Sankaran Thayumanavan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5494818/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structureâ^'Property Relationships for Two-Photon Absorbing Chromophores:Â Bis-Donor Diphenylpolyene and Bis(styryl)benzene Derivatives. Journal of the American Chemical Society, 2000, 122, 9500-9510.	6.6	842
2	Regioselective, Diastereoselective, and Enantioselective Lithiationâ^'Substitution Sequences:  Reaction Pathways and Synthetic Applications. Accounts of Chemical Research, 1996, 29, 552-560.	7.6	570
3	Multi-Stimuli Sensitive Amphiphilic Block Copolymer Assemblies. Journal of the American Chemical Society, 2009, 131, 4830-4838.	6.6	561
4	Multi-stimuli responsive macromolecules and their assemblies. Chemical Society Reviews, 2013, 42, 7421.	18.7	548
5	Polymer nanogels: A versatile nanoscopic drug delivery platform. Advanced Drug Delivery Reviews, 2012, 64, 836-851.	6.6	536
6	Self-Cross-Linked Polymer Nanogels: A Versatile Nanoscopic Drug Delivery Platform. Journal of the American Chemical Society, 2010, 132, 17227-17235.	6.6	496
7	Configurational Stability and Transfer of Stereochemical Information in the Reactions of Enantioenriched Organolithium Reagents. Angewandte Chemie - International Edition, 2002, 41, 716.	7.2	219
8	Temperature-Sensitive Dendritic Micelles. Journal of the American Chemical Society, 2005, 127, 14922-14929.	6.6	210
9	Dendrimeric Micelles for Controlled Drug Release and Targeted Delivery. Molecular Pharmaceutics, 2005, 2, 264-272.	2.3	208
10	Self-assembly of random copolymers. Chemical Communications, 2014, 50, 13417-13432.	2.2	198
11	New Triarylamine-Containing Polymers as Hole Transport Materials in Organic Light-Emitting Diodes:Â Effect of Polymer Structure and Cross-Linking on Device Characteristics. Chemistry of Materials, 1998, 10, 1668-1676.	3.2	195
12	Electrochemistry and Electrogenerated Chemiluminescence Processes of the Components of Aluminum Quinolate/Triarylamine, and Related Organic Light-Emitting Diodes. Journal of the American Chemical Society, 1998, 120, 9646-9655.	6.6	193
13	Surface-Functionalizable Polymer Nanogels with Facile Hydrophobic Guest Encapsulation Capabilities. Journal of the American Chemical Society, 2010, 132, 8246-8247.	6.6	193
14	Supramolecular Assemblies from Amphiphilic Homopolymers:Â Testing the Scope. Journal of the American Chemical Society, 2006, 128, 16224-16230.	6.6	191
15	Enzyme-Triggered Disassembly of Dendrimer-Based Amphiphilic Nanocontainers. Journal of the American Chemical Society, 2009, 131, 14184-14185.	6.6	184
16	Redox-Sensitive Disassembly of Amphiphilic Copolymer Based Micelles. Langmuir, 2010, 26, 7086-7092.	1.6	176
17	Simultaneous and Reversible Functionalization of Copolymers for Biological Applicationsâ€. Macromolecules, 2006, 39, 5595-5597.	2.2	169
18	Substituent Effects on the pH Sensitivity of Acetals and Ketals and Their Correlation with Encapsulation Stability in Polymeric Nanogels. Journal of the American Chemical Society, 2017, 139, 2306-2317.	6.6	165

#	Article	lF	CITATIONS
19	Molecular discrimination inside polymer nanotubules. Nature Nanotechnology, 2008, 3, 112-117.	15.6	164
20	Noncovalent Encapsulation Stabilities in Supramolecular Nanoassemblies. Journal of the American Chemical Society, 2010, 132, 10683-10685.	6.6	160
21	Templated Self-Assembly of a Covalent Polymer Network for Intracellular Protein Delivery and Traceless Release. Journal of the American Chemical Society, 2017, 139, 5676-5679.	6.6	152
22	BODIPY-Based Donor–Acceptor π-Conjugated Alternating Copolymers. Macromolecules, 2011, 44, 4767-4776.	2.2	149
23	Enhancement of anhydrous proton transport by supramolecular nanochannels in comb polymers. Nature Chemistry, 2010, 2, 503-508.	6.6	148
24	Energy and Electron Transfer in Bifunctional Non-Conjugated Dendrimers. Journal of the American Chemical Society, 2005, 127, 373-383.	6.6	139
25	Supramolecular Assemblies of Amphiphilic Homopolymers. Langmuir, 2009, 25, 9660-9670.	1.6	130
26	Invertible Amphiphilic Homopolymers. Journal of the American Chemical Society, 2004, 126, 9890-9891.	6.6	125
27	Disassembly of Noncovalent Amphiphilic Polymers with Proteins and Utility in Pattern Sensing. Journal of the American Chemical Society, 2008, 130, 5416-5417.	6.6	116
28	Supramolecular Disassembly of Facially Amphiphilic Dendrimer Assemblies in Response to Physical, Chemical, and Biological Stimuli. Accounts of Chemical Research, 2014, 47, 2200-2211.	7.6	115
29	Fluorescence Patterns from Supramolecular Polymer Assembly and Disassembly for Sensing Metallo- and Nonmetalloproteins. Journal of the American Chemical Society, 2009, 131, 7708-7716.	6.6	110
30	Dendrimers with Both Polar and Apolar Nanocontainer Characteristics. Journal of the American Chemical Society, 2004, 126, 15636-15637.	6.6	105
31	Light Harvesting Dendrimers. Photosynthesis Research, 2006, 87, 133-150.	1.6	105
32	Highly Ordered Gold Nanotubes Using Thiols at a Cleavable Block Copolymer Interface. Journal of the American Chemical Society, 2009, 131, 9870-9871.	6.6	104
33	Asymmetric Substitutions: High and Opposite Enantioselective Alkylations of a Racemic Organolithium Intermediate in the Presence of (-)-Sparteine. Journal of the American Chemical Society, 1994, 116, 9755-9756.	6.6	101
34	Synthesis of Unsymmetrical Triarylamines for Photonic Applications via One-Pot Palladium-Catalyzed Aminations. Chemistry of Materials, 1997, 9, 3231-3235.	3.2	99
35	Electrogenerated Chemiluminescence from Derivatives of Aluminum Quinolate and Quinacridones:Â Cross-Reactions with Triarylamines Lead to Singlet Emission through Tripletā^'Triplet Annihilation Pathways. Journal of the American Chemical Society, 2000, 122, 4972-4979.	6.6	99
36	Homopolymer Micelles in Heterogeneous Solvent Mixtures. Journal of the American Chemical Society, 2005, 127, 16794-16795.	6.6	99

