9408-9420	16.7	33
197	Composite supramolecular nanoassemblies with independent stimulus sensitivities. <i>Chemical Science</i> , 2014 , 5, 229-234	9.4	33
196	Probing every layer in dendrons. <i>Journal of the American Chemical Society</i> , 2005 , 127, 2020-1	16.4	33
195	Dynamic Imine Chemistry at Complex Double Emulsion Interfaces. <i>Journal of the American Chemical Society</i> , 2019 , 141, 18048-18055	16.4	31
194	Redox, Ionic Strength, and pH Sensitive Supramolecular Polymer Assemblies. <i>Journal of Polymer Science Part A</i> , 2009 , 47, 1052-1060	2.5	31
193	Proton conduction in 1H-1,2,3-triazole polymers: Imidazole-like or pyrazole-like?. <i>Journal of Polymer Science Part A</i> , 2010 , 48, 1851-1858	2.5	31
192	Dependence of the two-photon absorption cross section on the conjugation of the phenylacetylene linker in dipolar donor-bridge-acceptor chromophores. <i>Journal of Physical Chemistry A</i> , 2005 , 109, 9767-74	2.8	31
191	Systematic behavior of electro-optic chromophore photostability. <i>Optics Letters</i> , 2000 , 25, 332-4	3	31
190	Reactive Self-Assembly of Polymers and Proteins to Reversibly Silence a Killer Protein. <i>Biomacromolecules</i> , 2015 , 16, 3161-71	6.9	30
189	Dual Stimuli - Dual Response Nanoassemblies Prepared from a Simple Homopolymer. <i>ACS Macro Letters</i> , 2014 , 3, 1-5	6.6	30
188	Effect of Hofmeister ions on the size and encapsulation stability of polymer nanogels. <i>Langmuir</i> , 2013 , 29, 50-5	4	29
187	Selective enrichment and sensitive detection of peptide and protein biomarkers in human serum using polymeric reverse micelles and MALDI-MS. <i>Analyst, The</i> , 2012 , 137, 1024-30	5	29
186	Influence of backbone conformational rigidity in temperature-sensitive amphiphilic supramolecular assemblies. <i>Journal of the American Chemical Society</i> , 2015 , 137, 5308-11	16.4	28
185	Blended Assemblies of Amphiphilic Random and Block Copolymers for Tunable Encapsulation and Release of Hydrophobic Guest Molecules. <i>Macromolecules</i> , 2020 , 53, 2713-2723	5.5	28
184	Dendritic and linear macromolecular architectures for photovoltaics: a photoinduced charge transfer investigation. <i>Journal of the American Chemical Society</i> , 2009 , 131, 2727-38	16.4	28
183	Polymeric inverse micelles as selective peptide extraction agents for MALDI-MS analysis. <i>Analytical Chemistry</i> , 2007 , 79, 7124-30	7.8	28

182	Accessing lipophilic ligands in dendrimer-based amphiphilic supramolecular assemblies for protein-induced disassembly. <i>Chemistry - A European Journal</i> , 2012 , 18, 223-9	4.8	27
181	Effect of guest molecule flexibility in access to dendritic interiors. <i>Organic Letters</i> , 2005 , 7, 2809-12	6.2	27
180	Photostability of electro-optic polymers possessing chromophores with efficient amino donors and cyano-containing acceptors. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2001 , 18, 1846	1.7	27
179	A supramolecular dissociation strategy for protein sensing. <i>Chemical Communications</i> , 2015 , 51, 17265-	8 5.8	26
178	Interconnected roles of scaffold hydrophobicity, drug loading, and encapsulation stability in polymeric nanocarriers. <i>Molecular Pharmaceutics</i> , 2012 , 9, 3569-78	5.6	26
177	Dendrimer analogues of linear molecules to evaluate energy and charge-transfer properties. <i>Organic Letters</i> , 2006 , 8, 2981-4	6.2	26
176	Energy and charge transfer dynamics in fully decorated benzyl ether dendrimers and their disubstituted analogues. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 24331-9	3.4	26
175	Engineered Interactions with Mesoporous Silica Facilitate Intracellular Delivery of Proteins and Gene Editing. <i>Nano Letters</i> , 2020 , 20, 4014-4021	11.5	26
174	Advances in Polymer and Polymeric Nanostructures for Protein Conjugation. <i>European Polymer Journal</i> , 2013 , 49, 2906-2918	5.2	25
173	Fluorophore-cored dendrimers for patterns in metalloprotein sensing. <i>Chemical Communications</i> , 2009 , 806-8	5.8	25
172	Sequences in dendrons and dendrimers. <i>Journal of Organic Chemistry</i> , 2004 , 69, 2937-44	4.2	25
171	Functional group diversity in dendrimers. <i>Organic Letters</i> , 2002 , 4, 3751-3	6.2	25
170	F MRI of Polymer Nanogels Aided by Improved Segmental Mobility of Embedded Fluorine Moieties. <i>Biomacromolecules</i> , 2019 , 20, 790-800	6.9	25
169	Role of Aromatic Interactions in Temperature-Sensitive Amphiphilic Supramolecular Assemblies. <i>Langmuir</i> , 2016 , 32, 2874-81	4	24
168	Self-assembly of facially amphiphilic dendrimers on surfaces. <i>Journal of the American Chemical Society</i> , 2006 , 128, 14760-1	16.4	24
167	Dendrimers based on a three-dimensionally disposed AB4 monomer. <i>Organic Letters</i> , 2004 , 6, 2547-50	6.2	24
166	Towards dendrimers as biomimetic macromolecules. <i>Comptes Rendus Chimie</i> , 2003 , 6, 767-778	2.7	23