#	Article	IF	CITATIONS
37	Using Meta Conjugation To Enhance Charge Separation versus Charge Recombination in Phenylacetylene Donorâ^'Bridgeâ^'Acceptor Complexes. Journal of the American Chemical Society, 2005, 127, 16348-16349.	6.6	97
38	Disassembly of Dendritic Micellar Containers Due to Protein Binding. Journal of the American Chemical Society, 2010, 132, 4550-4551.	6.6	97
39	Photoregulated Release of Noncovalent Guests from Dendritic Amphiphilic Nanocontainers. Angewandte Chemie - International Edition, 2011, 50, 3038-3042.	7.2	96
40	Dynamic actuation of glassy polymersomes through isomerization of a single azobenzene unit at the block copolymer interface. Nature Chemistry, 2018, 10, 659-666.	6.6	93
41	Noncovalent Modification of Chymotrypsin Surface Using an Amphiphilic Polymer Scaffold:Â Implications in Modulating Protein Function. Journal of the American Chemical Society, 2005, 127, 10693-10698.	6.6	88
42	CC Bond Formation Reactions for Biomassâ€Derived Molecules. ChemSusChem, 2010, 3, 1158-1161.	3.6	88
43	Optimizing Two-Photon Initiators and Exposure Conditions for Three-Dimensional Lithographic Microfabrication Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2001, 14, 657-668.	0.1	87
44	Synthesis and Characterization of Amine-Functionalized Polystyrene Nanoparticles. Macromolecules, 2005, 38, 5886-5891.	2.2	87
45	A Facile Method for the Synthesis of Cleavable Block Copolymers from ATRP-Based Homopolymers. Macromolecules, 2007, 40, 8518-8520.	2.2	86
46	Two Different Pathways of Stereoinformation Transfer:Â Asymmetric Substitutions in the (â^')-Sparteine Mediated Reactions of Laterally LithiatedN,N-Diisopropyl-o-ethylbenzamide andN-Pivaloyl-o-ethylaniline. Journal of the American Chemical Society, 1997, 119, 8209-8216.	6.6	84
47	Amphiphilic Homopolymer as a Reaction Medium in Water:Â Product Selectivity within Polymeric Nanopockets. Journal of the American Chemical Society, 2005, 127, 13200-13206.	6.6	84
48	Protein-Induced Supramolecular Disassembly of Amphiphilic Polypeptide Nanoassemblies. Journal of the American Chemical Society, 2015, 137, 7286-7289.	6.6	82
49	A Mild Deprotection Strategy for Allyl-Protecting Groups and Its Implications in Sequence Specific Dendrimer Synthesis. Journal of Organic Chemistry, 2003, 68, 1146-1149.	1.7	81
50	Asymmetric deprotonation of N,N-dihexyl-1-naphthamides to provide atropisomers of N,N-dihexyl-2-alkyl-1-naphthamides. Tetrahedron Letters, 1996, 37, 2899-2902.	0.7	80
51	Protein AND Enzyme Gated Supramolecular Disassembly. Journal of the American Chemical Society, 2014, 136, 2220-2223.	6.6	80
52	Tunable Disassembly of Micelles Using a Redox Trigger. Langmuir, 2007, 23, 7916-7919.	1.6	79
53	Small molecule BODIPY dyes as non-fullerene acceptors in bulk heterojunction organic photovoltaics. Chemical Communications, 2014, 50, 2913-2915.	2.2	79
54	Intramolecular Electron-Transfer Rates in Mixed-Valence Triarylamines: Measurement by Variable-Temperature ESR Spectroscopy and Comparison with Optical Data. Journal of the American Chemical Society, 2009, 131, 1717-1723.	6.6	75

#	Article	IF	CITATIONS
55	Concurrent Binding and Delivery of Proteins and Lipophilic Small Molecules Using Polymeric Nanogels. Journal of the American Chemical Society, 2012, 134, 6964-6967.	6.6	75
56	Field Guide to Challenges and Opportunities in Antibody–Drug Conjugates for Chemists. Bioconjugate Chemistry, 2015, 26, 2198-2215.	1.8	75
57	Temperature Sensitivity Trends and Multi-Stimuli Sensitive Behavior in Amphiphilic Oligomers. Journal of the American Chemical Society, 2011, 133, 13496-13503.	6.6	73
58	Stimuli sensitive amphiphilic dendrimers. New Journal of Chemistry, 2012, 36, 340.	1.4	72
59	Poly(arylmethyl) octet (S = 7/2) heptaradical and undecet (S = 5) decaradical. Journal of the American Chemical Society, 1992, 114, 1884-1885.	6.6	71
60	Controlled polymerization ofN-isopropylacrylamide with an activated methacrylic ester. Journal of Polymer Science Part A, 2004, 42, 6340-6345.	2.5	71
61	Generating Patterns for Sensing Using a Single Receptor Scaffold. Journal of the American Chemical Society, 2007, 129, 3506-3507.	6.6	71
62	Selective Sensing of Metalloproteins from Nonselective Binding Using a Fluorogenic Amphiphilic Polymer. Journal of the American Chemical Society, 2006, 128, 10686-10687.	6.6	69
63	Predictably tuning the frontier molecular orbital energy levels of panchromatic low band gap BODIPY-based conjugated polymers. Chemical Science, 2012, 3, 3093.	3.7	68
64	Ligand-Decorated Nanogels: Fast One-Pot Synthesis and Cellular Targeting. Biomacromolecules, 2012, 13, 1515-1522.	2.6	67
65	Experimental and theoretical investigations in stimuli responsive dendrimer-based assemblies. Nanoscale, 2015, 7, 3817-3837.	2.8	65
66	Dynamic Imine Chemistry at Complex Double Emulsion Interfaces. Journal of the American Chemical Society, 2019, 141, 18048-18055.	6.6	64
67	Design and synthesis of stable triarylamines for hole-transport applications. Tetrahedron Letters, 2001, 42, 4421-4424.	0.7	63
68	Antibody Delivery for Intracellular Targets: Emergent Therapeutic Potential. Bioconjugate Chemistry, 2019, 30, 1028-1041.	1.8	63
69	Guestâ€Release Control in Enzyme‣ensitive, Amphiphilicâ€Dendrimerâ€Based Nanoparticles through Photochemical Crosslinking. Chemistry - A European Journal, 2011, 17, 11752-11760.	1.7	60
70	Fluorescent polyelectrolytes as protein sensors. Polymer International, 2007, 56, 474-481.	1.6	58
71	Surface charge generation in nanogels for activated cellular uptake at tumor-relevant pH. Chemical Science, 2013, 4, 3654.	3.7	56
72	Synthesis of Functionalized Organic Second-Order Nonlinear Optical Chromophores for Electrooptic Applications. Journal of Organic Chemistry, 1999, 64, 4289-4297.	1.7	53

#	Article	IF	CITATIONS
73	Protein-Triggered Supramolecular Disassembly: Insights Based on Variations in Ligand Location in Amphiphilic Dendrons. Journal of the American Chemical Society, 2014, 136, 5385-5399.	6.6	53
74	Reversible Click Chemistry for Ultrafast and Quantitative Formation of Protein–Polymer Nanoassembly and Intracellular Protein Delivery. ACS Nano, 2019, 13, 9408-9420.	7.3	52
75	Joint Experimental and Theoretical Characterization of the Electronic Structure of 4,4â€~-Bis(N-m-tolyl-N-phenylamino)biphenyl (TPD) and Substituted Derivatives. Journal of Physical Chemistry A, 2001, 105, 5206-5211.	1.1	50
76	Synthesis of nanogel–protein conjugates. Polymer Chemistry, 2013, 4, 2464.	1.9	50
77	A Convenient Modular Approach of Functionalizing Aromatic Polyquinolines for Electrooptic Devices. Chemistry of Materials, 1999, 11, 2218-2225.	3.2	49
78	Responsive single-chain polymer nanoparticles with host–guest features. Polymer Chemistry, 2015, 6, 4828-4834.	1.9	49
79	Facile Preparation of Nanogels Using Activated Ester Containing Polymers. ACS Macro Letters, 2012, 1, 175-179.	2.3	48
80	Temperature-Sensitive Transitions below LCST in Amphiphilic Dendritic Assemblies: Host–Guest Implications. Journal of the American Chemical Society, 2013, 135, 8947-8954.	6.6	47
81	Selective Peptide Binding Using Facially Amphiphilic Dendrimers. Journal of the American Chemical Society, 2008, 130, 11156-11163.	6.6	45
82	Feedback Regulated Drug Delivery Vehicles: Carbon Dioxide Responsive Cationic Hydrogels for Antidote Release. Biomacromolecules, 2010, 11, 1735-1740.	2.6	45
83	Blended Assemblies of Amphiphilic Random and Block Copolymers for Tunable Encapsulation and Release of Hydrophobic Guest Molecules. Macromolecules, 2020, 53, 2713-2723.	2.2	45
84	Engineered Interactions with Mesoporous Silica Facilitate Intracellular Delivery of Proteins and Gene Editing. Nano Letters, 2020, 20, 4014-4021.	4.5	45
85	Low Band Gap Thiopheneâ `Perylene Diimide Systems with Tunable Charge Transport Properties. Organic Letters, 2011, 13, 18-21.	2.4	44
86	Unlocking a Caged Lysosomal Protein from a Polymeric Nanogel with a pH Trigger. Biomacromolecules, 2014, 15, 4046-4053.	2.6	44
87	Smart Organic Twoâ€Dimensional Materials Based on a Rational Combination of Nonâ€eovalent Interactions. Angewandte Chemie - International Edition, 2016, 55, 10707-10711.	7.2	44
88	High photogeneration efficiency of charge-transfer complexes formed between low ionization potential arylamines and C60. Journal of Chemical Physics, 2000, 112, 9557-9561.	1.2	43
89	Toward Clobular Macromolecules with Functionalized Interiors:  Design and Synthesis of Dendrons with an Interesting Twist. Organic Letters, 2001, 3, 1961-1964.	2.4	41
90	Multi-Stimuli-Responsive Amphiphilic Assemblies through Simple Postpolymerization Modifications. Macromolecules, 2016, 49, 6186-6192.	2.2	41

#	Article	IF	CITATIONS
91	Mechanistic Investigation on Oxidative Degradation of ROS-Responsive Thioacetal/Thioketal Moieties and Their Implications. Cell Reports Physical Science, 2020, 1, 100271.	2.8	40
92	Comparison of Facially Amphiphilic Biaryl Dendrimers with Classical Amphiphilic Ones Using Protein Surface Recognition as the Tool. Journal of the American Chemical Society, 2006, 128, 9231-9237.	6.6	39
93	Cyclopentadithiophene-Based Organic Semiconductors: Effect of Fluorinated Substituents on Electrochemical and Charge Transport Properties. Journal of Physical Chemistry Letters, 2011, 2, 648-654.	2.1	39
94	Redox, ionic strength, and pH sensitive supramolecular polymer assemblies. Journal of Polymer Science Part A, 2009, 47, 1052-1060.	2.5	38
95	Systematic behavior of electro-optic chromophore photostability. Optics Letters, 2000, 25, 332.	1.7	37
96	Effect of Substitution on the Hole Mobility of Bis(diarylamino)biphenyl Derivatives Doped in Poly(Styrene). Chemistry of Materials, 2003, 15, 994-999.	3.2	37
97	Amphiphilicity in Homopolymer Surfaces Reduces Nonspecific Protein Adsorption. Langmuir, 2009, 25, 13795-13799.	1.6	36
98	Composite supramolecular nanoassemblies with independent stimulus sensitivities. Chemical Science, 2014, 5, 229-234.	3.7	36
99	In Situ Forming Injectable Thermoresponsive Hydrogels for Controlled Delivery of Biomacromolecules. ACS Omega, 2020, 5, 17531-17542.	1.6	36
100	Dual Stimuli–Dual Response Nanoassemblies Prepared from a Simple Homopolymer. ACS Macro Letters, 2014, 3, 1-5.	2.3	35
101	Cellular―and Subcellularâ€Targeted Delivery Using a Simple Allâ€inâ€One Polymeric Nanoassembly. Angewandte Chemie - International Edition, 2020, 59, 23466-23470.	7.2	35
102	Dependence of the Two-Photon Absorption Cross Section on the Conjugation of the Phenylacetylene Linker in Dipolar Donorâ^'Bridgeâ^'Acceptor Chromophores. Journal of Physical Chemistry A, 2005, 109, 9767-9774.	1.1	34
103	Probing Every Layer in Dendrons. Journal of the American Chemical Society, 2005, 127, 2020-2021.	6.6	34
104	Proton conduction in 1 <i>H</i> â€1,2,3â€triazole polymers: Imidazoleâ€like or pyrazoleâ€like?. Journal of Polymer Science Part A, 2010, 48, 1851-1858.	2.5	34
105	Reactive Self-Assembly of Polymers and Proteins to Reversibly Silence a Killer Protein. Biomacromolecules, 2015, 16, 3161-3171.	2.6	34
106	Accessing Lipophilic Ligands in Dendrimerâ€Based Amphiphilic Supramolecular Assemblies for Proteinâ€Induced Disassembly. Chemistry - A European Journal, 2012, 18, 223-229.	1.7	33
107	Effect of Hofmeister Ions on the Size and Encapsulation Stability of Polymer Nanogels. Langmuir, 2013, 29, 50-55.	1.6	33
108	¹⁹ F MRI of Polymer Nanogels Aided by Improved Segmental Mobility of Embedded Fluorine Moieties. Biomacromolecules, 2019, 20, 790-800.	2.6	33