(2012-2014)

164	Improved performances in polymer BHJ solar cells through frontier orbital tuning of small molecule additives in ternary blends. <i>ACS Applied Materials & Description</i> (1992) 10-4	9.5	22	
163	Thermoresponsive Polymeric Nanoparticles: Nucleation from Cooperative Polymerization Driven by Dative Bonds. <i>Macromolecules</i> , 2014 , 47, 5869-5876	5.5	21	
162	Broadening Absorption in Conductive Polymers through Cross-linkable Side Chains in a Nonconjugated Polymer Backbone. <i>Macromolecules</i> , 2010 , 43, 37-43	5.5	21	
161	Importance of dynamic hydrogen bonds and reorientation barriers in proton transport. <i>Chemical Communications</i> , 2011 , 47, 6638-40	5.8	21	
160	Functional group density and recognition in polymer nanotubes. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 110-4	16.4	21	
159	Bait-and-Switch Supramolecular Strategy To Generate Noncationic RNA-Polymer Complexes for RNA Delivery. <i>Biomacromolecules</i> , 2019 , 20, 435-442	6.9	21	
158	Activatable Dendritic F Probes for Enzyme Detection. ACS Macro Letters, 2015, 4, 422-425	6.6	20	
157	Non-cationic Material Design for Nucleic Acid Delivery. <i>Advanced Therapeutics</i> , 2020 , 3, 1900206	4.9	20	
156	pH responsive soft nanoclusters with size and charge variation features. <i>Polymer Chemistry</i> , 2014 , 5, 1737-1742	4.9	20	
155	Synthesis of nonconjugated dendrons with a redox gradient. <i>Journal of Organic Chemistry</i> , 2003 , 68, 5.	55 2. <u>6</u> 7	20	
154	Zwitterionic Amphiphilic Homopolymer Assemblies. <i>Polymer Chemistry</i> , 2015 , 6, 6083-6087	4.9	19	
153	Virus-inspired approach to nonviral gene delivery vehicles. <i>Biomacromolecules</i> , 2009 , 10, 2189-93	6.9	19	
152	Utilizing Inverse Emulsion Polymerization To Generate Responsive Nanogels for Cytosolic Protein Delivery. <i>Molecular Pharmaceutics</i> , 2017 , 14, 4515-4524	5.6	18	
151	Selective enrichment and analysis of acidic peptides and proteins using polymeric reverse micelles and MALDI-MS. <i>Analytical Chemistry</i> , 2010 , 82, 8686-91	7.8	18	
150	Third-order optical autocorrelator for time-domain operationat telecommunication wavelengths. <i>Applied Physics Letters</i> , 2004 , 85, 179-181	3.4	18	
149	Temporal and Triggered Evolution of Host-Guest Characteristics in Amphiphilic Polymer Assemblies. <i>Journal of the American Chemical Society</i> , 2016 , 138, 7508-11	16.4	17	
148	Effect of Substituents on Optical Properties and Charge-Carrier Polarity of Squaraine Dyes. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 1793-1799	3.8	17	
147	Macromolecular architectures for organic photovoltaics. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 4043-57	3.6	17	

146	Programmable Nanoassemblies from Non-Assembling Homopolymers Using Ad Hoc Electrostatic Interactions. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 4145-4149	16.4	16
145	Cellular Uptake Evaluation of Amphiphilic Polymer Assemblies: Importance of Interplay between Pharmacological and Genetic Approaches. <i>Biomacromolecules</i> , 2019 , 20, 4407-4418	6.9	16
144	Functionalizable Amine-based Polymer Nanoparticles. ACS Macro Letters, 2013, 2, 948-951	6.6	16
143	Fluoride activated stereoinformation transfer from a C?Si bond of a chiral benzyl silane to C?C bonds. <i>Tetrahedron Letters</i> , 1997 , 38, 5429-5432	2	16
142	Recognition and modulation of cytochrome c@ redox properties using an amphiphilic homopolymer. <i>Langmuir</i> , 2007 , 23, 3891-7	4	16
141	Supramolecular Assemblies for Transporting Proteins Across an Immiscible Solvent Interface. <i>Journal of the American Chemical Society</i> , 2018 , 140, 2421-2425	16.4	15
140	Self-assembly of random co-polymers for selective binding and detection of peptides. <i>Polymer Chemistry</i> , 2018 , 9, 1066-1071	4.9	15
139	Crystallinity and morphology effects on a solvent-processed solar cell using a triarylamine-substituted squaraine. <i>ACS Applied Materials & District Action (Control of the Control of the</i>	9.5	15
138	Electrostatic control of peptide side-chain reactivity using amphiphilic homopolymer-based supramolecular assemblies. <i>Journal of the American Chemical Society</i> , 2013 , 135, 14179-88	16.4	15
137	Environment-dependent guest exchange in supramolecular hosts. <i>Langmuir</i> , 2014 , 30, 12384-90	4	15
136	Characterisation of a dipolar chromophore with third-harmonic generation applications in the near-IR. <i>Journal of Materials Chemistry</i> , 2012 , 22, 4371		15
135	Smart Organic Two-Dimensional Materials Based on a Rational Combination of Non-covalent Interactions. <i>Angewandte Chemie</i> , 2016 , 128, 10865-10869	3.6	15
134	Importance of Evaluating Dynamic Encapsulation Stability of Amphiphilic Assemblies in Serum. <i>Biomacromolecules</i> , 2017 , 18, 4163-4170	6.9	14
133	Oligomers as Triggers for Responsive Liquid Crystals. <i>Langmuir</i> , 2018 , 34, 10092-10101	4	14
132	Matrix-assisted laser desorption ionization-mass spectrometry signal enhancement of peptides after selective extraction with polymeric reverse micelles. <i>Analytical Chemistry</i> , 2010 , 82, 3686-91	7.8	14
131	Disulfide-containing Macromolecules for Therapeutic Delivery. <i>Israel Journal of Chemistry</i> , 2020 , 60, 13	2-31.439	14
130	Photoinduced heterodisulfide metathesis for reagent-free synthesis of polymer nanoparticles. <i>Chemical Communications</i> , 2015 , 51, 1425-8	5.8	13
129	Anionic Polymers Promote Mitochondrial Targeting of Delocalized Lipophilic Cations. <i>Bioconjugate Chemistry</i> , 2020 , 31, 1344-1353	6.3	13

(2013-2009)