#	Article	IF	CITATIONS
109	Noncationic Material Design for Nucleic Acid Delivery. Advanced Therapeutics, 2020, 3, 1900206.	1.6	32
110	Photostability of electro-optic polymers possessing chromophores with efficient amino donors and cyano-containing acceptors. Journal of the Optical Society of America B: Optical Physics, 2001, 18, 1846.	0.9	31
111	Dendritic and Linear Macromolecular Architectures for Photovoltaics: A Photoinduced Charge Transfer Investigation. Journal of the American Chemical Society, 2009, 131, 2727-2738.	6.6	31
112	Advances in polymer and polymeric nanostructures for protein conjugation. European Polymer Journal, 2013, 49, 2906-2918.	2.6	31
113	Bait-and-Switch Supramolecular Strategy To Generate Noncationic RNA–Polymer Complexes for RNA Delivery. Biomacromolecules, 2019, 20, 435-442.	2.6	31
114	Synergistic Interplay of Covalent and Non ovalent Interactions in Reactive Polymer Nanoassembly Facilitates Intracellular Delivery of Antibodies. Angewandte Chemie - International Edition, 2021, 60, 1821-1830.	7.2	31
115	Polymeric Inverse Micelles as Selective Peptide Extraction Agents for MALDI-MS Analysis. Analytical Chemistry, 2007, 79, 7124-7130.	3.2	30
116	Selective enrichment and sensitive detection of peptide and proteinbiomarkers in human serum using polymeric reverse micelles and MALDI-MS. Analyst, The, 2012, 137, 1024-1030.	1.7	30
117	Influence of Backbone Conformational Rigidity in Temperature-Sensitive Amphiphilic Supramolecular Assemblies. Journal of the American Chemical Society, 2015, 137, 5308-5311.	6.6	30
118	Effect of Guest Molecule Flexibility in Access to Dendritic Interiors. Organic Letters, 2005, 7, 2809-2812.	2.4	29
119	Interconnected Roles of Scaffold Hydrophobicity, Drug Loading, and Encapsulation Stability in Polymeric Nanocarriers. Molecular Pharmaceutics, 2012, 9, 3569-3578.	2.3	29
120	A supramolecular dissociation strategy for protein sensing. Chemical Communications, 2015, 51, 17265-17268.	2.2	29
121	Utilizing Inverse Emulsion Polymerization To Generate Responsive Nanogels for Cytosolic Protein Delivery. Molecular Pharmaceutics, 2017, 14, 4515-4524.	2.3	29
122	A programmable chemical switch based on triggerable Michael acceptors. Chemical Science, 2020, 11, 2103-2111.	3.7	29
123	Functional Group Diversity in Dendrimersâ€. Organic Letters, 2002, 4, 3751-3753.	2.4	28
124	Thermoresponsive Polymeric Nanoparticles: Nucleation from Cooperative Polymerization Driven by Dative Bonds. Macromolecules, 2014, 47, 5869-5876.	2.2	28
125	Role of Aromatic Interactions in Temperature-Sensitive Amphiphilic Supramolecular Assemblies. Langmuir, 2016, 32, 2874-2881.	1.6	28
126	Fluorophore-cored dendrimers for patterns in metalloprotein sensing. Chemical Communications, 2009, , 806.	2.2	27

Sankaran Thayumanavan

#	Article	IF	CITATIONS
127	Matrix Metalloproteinase-9-Responsive Nanogels for Proximal Surface Conversion and Activated Cellular Uptake. Biomacromolecules, 2018, 19, 860-871.	2.6	27
128	Dendrimers Based on a Three-Dimensionally Disposed AB4Monomer. Organic Letters, 2004, 6, 2547-2550.	2.4	26
129	Self-Assembly of Facially Amphiphilic Dendrimers on Surfaces. Journal of the American Chemical Society, 2006, 128, 14760-14761.	6.6	26
130	Dendrimer Analogues of Linear Molecules to Evaluate Energy and Charge-Transfer Properties. Organic Letters, 2006, 8, 2981-2984.	2.4	26
131	Energy and Charge Transfer Dynamics in Fully Decorated Benzyl Ether Dendrimers and Their Disubstituted Analogues. Journal of Physical Chemistry B, 2006, 110, 24331-24339.	1.2	26
132	Cellular Uptake Evaluation of Amphiphilic Polymer Assemblies: Importance of Interplay between Pharmacological and Genetic Approaches. Biomacromolecules, 2019, 20, 4407-4418.	2.6	26
133	Towards dendrimers as biomimetic macromolecules. Comptes Rendus Chimie, 2003, 6, 767-778.	0.2	25
134	Sequences in Dendrons and Dendrimers. Journal of Organic Chemistry, 2004, 69, 2937-2944.	1.7	25
135	Supramolecular Assemblies for Transporting Proteins Across an Immiscible Solvent Interface. Journal of the American Chemical Society, 2018, 140, 2421-2425.	6.6	25
136	Cellular AND Gates: Synergistic Recognition to Boost Selective Uptake of Polymeric Nanoassemblies. Angewandte Chemie - International Edition, 2020, 59, 10456-10460.	7.2	25
137	Broadening Absorption in Conductive Polymers through Cross-linkable Side Chains in a Nonconjugated Polymer Backbone. Macromolecules, 2010, 43, 37-43.	2.2	24
138	Importance of dynamic hydrogen bonds and reorientation barriers in proton transport. Chemical Communications, 2011, 47, 6638.	2.2	24
139	Improved Performances in Polymer BHJ Solar Cells Through Frontier Orbital Tuning of Small Molecule Additives in Ternary Blends. ACS Applied Materials & Interfaces, 2014, 6, 9920-9924.	4.0	24
140	Zwitterionic amphiphilic homopolymer assemblies. Polymer Chemistry, 2015, 6, 6083-6087.	1.9	24
141	Temporal and Triggered Evolution of Host–Guest Characteristics in Amphiphilic Polymer Assemblies. Journal of the American Chemical Society, 2016, 138, 7508-7511.	6.6	24
142	Activatable Dendritic ¹⁹ F Probes for Enzyme Detection. ACS Macro Letters, 2015, 4, 422-425.	2.3	23
143	Amphiphile-Induced Phase Transition of Liquid Crystals at Aqueous Interfaces. ACS Applied Materials & Interfaces, 2018, 10, 37618-37624.	4.0	23
144	Anionic Polymers Promote Mitochondrial Targeting of Delocalized Lipophilic Cations. Bioconjugate Chemistry, 2020, 31, 1344-1353.	1.8	23