128	Amphiphilic nanoassemblies for the detection of peptides and proteins using fluorescence and mass spectrometry. <i>Analyst, The</i> , 2009 , 134, 635-49	5	13
127	Tuning substrate selectivity of a cationic enzyme using cationic polymers. <i>Langmuir</i> , 2006 , 22, 7695-700	4	13
126	Comparison of AB2 and AB4 monomers in ferrocene-cored benzyl ether dendrimers. <i>Tetrahedron</i> , 2005 , 61, 603-608	2.4	13
125	In Situ Forming Injectable Thermoresponsive Hydrogels for Controlled Delivery of Biomacromolecules. <i>ACS Omega</i> , 2020 , 5, 17531-17542	3.9	13
124	Sequential Nucleophilic "Click" Reactions for Functional Amphiphilic Homopolymers. <i>Polymer Chemistry</i> , 2019 , 10, 187-193	4.9	12
123	Modulating absorption and charge transfer in bodipy-carbazole donor-acceptor dyads through molecular design. <i>Dalton Transactions</i> , 2019 , 48, 8488-8501	4.3	12
122	Postfunctionalization of Noncationic RNAPolymer Complexes for RNA Delivery. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 6982-6991	3.9	12
121	Programmable Emulsions via Nucleophile-Induced Covalent Surfactant Modifications. <i>Chemistry of Materials</i> , 2020 , 32, 4663-4671	9.6	12
120	Cellular AND Gates: Synergistic Recognition to Boost Selective Uptake of Polymeric Nanoassemblies. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 10456-10460	16.4	12
119	Photophysical and Electrochemical Characterization of BODIPY-Containing Dyads Comparing the Influence of an A-D-A versus D-A Motif on Excited-State Photophysics. <i>Journal of Physical Chemistry A</i> , 2016 , 120, 8794-8803	2.8	12
118	Utilizing Reversible Interactions in Polymeric Nanoparticles To Generate Hollow Metal-Organic Nanoparticles. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 12991-5	16.4	12
117	Utilizing Reversible Interactions in Polymeric Nanoparticles To Generate Hollow Metal©rganic Nanoparticles. <i>Angewandte Chemie</i> , 2015 , 127, 13183-13187	3.6	12
116	Photoregulated Release of Noncovalent Guests from Dendritic Amphiphilic Nanocontainers. <i>Angewandte Chemie</i> , 2011 , 123, 3094-3098	3.6	12
115	Generating peptide titration-type curves using polymeric reverse micelles as selective extraction agents along with matrix-assisted laser desorption ionization-mass spectrometry detection. <i>Analytical Chemistry</i> , 2009 , 81, 5046-53	7.8	12
114	High T/sub g/ hole transport polymers for the fabrication of bright and efficient organic light-emitting devices with an air-stable cathode. <i>IEEE Journal of Quantum Electronics</i> , 2000 , 36, 12-17	2	12
113	Synergistic Interplay of Covalent and Non-Covalent Interactions in Reactive Polymer Nanoassembly Facilitates Intracellular Delivery of Antibodies. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 182	21-1 8 30) ¹²
112	Optical "Blinking" Triggered by Collisions of Single Supramolecular Assemblies of Amphiphilic Molecules with Interfaces of Liquid Crystals. <i>Journal of the American Chemical Society</i> , 2020 , 142, 6139-6	614 8	11
111	Zwitterionic moieties from the Huisgen reaction: a case study with amphiphilic dendritic assemblies. <i>Chemistry - A European Journal</i> , 2013 , 19, 16374-81	4.8	11

110	Site-specific installation and study of electroactive units in every layer of dendrons. <i>Journal of Organic Chemistry</i> , 2009 , 74, 9475-85	4.2	11
109	Ultrafast-pulse diagnostic using third-order frequency-resolved optical gating in organic films. <i>Applied Physics Letters</i> , 2004 , 85, 3348-3350	3.4	11
108	Synthesis of difunctionalized dendrimers: an approach to main-chain poly(dendrimers). <i>Tetrahedron Letters</i> , 2002 , 43, 7217-7220	2	11
107	Synthesis of dendrimers with multifunctional periphery using an ABB? monomer. <i>Chemical Communications</i> , 2003 , 796-797	5.8	11
106	Design and synthesis of nonconjugated monodendrons with triarylamine repeating units. <i>Organic Letters</i> , 2001 , 3, 2057-60	6.2	11
105	Cascaded Step-Growth Polymerization for Functional Polyamides with Diverse Architectures and Stimuli Responsive Characteristics. <i>ACS Macro Letters</i> , 2019 , 8, 245-249	6.6	11
104	Amphiphile-Induced Phase Transition of Liquid Crystals at Aqueous Interfaces. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 37618-37624	9.5	11
103	Tunable enzyme responses in amphiphilic nanoassemblies through alterations in the unimer-aggregate equilibrium. <i>Chemical Science</i> , 2019 , 10, 3018-3024	9.4	10
102	Photoactivation of Ligands for Extrinsically and Intrinsically Triggered Disassembly of Amphiphilic Nanoassemblies. <i>Chemistry - A European Journal</i> , 2018 , 24, 1789-1794	4.8	10
101	Controlled functional group presentations in dendrimers as a tool to probe the hyperbranched architecture. <i>New Journal of Chemistry</i> , 2007 , 31, 1052	3.6	10
100	Mechanistic Investigation on Oxidative Degradation of ROS-Responsive Thioacetal/Thioketal Moieties and Their Implications. <i>Cell Reports Physical Science</i> , 2020 , 1, 100271	6.1	10
99	A New Strategy for Reporting Specific Protein Binding Events at Aqueous-Liquid Crystal Interfaces in the Presence of Non-Specific Proteins. <i>ACS Applied Materials & Acs Applied & Acs</i>	9.5	10
98	pH-Sensitive morphological transitions in polymeric tadpole assemblies for programmed tumor therapy. <i>Journal of Controlled Release</i> , 2019 , 293, 1-9	11.7	10
97	Dye Encapsulation in Polynorbornene Micelles. <i>Langmuir</i> , 2015 , 31, 9707-17	4	9
96	Construction from Destruction: Hydrogel Formation from Triggered Depolymerization-Based Release of an Enzymatic Catalyst. <i>ACS Macro Letters</i> , 2020 , 9, 377-381	6.6	9
95	Propagation of Enzyme-Induced Surface Events inside Polymer Nanoassemblies for a Fast and Tunable Response. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 7111-7115	16.4	9
94	Biodistribution Analysis of NIR-Labeled Nanogels Using in Vivo FMT Imaging in Triple Negative Human Mammary Carcinoma Models. <i>Molecular Pharmaceutics</i> , 2018 , 15, 1180-1191	5.6	9
93	Synthesis and characterization of phenol-based biaryl proton conducting polymers. <i>Journal of Polymer Science Part A</i> , 2012 , 50, 1187-1196	2.5	9

92	Metallosupramolecular Polymers, Networks, and Gels157-178		9
91	Probing the periphery of dendrimers by heterogeneous electron transfer. <i>Chemical Communications</i> , 2007 , 739-41	5.8	9
90	A styrene based water soluble polymer as a reaction medium for photodimerization of aromatic hydrocarbons in water. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2007 , 185, 168-171	4.7	9
89	Supramolecular assembly of crosslinkable monomers for degradable and fluorescent polymer nanoparticles. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 2858-2866	7.3	8
88	Molecular Features Influencing the Release of Peptides from Amphiphilic Polymeric Reverse Micelles. <i>Langmuir</i> , 2018 , 34, 4595-4602	4	8
87	Symbiotic Self-Assembly Strategy toward Lipid-Encased Cross-Linked Polymer Nanoparticles for Efficient Gene Silencing. <i>ACS Applied Materials & Samp; Interfaces</i> , 2019 , 11, 24971-24983	9.5	8
86	The effect of heteroatom conformation on optoelectronic properties of cyclopentadithiophene derivatives. <i>Organic and Biomolecular Chemistry</i> , 2014 , 12, 2474-8	3.9	8
85	Synthesis and properties of thienopyrrole based heteroacenesindolodibenzothienopyrrole and dicarbazolodithienopyrrole. <i>Organic and Biomolecular Chemistry</i> , 2012 , 10, 3455-62	3.9	8
84	Smaller building blocks form larger assemblies: aggregation behavior of biaryl-based dendritic facial amphiphiles. <i>Journal of Organic Chemistry</i> , 2007 , 72, 8167-74	4.2	8
83	A programmable chemical switch based on triggerable Michael acceptors. <i>Chemical Science</i> , 2020 , 11, 2103-2111	9.4	8
82	Cellular- and Subcellular-Targeted Delivery Using a Simple All-in-One Polymeric Nanoassembly. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 23466-23470	16.4	8
81	Disulfide Bridging Strategies in Viral and Nonviral Platforms for Nucleic Acid Delivery. <i>Biochemistry</i> , 2021 , 60, 966-990	3.2	8
80	Polyamide Nanogels from Generally Recognized as Safe Components and Their Toxicity in Mouse Preimplantation Embryos. <i>Biomacromolecules</i> , 2015 , 16, 3491-8	6.9	7
79	Targeting CD4 Cells with Anti-CD4 Conjugated Mertansine-Loaded Nanogels. <i>Biomacromolecules</i> , 2020 , 21, 2473-2481	6.9	7
78	In Situ Formation of Polymeric Nanoassemblies Using an Efficient Reversible Click Reaction. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 15135-15140	16.4	7
77	Supramolecular displacement-mediated activation of a silent fluorescence probe for label-free ligand screening. <i>Journal of the American Chemical Society</i> , 2012 , 134, 7235-7	16.4	7
76	Lipogels for Encapsulation of Hydrophilic Proteins and Hydrophobic Small Molecules. <i>Biomacromolecules</i> , 2018 , 19, 132-140	6.9	7
75	Role of Oligoethylene Glycol Side Chain Length in Responsive Polymeric Nanoassemblies. <i>Langmuir</i> , 2019 , 35, 7929-7936	4	6