Sankaran Thayumanavan

#	Article	IF	CITATIONS
145	Third-order optical autocorrelator for time-domain operationat telecommunication wavelengths. Applied Physics Letters, 2004, 85, 179-181.	1.5	22
146	Functional Group Density and Recognition in Polymer Nanotubes. Angewandte Chemie - International Edition, 2009, 48, 110-114.	7.2	22
147	pH responsive soft nanoclusters with size and charge variation features. Polymer Chemistry, 2014, 5, 1737-1742.	1.9	22
148	Selective Enrichment and Analysis of Acidic Peptides and Proteins Using Polymeric Reverse Micelles and MALDI-MS. Analytical Chemistry, 2010, 82, 8686-8691.	3.2	21
149	Disulfideâ€Containing Macromolecules for Therapeutic Delivery. Israel Journal of Chemistry, 2020, 60, 132-139.	1.0	21
150	Fluoride activated stereoinformation transfer from a Cî—,Si bond of a chiral benzyl silane to Cî—,C bonds. Tetrahedron Letters, 1997, 38, 5429-5432.	0.7	20
151	Synthesis of Nonconjugated Dendrons with a Redox Gradient. Journal of Organic Chemistry, 2003, 68, 5559-5567.	1.7	20
152	Virus-Inspired Approach to Nonviral Gene Delivery Vehicles. Biomacromolecules, 2009, 10, 2189-2193.	2.6	20
153	Effect of Substituents on Optical Properties and Charge-Carrier Polarity of Squaraine Dyes. Journal of Physical Chemistry C, 2014, 118, 1793-1799.	1.5	20
154	Oligomers as Triggers for Responsive Liquid Crystals. Langmuir, 2018, 34, 10092-10101.	1.6	20
155	Modulating absorption and charge transfer in bodipy-carbazole donor–acceptor dyads through molecular design. Dalton Transactions, 2019, 48, 8488-8501.	1.6	20
156	Optical "Blinking―Triggered by Collisions of Single Supramolecular Assemblies of Amphiphilic Molecules with Interfaces of Liquid Crystals. Journal of the American Chemical Society, 2020, 142, 6139-6148.	6.6	20
157	Molecular bases for temperature sensitivity in supramolecular assemblies and their applications as thermoresponsive soft materials. Materials Horizons, 2022, 9, 164-193.	6.4	20
158	Recognition and Modulation of Cytochromec's Redox Properties using an Amphiphilic Homopolymer. Langmuir, 2007, 23, 3891-3897.	1.6	19
159	Programmable Nanoassemblies from Nonâ€Assembling Homopolymers Using Adâ€Hoc Electrostatic Interactions. Angewandte Chemie - International Edition, 2017, 56, 4145-4149.	7.2	19
160	A New Strategy for Reporting Specific Protein Binding Events at Aqueous–Liquid Crystal Interfaces in the Presence of Non-Specific Proteins. ACS Applied Materials & Interfaces, 2020, 12, 7869-7878.	4.0	19
161	Macromolecular architectures for organic photovoltaics. Physical Chemistry Chemical Physics, 2012, 14, 4043.	1.3	18
162	Functionalizable Amine-Based Polymer Nanoparticles. ACS Macro Letters, 2013, 2, 948-951.	2.3	18

#	Article	IF	CITATIONS
163	Electrostatic Control of Peptide Side-Chain Reactivity Using Amphiphilic Homopolymer-Based Supramolecular Assemblies. Journal of the American Chemical Society, 2013, 135, 14179-14188.	6.6	18
164	Smart Organic Twoâ€Dimensional Materials Based on a Rational Combination of Nonâ€covalent Interactions. Angewandte Chemie, 2016, 128, 10865-10869.	1.6	18
165	Self-assembly of random co-polymers for selective binding and detection of peptides. Polymer Chemistry, 2018, 9, 1066-1071.	1.9	18
166	Symbiotic Self-Assembly Strategy toward Lipid-Encased Cross-Linked Polymer Nanoparticles for Efficient Gene Silencing. ACS Applied Materials & amp; Interfaces, 2019, 11, 24971-24983.	4.0	18
167	Tunable enzyme responses in amphiphilic nanoassemblies through alterations in the unimer–aggregate equilibrium. Chemical Science, 2019, 10, 3018-3024.	3.7	18
168	Postfunctionalization of Noncationic RNA–Polymer Complexes for RNA Delivery. Industrial & Engineering Chemistry Research, 2019, 58, 6982-6991.	1.8	18
169	pH-Sensitive morphological transitions in polymeric tadpole assemblies for programmed tumor therapy. Journal of Controlled Release, 2019, 293, 1-9.	4.8	18
170	Disulfide Bridging Strategies in Viral and Nonviral Platforms for Nucleic Acid Delivery. Biochemistry, 2021, 60, 966-990.	1.2	18
171	Characterisation of a dipolar chromophore with third-harmonic generation applications in the near-IR. Journal of Materials Chemistry, 2012, 22, 4371.	6.7	17
172	Environment-Dependent Guest Exchange in Supramolecular Hosts. Langmuir, 2014, 30, 12384-12390.	1.6	17
173	Crystallinity and Morphology Effects on a Solvent-Processed Solar Cell Using a Triarylamine-Substituted Squaraine. ACS Applied Materials & Interfaces, 2014, 6, 11376-11384.	4.0	17
174	Utilizing Reversible Interactions in Polymeric Nanoparticles To Generate Hollow Metal–Organic Nanoparticles. Angewandte Chemie - International Edition, 2015, 54, 12991-12995.	7.2	17
175	Sequential nucleophilic "click―reactions for functional amphiphilic homopolymers. Polymer Chemistry, 2019, 10, 187-193.	1.9	17
176	Targeting CD4 ⁺ Cells with Anti-CD4 Conjugated Mertansine-Loaded Nanogels. Biomacromolecules, 2020, 21, 2473-2481.	2.6	17
177	Charge onversion Strategies for Nucleic Acid Delivery. Advanced Functional Materials, 2021, 31, 2011103.	7.8	17
178	Exogenous Introduction of Initiator and Executioner Caspases Results in Different Apoptotic Outcomes. Jacs Au, 2021, 1, 1240-1256.	3.6	17
179	Photophysical and Electrochemical Characterization of BODIPY-Containing Dyads Comparing the Influence of an A–D–A versus D–A Motif on Excited-State Photophysics. Journal of Physical Chemistry A, 2016, 120, 8794-8803.	1.1	16
180	Importance of Evaluating Dynamic Encapsulation Stability of Amphiphilic Assemblies in Serum. Biomacromolecules, 2017, 18, 4163-4170.	2.6	16