74	Effective Tuning of Ketocyanine Derivatives through Acceptor Substitution. <i>Chemistry - A European Journal</i> , 2015 , 21, 7721-5	4.8	6
73	Improved mass spectrometric detection of acidic peptides by variations in the functional group pK values of reverse micelle extraction agents. <i>Analyst, The</i> , 2018 , 143, 1434-1443	5	6
72	Influence of Charge Density on Host G uest Interactions within Amphiphilic Polymer Assemblies in Apolar Media. <i>Macromolecules</i> , 2017 , 50, 9734-9741	5.5	6
71	Polymer-mediated ternary supramolecular interactions for sensitive detection of peptides. <i>Analyst, The</i> , 2016 , 142, 118-122	5	6
70	Synergistic Interplay of Covalent and Non-Covalent Interactions in Reactive Polymer Nanoassembly Facilitates Intracellular Delivery of Antibodies. <i>Angewandte Chemie</i> , 2021 , 133, 1849-1858	3.6	6
69	Water Permeability and Elastic Properties of an Archaea Inspired Lipid Synthesized by Click Chemistry. <i>Chemistry of Materials</i> , 2018 , 30, 3618-3622	9.6	6
68	CD28 Signaling Drives Notch Ligand Expression on CD4 T Cells. Frontiers in Immunology, 2020 , 11, 735	8.4	5
67	BODIPY dyads and triads: synthesis, optical, electrochemical and transistor properties. <i>Chemistry Central Journal</i> , 2018 , 12, 60		5
66	Inclusion complexes between amphiphilic phenyleneethynylene fluorophores and cyclodextrins in aqueous media. <i>Journal of Physical Chemistry B</i> , 2012 , 116, 12268-74	3.4	5
65	Functional Group Density and Recognition in Polymer Nanotubes. <i>Angewandte Chemie</i> , 2009 , 121, 116-	13.66	5
64	Molecular Imprinting for Sensor Applications395-429		5
63	Globular Organization of Multifunctional Linear Homopolymer Using Trifunctional Molecules. <i>Macromolecules</i> , 2007 , 40, 4267-4275	5.5	5
62	Understanding functional group and assembly dynamics in temperature responsive systems leads to design principles for enzyme responsive assemblies. <i>Nanoscale</i> , 2021 , 13, 11568-11575	7.7	5
61	Molecular bases for temperature sensitivity in supramolecular assemblies and their applications as thermoresponsive soft materials. <i>Materials Horizons</i> , 2021 ,	14.4	5
60	Cellular AND Gates: Synergistic Recognition to Boost Selective Uptake of Polymeric Nanoassemblies. <i>Angewandte Chemie</i> , 2020 , 132, 10542-10546	3.6	4
59	In Situ Formation of Polymeric Nanoassemblies Using an Efficient Reversible Click Reaction. Angewandte Chemie, 2020 , 132, 15247-15252	3.6	4
58	Three-Component Sequential Reactions for Polymeric Nanoparticles with Tailorable Core and Surface Functionalities. <i>CheM</i> , 2019 , 5, 3166-3183	16.2	4
57	Charge Mobility in Nonconjugated Dendrons with Charge Transport Functionality in Every Layer. Journal of Physical Chemistry Letters, 2010 , 1, 1116-1121	6.4	4

(2017-2017)

56	Programmable Nanoassemblies from Non-Assembling Homopolymers Using Ad Hoc Electrostatic Interactions. <i>Angewandte Chemie</i> , 2017 , 129, 4209-4213	3.6	3
55	Spatiotemporal control over the hostguest characteristics of a stimulus-triggerable trifunctional polymer assembly. <i>Polymer Chemistry</i> , 2019 , 10, 1423-1430	4.9	3
54	Polymer with Competing Depolymerization Pathways: Chain Unzipping versus Chain Scission. <i>ACS Macro Letters</i> , 2020 , 9, 855-859	6.6	3
53	Disassembly of polymeric nanoparticles with enzyme-triggered polymer unzipping: polyelectrolyte complexes vs. amphiphilic nanoassemblies. <i>Chemical Communications</i> , 2020 , 56, 8456-8459	5.8	3
52	Evaluation of carboxylic, phosphonic, and sulfonic acid protogenic moieties on tunable poly(meta-phenylene oxide) ionomer scaffolds. <i>Journal of Polymer Science Part A</i> , 2019 , 57, 2209-2213	2.5	3
51	Effect of titanium oxidepolystyrene nanocomposite dielectrics on morphology and thin film transistor performance for organic and polymeric semiconductors. <i>Thin Solid Films</i> , 2012 , 520, 6262-626	5 ^{7.2}	3
50	Altering the Peptide Binding Selectivity of Polymeric Reverse Micelle Assemblies via Metal Ion Loading. <i>Langmuir</i> , 2017 , 33, 14004-14010	4	3
49	Supramolecular Assemblies from Amphiphilic Dendrons for Sensing Metalloproteins through Pattern Generation. <i>Israel Journal of Chemistry</i> , 2009 , 49, 41-47	3.4	3
48	Structure and Self-Assembly of Amphiphilic Dendrimers in Water259-306		3
47	Glycodendrimers and other Macromolecules Bearing Multiple Carbohydrates335-358		3
46	Supramolecular antibiotics: a strategy for conversion of broad-spectrum to narrow-spectrum antibiotics for. <i>Nanoscale</i> , 2020 , 12, 20693-20698	7.7	3
45	Tracking exogenous intracellular casp-3 using split GFP. <i>Protein Science</i> , 2021 , 30, 366-380	6.3	3
44	Supramolecular Polymeric Assemblies for the Selective Depletion of Abundant Acidic Proteins in Serum. <i>ACS Applied Materials & Description of Abundant Acidic Proteins in Serum. ACS Applied Materials & Description of Abundant Acidic Proteins in Serum. ACS Applied Materials & Description of Abundant Acidic Proteins in Serum. <i>ACS Applied Materials & Description of Abundant Acidic Proteins in Serum. ACS Applied Materials & Description of Abundant Acidic Proteins in Serum. ACS Applied Materials & Description of Abundant Acidic Proteins in Serum. ACS Applied Materials & Description of Abundant Acidic Proteins in Serum. ACS Applied Materials & Description of Abundant Acidic Proteins in Serum. ACS Applied Materials & Description of Abundant Acidic Proteins in Serum. ACS Applied Materials & Description of Abundant Acidic Proteins in Serum. ACS Applied Materials & Description of Abundant Acidic Proteins in Serum. ACS Applied Materials & Description of Abundant Acidic Proteins in Serum. ACS Applied Materials & Description of Abundant Acidic Proteins in Serum. ACS Applied Materials & Description of Abundant Acidic Proteins in Serum. ACS Applied Materials & Description of Abundant Acidic Proteins in Serum Acid </i></i>	9.5	3
43	Toward Chemotactic Supramolecular Nanoparticles: From Autonomous Surface Motion Following Specific Chemical Gradients to Multivalency-Controlled Disassembly. <i>ACS Nano</i> , 2021 , 15, 16149-16161	16.7	3
42	Core Hydrophobicity of Supramolecular Nanoparticles Induces NLRP3 Inflammasome Activation. <i>ACS Applied Materials & District Materials </i>	9.5	3
41	Effect of incorporating flat aromatic molecules on spherical polymeric nanoparticles. <i>Chemical Communications</i> , 2017 , 53, 5190-5192	5.8	2
40	Triblock-Diblock Composite Nanoassemblies with Sequentially Addressable Host-Guest Properties for Hydrophobics and Hydrophilics. <i>ACS Macro Letters</i> , 2020 , 9, 1019-1023	6.6	2
39	Nano-Armoring of Enzymes: Rational Design of Polymer-Wrapped Enzymes. <i>Methods in Enzymology</i> , 2017 , 590, 381-411	1.7	2