#	Article	IF	CITATIONS
181	Enzyme Catalysis in Nonâ€Native Environment with Unnatural Selectivity Using Polymeric Nanoreactors. Angewandte Chemie - International Edition, 2021, 60, 27189-27194.	7.2	16
182	Tuning Substrate Selectivity of a Cationic Enzyme Using Cationic Polymers. Langmuir, 2006, 22, 7695-7700.	1.6	15
183	Amphiphilic nanoassemblies for the detection of peptides and proteins using fluorescence and mass spectrometry. Analyst, The, 2009, 134, 635.	1.7	15
184	Matrix-Assisted Laser Desorption Ionization-Mass Spectrometry Signal Enhancement of Peptides after Selective Extraction with Polymeric Reverse Micelles. Analytical Chemistry, 2010, 82, 3686-3691.	3.2	15
185	The effect of heteroatom conformation on optoelectronic properties of cyclopentadithiophene derivatives. Organic and Biomolecular Chemistry, 2014, 12, 2474-2478.	1.5	15
186	Supramolecular assembly of crosslinkable monomers for degradable and fluorescent polymer nanoparticles. Journal of Materials Chemistry B, 2015, 3, 2858-2866.	2.9	15
187	Photoinduced heterodisulfide metathesis for reagent-free synthesis of polymer nanoparticles. Chemical Communications, 2015, 51, 1425-1428.	2.2	15
188	Cascaded Step-Growth Polymerization for Functional Polyamides with Diverse Architectures and Stimuli Responsive Characteristics. ACS Macro Letters, 2019, 8, 245-249.	2.3	15
189	Programmable Emulsions via Nucleophile-Induced Covalent Surfactant Modifications. Chemistry of Materials, 2020, 32, 4663-4671.	3.2	15
190	Ultrafast-pulse diagnostic using third-order frequency-resolved optical gating in organic films. Applied Physics Letters, 2004, 85, 3348-3350.	1.5	14
191	Photoactivation of Ligands for Extrinsically and Intrinsically Triggered Disassembly of Amphiphilic Nanoassemblies. Chemistry - A European Journal, 2018, 24, 1789-1794.	1.7	14
192	Protein–Antibody Conjugates (PACs): A Plugâ€andâ€Play Strategy for Covalent Conjugation and Targeted Intracellular Delivery of Pristine Proteins. Angewandte Chemie - International Edition, 2021, 60, 12813-12818.	7.2	14
193	Core Hydrophobicity of Supramolecular Nanoparticles Induces NLRP3 Inflammasome Activation. ACS Applied Materials & amp; Interfaces, 2021, 13, 45300-45314.	4.0	14
194	High T/sub g/ hole transport polymers for the fabrication of bright and efficient organic light-emitting devices with an air-stable cathode. IEEE Journal of Quantum Electronics, 2000, 36, 12-17.	1.0	13
195	Synthesis of difunctionalized dendrimers: an approach to main-chain poly(dendrimers). Tetrahedron Letters, 2002, 43, 7217-7220.	0.7	13
196	Comparison of AB2 and AB4 monomers in ferrocene-cored benzyl ether dendrimers. Tetrahedron, 2005, 61, 603-608.	1.0	13
197	Controlled functional group presentations in dendrimers as a tool to probe the hyperbranched architecture. New Journal of Chemistry, 2007, 31, 1052.	1.4	13
198	Generating Peptide Titration-Type Curves Using Polymeric Reverse Micelles As Selective Extraction Agents along with Matrix-Assisted Laser Desorption Ionization-Mass Spectrometry Detection. Analytical Chemistry, 2009, 81, 5046-5053.	3.2	13

#	Article	IF	CITATIONS
199	Propagation of Enzymeâ€Induced Surface Events inside Polymer Nanoassemblies for a Fast and Tunable Response. Angewandte Chemie - International Edition, 2018, 57, 7111-7115.	7.2	13
200	Biodistribution Analysis of NIR-Labeled Nanogels Using <i>in Vivo</i> FMT Imaging in Triple Negative Human Mammary Carcinoma Models. Molecular Pharmaceutics, 2018, 15, 1180-1191.	2.3	13
201	In Situ Formation of Polymeric Nanoassemblies Using an Efficient Reversible Click Reaction. Angewandte Chemie - International Edition, 2020, 59, 15135-15140.	7.2	13
202	Construction from Destruction: Hydrogel Formation from Triggered Depolymerization-Based Release of an Enzymatic Catalyst. ACS Macro Letters, 2020, 9, 377-381.	2.3	13
203	Synergistic Interplay of Covalent and Non ovalent Interactions in Reactive Polymer Nanoassembly Facilitates Intracellular Delivery of Antibodies. Angewandte Chemie, 2021, 133, 1849-1858.	1.6	13
204	Synthesis of dendrimers with multifunctional periphery using an ABB′ monomerElectronic supplementary information (ESI) available: experimental details. See http://www.rsc.org/suppdata/cc/b2/b212206p/. Chemical Communications, 2003, , 796-797.	2.2	12
205	BODIPY dyads and triads: synthesis, optical, electrochemical and transistor properties. Chemistry Central Journal, 2018, 12, 60.	2.6	12
206	Influence of Polymer Structure and Architecture on Drug Loading and Redox-Triggered Release. Biomacromolecules, 2022, 23, 339-348.	2.6	12
207	Design and Synthesis of Nonconjugated Monodendrons with Triarylamine Repeating Units. Organic Letters, 2001, 3, 2057-2060.	2.4	11
208	Site-Specific Installation and Study of Electroactive Units in Every Layer of Dendrons. Journal of Organic Chemistry, 2009, 74, 9475-9485.	1.7	11
209	Synthesis and characterization of phenolâ€based biaryl proton conducting polymers. Journal of Polymer Science Part A, 2012, 50, 1187-1196.	2.5	11
210	Zwitterionic Moieties from the Huisgen Reaction: A Case Study with Amphiphilic Dendritic Assemblies. Chemistry - A European Journal, 2013, 19, 16374-16381.	1.7	11
211	CD28 Signaling Drives Notch Ligand Expression on CD4 T Cells. Frontiers in Immunology, 2020, 11, 735.	2.2	11
212	A styrene based water soluble polymer as a reaction medium for photodimerization of aromatic hydrocarbons in water. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 185, 168-171.	2.0	10
213	Synthesis and properties of thienopyrrole based heteroacenes – indolodibenzothienopyrrole and dicarbazolodithienopyrrole. Organic and Biomolecular Chemistry, 2012, 10, 3455.	1.5	10
214	Effective Tuning of Ketocyanine Derivatives through Acceptor Substitution. Chemistry - A European Journal, 2015, 21, 7721-7725.	1.7	10
215	Polyamide Nanogels from Generally Recognized as Safe Components and Their Toxicity in Mouse Preimplantation Embryos. Biomacromolecules, 2015, 16, 3491-3498.	2.6	10
216	Probing the periphery of dendrimers by heterogeneous electron transfer. Chemical Communications, 2007, , 739.	2.2	9

#	Article	IF	CITATIONS
217	Smaller Building Blocks Form Larger Assemblies:  Aggregation Behavior of Biaryl-Based Dendritic Facial Amphiphiles. Journal of Organic Chemistry, 2007, 72, 8167-8174.	1.7	9
218	Dye Encapsulation in Polynorbornene Micelles. Langmuir, 2015, 31, 9707-9717.	1.6	9
219	Three-Component Dynamic Covalent Chemistry: From Janus Small Molecules to Functional Polymers. Journal of the American Chemical Society, 2021, 143, 20735-20746.	6.6	9
220	Supramolecular Displacement-Mediated Activation of a Silent Fluorescence Probe for Label-Free Ligand Screening. Journal of the American Chemical Society, 2012, 134, 7235-7237.	6.6	8
221	Influence of Charge Density on Host–Guest Interactions within Amphiphilic Polymer Assemblies in Apolar Media. Macromolecules, 2017, 50, 9734-9741.	2.2	8
222	Molecular Features Influencing the Release of Peptides from Amphiphilic Polymeric Reverse Micelles. Langmuir, 2018, 34, 4595-4602.	1.6	8
223	Lipogels for Encapsulation of Hydrophilic Proteins and Hydrophobic Small Molecules. Biomacromolecules, 2018, 19, 132-140.	2.6	8
224	Polymer with Competing Depolymerization Pathways: Chain Unzipping versus Chain Scission. ACS Macro Letters, 2020, 9, 855-859.	2.3	8
225	Polymer-mediated ternary supramolecular interactions for sensitive detection of peptides. Analyst, The, 2017, 142, 118-122.	1.7	7
226	Understanding functional group and assembly dynamics in temperature responsive systems leads to design principles for enzyme responsive assemblies. Nanoscale, 2021, 13, 11568-11575.	2.8	7
227	Evaluation of Cellular Targeting by Fab′ vs Full-Length Antibodies in Antibody–Nanoparticle Conjugates (ANCs) Using CD4 T-cells. Bioconjugate Chemistry, 2022, , .	1.8	7
228	What's Next after Lipid Nanoparticles? A Perspective on Enablers of Nucleic Acid Therapeutics. Bioconjugate Chemistry, 2022, 33, 1996-2007.	1.8	7
229	Nano-Armoring of Enzymes. Methods in Enzymology, 2017, 590, 381-411.	0.4	6
230	Improved mass spectrometric detection of acidic peptides by variations in the functional group p <i>K</i> _a values of reverse micelle extraction agents. Analyst, The, 2018, 143, 1434-1443.	1.7	6
231	Supramolecular Polymeric Assemblies for the Selective Depletion of Abundant Acidic Proteins in Serum. ACS Applied Materials & Interfaces, 2018, 10, 40443-40451.	4.0	6
232	Water Permeability and Elastic Properties of an Archaea Inspired Lipid Synthesized by Click Chemistry. Chemistry of Materials, 2018, 30, 3618-3622.	3.2	6
233	Three-Component Sequential Reactions for Polymeric Nanoparticles with Tailorable Core and Surface Functionalities. CheM, 2019, 5, 3166-3183.	5.8	6
234	Role of Oligoethylene Glycol Side Chain Length in Responsive Polymeric Nanoassemblies. Langmuir, 2019, 35, 7929-7936.	1.6	6

#	Article	IF	CITATIONS
235	Efficient enrichment of glycopeptides by supramolecular nanoassemblies that use proximity-assisted covalent binding. Analyst, The, 2019, 144, 6321-6326.	1.7	6
236	Polymeric nanoassemblies for enrichment and detection of peptides and proteins in human breast milk. Analytical and Bioanalytical Chemistry, 2020, 412, 1027-1035.	1.9	6
237	Cellular―and Subcellularâ€Targeted Delivery Using a Simple Allâ€inâ€One Polymeric Nanoassembly. Angewandte Chemie, 2020, 132, 23672-23676.	1.6	6
238	Disassembly of polymeric nanoparticles with enzyme-triggered polymer unzipping: polyelectrolyte complexes <i>vs.</i> amphiphilic nanoassemblies. Chemical Communications, 2020, 56, 8456-8459.	2.2	6
239	Covalent Labeling with an $\hat{l}\pm,\hat{l}^2$ -Unsaturated Carbonyl Scaffold for Studying Protein Structure and Interactions by Mass Spectrometry. Analytical Chemistry, 2020, 92, 6637-6644.	3.2	6
240	Cellular AND Gates: Synergistic Recognition to Boost Selective Uptake of Polymeric Nanoassemblies. Angewandte Chemie, 2020, 132, 10542-10546.	1.6	6
241	Tracking exogenous intracellular caspâ€3 using split GFP. Protein Science, 2021, 30, 366-380.	3.1	6
242	Evaluating Endosomal Escape of Caspase-3-Containing Nanomaterials Using Split GFP. Biomacromolecules, 2021, 22, 1261-1272.	2.6	6
243	Toward Chemotactic Supramolecular Nanoparticles: From Autonomous Surface Motion Following Specific Chemical Gradients to Multivalency-Controlled Disassembly. ACS Nano, 2021, 15, 16149-16161.	7.3	6
244	Globular Organization of Multifunctional Linear Homopolymer Using Trifunctional Molecules. Macromolecules, 2007, 40, 4267-4275.	2.2	5
245	Inclusion Complexes between Amphiphilic Phenyleneethynylene Fluorophores and Cyclodextrins in Aqueous Media. Journal of Physical Chemistry B, 2012, 116, 12268-12274.	1.2	5
246	Altering the Peptide Binding Selectivity of Polymeric Reverse Micelle Assemblies via Metal Ion Loading. Langmuir, 2017, 33, 14004-14010.	1.6	5
247	Evaluation of carboxylic, phosphonic, and sulfonic acid protogenic moieties on tunable poly(<i>meta</i> â€phenylene oxide) ionomer scaffolds. Journal of Polymer Science Part A, 2019, 57, 2209-2213.	2.5	5
248	Supramolecular antibiotics: a strategy for conversion of broad-spectrum to narrow-spectrum antibiotics for <i>Staphylococcus aureus</i> . Nanoscale, 2020, 12, 20693-20698.	2.8	5
249	Charge Mobility in Nonconjugated Dendrons with Charge Transport Functionality in Every Layer. Journal of Physical Chemistry Letters, 2010, 1, 1116-1121.	2.1	4
250	Triblock–Diblock Composite Nanoassemblies with Sequentially Addressable Host–Guest Properties for Hydrophobics and Hydrophilics. ACS Macro Letters, 2020, 9, 1019-1023.	2.3	4
251	In Situ Formation of Polymeric Nanoassemblies Using an Efficient Reversible Click Reaction. Angewandte Chemie, 2020, 132, 15247-15252.	1.6	4
252	Excimer–monomer fluorescence changes by supramolecular disassembly for protein sensing and quantification. Chemical Communications, 2021, 57, 9776-9779.	2.2	4