38	Supramolecular Polymers in Nanomedicine 2017 , 227-254		2
37	Fluorescence Enhancement Through Incorporation of Chromophores in Polymeric Nanoparticles. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2018 , 28, 407-413	3.2	2
36	Polymeric Capsules: Catalysis and Drug Delivery179-205		2
35	Electrochemical models for the radical annihilation reactions in organic light-emitting diodes 1998,		2
34	Charge-Conversion Strategies for Nucleic Acid Delivery. Advanced Functional Materials, 2021, 31, 20111	03 5.6	2
33	Protein-Antibody Conjugates (PACs): A Plug-and-Play Strategy for Covalent Conjugation and Targeted Intracellular Delivery of Pristine Proteins. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 12813-12818	16.4	2
32	Azide-Terminated RAFT Polymers for Biological Applications. <i>Current Protocols in Chemical Biology</i> , 2020 , 12, e85	1.8	2
31	Covalent Labeling with an 即Insaturated Carbonyl Scaffold for Studying Protein Structure and Interactions by Mass Spectrometry. <i>Analytical Chemistry</i> , 2020 , 92, 6637-6644	7.8	1
30	Molecular Recognition Using Amphiphilic Macromolecules9-36		1
29	Polymer-Mediated Assembly of Nanoparticles Using Engineered Interactions137-155		1
28	Bioinspired Supramolecular Design in Polymers for Advanced Mechanical Properties235-258		1
27	Molecular Recognition in Dendrimers 2004,		1
26	Two photon absorbing chromophores for broadband optical limiting		1
25	Three-Component Dynamic Covalent Chemistry: From Janus Small Molecules to Functional Polymers. <i>Journal of the American Chemical Society</i> , 2021 ,	16.4	1
24	Polymeric nanoassemblies for enrichment and detection of peptides and proteins in human breast milk. <i>Analytical and Bioanalytical Chemistry</i> , 2020 , 412, 1027-1035	4.4	1
23	Cellular- and Subcellular-Targeted Delivery Using a Simple All-in-One Polymeric Nanoassembly. <i>Angewandte Chemie</i> , 2020 , 132, 23672-23676	3.6	1
22	Enzyme-Triggered Nanomaterials and Their Applications. ACS Symposium Series, 2020, 95-107	0.4	1
21	Efficient enrichment of glycopeptides by supramolecular nanoassemblies that use proximity-assisted covalent binding. <i>Analyst, The</i> , 2019 , 144, 6321-6326	5	1

(2006-2021)

20	Excimer-monomer fluorescence changes by supramolecular disassembly for protein sensing and quantification. <i>Chemical Communications</i> , 2021 , 57, 9776-9779	5.8	1
19	Evaluating Endosomal Escape of Caspase-3-Containing Nanomaterials Using Split GFP. <i>Biomacromolecules</i> , 2021 , 22, 1261-1272	6.9	1
18	Hypersound-Assisted Size Sorting of Microparticles on Inkjet-Patterned Protein Films. <i>Langmuir</i> , 2021 , 37, 2826-2832	4	1
17	Exogenous Introduction of Initiator and Executioner Caspases Results in Different Apoptotic Outcomes. <i>Jacs Au</i> , 2021 , 1, 1240-1256		1
16	Triggered interactions between nanoparticles and lipid membranes: design principles for gel formation or disruption-and-release. <i>Soft Matter</i> , 2021 , 17, 7069-7075	3.6	1
15	Self-assembly of polymers from multicomponent reactions. <i>Polymer International</i> ,	3.3	О
14	ProteinAntibody Conjugates (PACs): A Plug-and-Play Strategy for Covalent Conjugation and Targeted Intracellular Delivery of Pristine Proteins. <i>Angewandte Chemie</i> , 2021 , 133, 12923-12928	3.6	О
13	Tuning N,N-Diarylanilinosquaraine Crystal Packing: n-Hexylaryl and Fluoroaryl Substitution. <i>Crystal Growth and Design</i> , 2019 , 19, 3633-3638	3.5	
12	Propagation of Enzyme-Induced Surface Events inside Polymer Nanoassemblies for a Fast and Tunable Response. <i>Angewandte Chemie</i> , 2018 , 130, 7229-7233	3.6	
11	Bioinspired Dendritic Light-Harvesting Systems 2012 , 397-417		
10	A Brief Introduction to Supramolecular Chemistry in a Polymer Context1-7		
9	Supramolecular Control of Mechanical Properties in Single Molecules, Interfaces, and Macroscopic Ma	terials:	37-62
8	Hydrogen Bond Functionalized Block Copolymers and Telechelic Oligomers63-102		
7	Noncovalent Side Chain Modification103-136		
6	Sequence-Specific Hydrogen Bonded Units for Directed Association, Assembly, and Ligation207-234		
5	Colorimetric Sensing and Biosensing Using Functionalized Conjugated Polymers307-334		
4	Supramolecular Polymerization of Peptides and Peptide Derivatives: Nanofibrous Materials359-393		
3	Dendritic Nanostructures for Cancer Therapy 2006 , 509-530		

- 2 Hybrid bilayer organic light-emitting devices based on high Tg hole transport polymers **1999**, 3623, 20
- Multichannel dual protein sensing using amphiphilic supramolecular assemblies. *Chemical Communications*, **2021**, 57, 12828-12831

5.8