#	Article	IF	CITATIONS
253	Azideâ€Terminated RAFT Polymers for Biological Applications. Current Protocols in Chemical Biology, 2020, 12, e85.	1.7	4
254	Selfâ€assembly of polymers from multicomponent reactions. Polymer International, 2022, 71, 562-568.	1.6	4
255	<title>Electrochemical models for the radical annihilation reactions in organic light-emitting diodes</title> . , 1998, , .		3
256	Structure and Self-Assembly of Amphiphilic Dendrimers in Water. , 0, , 259-306.		3
257	Glycodendrimers and other Macromolecules Bearing Multiple Carbohydrates. , 0, , 335-358.		3
258	Making sense of disassembly. Nature Chemistry, 2009, 1, 523-524.	6.6	3
259	Supramolecular Assemblies from Amphiphilic Dendrons for Sensing Metalloproteins through Pattern Generation. Israel Journal of Chemistry, 2009, 49, 41-47.	1.0	3
260	Effect of titanium oxide–polystyrene nanocomposite dielectrics on morphology and thin film transistor performance for organic and polymeric semiconductors. Thin Solid Films, 2012, 520, 6262-6267.	0.8	3
261	Programmable Nanoassemblies from Nonâ€Assembling Homopolymers Using Adâ€Hoc Electrostatic Interactions. Angewandte Chemie, 2017, 129, 4209-4213.	1.6	3
262	Supramolecular Polymers in Nanomedicine. , 2017, , 227-254.		3
263	Spatiotemporal control over the host–guest characteristics of a stimulus-triggerable trifunctional polymer assembly. Polymer Chemistry, 2019, 10, 1423-1430.	1.9	3
264	Enzyme-Triggered Nanomaterials and Their Applications. ACS Symposium Series, 2020, , 95-107.	0.5	3
265	Hypersound-Assisted Size Sorting of Microparticles on Inkjet-Patterned Protein Films. Langmuir, 2021, 37, 2826-2832.	1.6	3
266	Enzyme Catalysis in Nonâ€Native Environment with Unnatural Selectivity Using Polymeric Nanoreactors. Angewandte Chemie, 2021, 133, 27395-27400.	1.6	3
267	Multiplexed Analysis of the Cellular Uptake of Polymeric Nanocarriers. Analytical Chemistry, 2022, 94, 7901-7908.	3.2	3
268	Polymeric Capsules: Catalysis and Drug Delivery. , 0, , 179-205.		2
269	Effect of incorporating flat aromatic molecules on spherical polymeric nanoparticles. Chemical Communications, 2017, 53, 5190-5192.	2.2	2
270	Fluorescence Enhancement Through Incorporation of Chromophores in Polymeric Nanoparticles. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 407-413.	1.9	2

#	Article	IF	CITATIONS
271	The design of molecules with large two-photon absorptivities. , 0, , .		1
272	Two photon absorbing chromophores for broadband optical limiting. , 0, , .		1
273	A Brief Introduction to Supramolecular Chemistry in a Polymer Context. , 0, , 1-7.		1
274	Molecular Recognition Using Amphiphilic Macromolecules. , 0, , 9-36.		1
275	Polymer-Mediated Assembly of Nanoparticles Using Engineered Interactions. , 0, , 137-155.		1
276	Bioinspired Supramolecular Design in Polymers for Advanced Mechanical Properties. , 0, , 235-258.		1
277	Supramolecular Polymerization of Peptides and Peptide Derivatives: Nanofibrous Materials. , 0, , 359-393.		1
278	Protein–Antibody Conjugates (PACs): A Plugâ€andâ€Play Strategy for Covalent Conjugation and Targeted Intracellular Delivery of Pristine Proteins. Angewandte Chemie, 2021, 133, 12923-12928.	1.6	1
279	Triggered interactions between nanoparticles and lipid membranes: design principles for gel formation or disruption-and-release. Soft Matter, 2021, 17, 7069-7075.	1.2	1
280	Multichannel dual protein sensing using amphiphilic supramolecular assemblies. Chemical Communications, 2021, 57, 12828-12831.	2.2	1
281	Molecules with enhanced two-photon absorptivities for two-photon optical recording in photopolymers. , 1998, , .		Ο
282	Structure/property relationships for two-photon absorbing fluorophores. , 1998, , .		0
283	<title>Hybrid bilayer organic light-emitting devices based on high Tg hole transport polymers</title> . , 1999, 3623, 20.		0
284	Systematic wavelength dependence of the photodegradation of polymers doped with electro-optic chromophores. , 0, , .		0
285	Systematic wavelength dependence of the photodegradation of polymers doped with electro-optic chromophores. , 0, , .		0
286	Two-photon spectroscopy of symmetric donor/acceptor substituted conjugated molecules. , 0, , .		0
287	Effect of aryl substitution on the hole mobility of bis-diarylaminobiphenyl-doped polymer composites. , 2002, , .		0
288	A Mild Deprotection Strategy for Allyl-Protecting Groups and Its Implications in Sequence Specific Dendrimer Synthesis ChemInform, 2003, 34, no.	0.1	0

#	Article	IF	CITATIONS
289	Synthesis of Dendrimers with Multifunctional Periphery Using an ABB′ Monomer ChemInform, 2003, 34, no.	0.1	0
290	Dendritic Nanostructures for Cancer Therapy. , 2006, , 509-530.		0
291	Supramolecular Control of Mechanical Properties in Single Molecules, Interfaces, and Macroscopic Materials. , 0, , 37-62.		0
292	Hydrogen Bond Functionalized Block Copolymers and Telechelic Oligomers. , 0, , 63-102.		0
293	Noncovalent Side Chain Modification. , 0, , 103-136.		0
294	Sequence-Specific Hydrogen Bonded Units for Directed Association, Assembly, and Ligation. , 0, , 207-234.		0
295	Colorimetric Sensing and Biosensing Using Functionalized Conjugated Polymers. , 0, , 307-334.		0
296	Propagation of Enzymeâ€Induced Surface Events inside Polymer Nanoassemblies for a Fast and Tunable Response. Angewandte Chemie, 2018, 130, 7229-7233.	1.6	0
297	Tuning <i>N</i> , <i>N</i> -Diarylanilinosquaraine Crystal Packing: <i>n</i> -Hexylaryl and Fluoroaryl Substitution. Crystal Growth and Design, 2019, 19, 3633-3638.	1.4	0
298	Ultra-fast correlation techniques using efficient third-harmonic generation in organic films. , 2003, , .		0
299	Design of New Two-Photon Absorbing Fluorophores. , 1998, , .		0
300	Effect of environmental factors on the photodegradation of azobenzene doped polymers. , 1999, , .		0