Herminia Dominguez GonzÃ;lez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5494643/publications.pdf

Version: 2024-02-01

255 papers 14,984 citations

61 h-index 22166 113 g-index

261 all docs

261 docs citations

times ranked

261

13047 citing authors

#	Article	IF	CITATIONS
1	Natural antioxidants from residual sources. Food Chemistry, 2001, 72, 145-171.	8.2	1,325
2	Hydrothermal processing of lignocellulosic materials. European Journal of Wood and Wood Products, 1999, 57, 191-202.	2.9	692
3	Xylooligosaccharides: manufacture and applications. Trends in Food Science and Technology, 2000, 11, 387-393.	15.1	549
4	Advances in the manufacture, purification and applications of xylo-oligosaccharides as food additives and nutraceuticals. Process Biochemistry, 2006, 41, 1913-1923.	3.7	444
5	Functionality of oilseed protein products: A review. Food Research International, 2006, 39, 945-963.	6.2	433
6	Recovery, concentration and purification of phenolic compounds by adsorption: A review. Journal of Food Engineering, $2011, 105, 1-27$.	5.2	391
7	Antimicrobial Action of Compounds from Marine Seaweed. Marine Drugs, 2016, 14, 52.	4.6	381
8	Mild autohydrolysis: an environmentally friendly technology for xylooligosaccharide production from wood. Journal of Chemical Technology and Biotechnology, 1999, 74, 1101-1109.	3.2	334
9	Antioxidant properties of ultrafiltration-recovered soy protein fractions from industrial effluents and their hydrolysates. Process Biochemistry, 2006, 41, 447-456.	3.7	334
10	In vitro antioxidant properties of crude extracts and compounds from brown algae. Food Chemistry, 2013, 138, 1764-1785.	8.2	333
11	Supercritical CO2Extraction and Purification of Compounds with Antioxidant Activity. Journal of Agricultural and Food Chemistry, 2006, 54, 2441-2469.	5.2	264
12	Autohydrolysis of corncob: study of non-isothermal operation for xylooligosaccharide production. Journal of Food Engineering, 2002, 52, 211-218.	5. 2	236
13	Biotechnological production of xylitol. Part 3: Operation in culture media made from lignocellulose hydrolysates. Bioresource Technology, 1998, 66, 25-40.	9.6	219
14	Biotechnological production of xylitol. Part 1: Interest of xylitol and fundamentals of its biosynthesis. Bioresource Technology, 1998, 65, 191-201.	9.6	206
15	Production of xylooligosaccharides by autohydrolysis of lignocellulosic materials. Trends in Food Science and Technology, 2004, 15, 115-120.	15.1	191
16	Enzymatic pretreatment to enhance oil extraction from fruits and oilseeds: a review. Food Chemistry, 1994, 49, 271-286.	8.2	179
17	Kinetic modelling of corncob autohydrolysis. Process Biochemistry, 2001, 36, 571-578.	3.7	179
18	Microwave assisted water extraction of plant compounds. Journal of Chemical Technology and Biotechnology, 2015, 90, 590-607.	3.2	166

#	Article	IF	CITATIONS
19	Evaluation of Extracts fromGevuina avellanaHulls as Antioxidants. Journal of Agricultural and Food Chemistry, 2000, 48, 3890-3897.	5.2	165
20	Fractional characterisation of jatropha, neem, moringa, trisperma, castor and candlenut seeds as potential feedstocks for biodiesel production in Cuba. Biomass and Bioenergy, 2010, 34, 533-538.	5.7	150
21	Study on the deacetylation of hemicelluloses during the hydrothermal processing of Eucalyptus wood. European Journal of Wood and Wood Products, 2001, 59, 53-59.	2.9	140
22	Relevance of Natural Phenolics from Grape and Derivative Products in the Formulation of Cosmetics. Cosmetics, 2015, 2, 259-276.	3.3	130
23	Generation of xylose solutions from Eucalyptus globulus wood by autohydrolysis–posthydrolysis processes: posthydrolysis kinetics. Bioresource Technology, 2001, 79, 155-164.	9.6	120
24	Assessment on the Fermentability of Xylooligosaccharides from Rice Husks by Probiotic Bacteria. Journal of Agricultural and Food Chemistry, 2008, 56, 7482-7487.	5.2	119
25	Improved xylitol production with Debaryomyces hansenii Y-7426 from raw or detoxified wood hydrolysates. Enzyme and Microbial Technology, 1997, 21, 18-24.	3.2	118
26	Integral Utilization of Red Seaweed for Bioactive Production. Marine Drugs, 2019, 17, 314.	4.6	117
27	Ultra- and nanofiltration of aqueous extracts from distilled fermented grape pomace. Journal of Food Engineering, 2009, 91, 587-593.	5.2	115
28	Refining of autohydrolysis liquors for manufacturing xylooligosaccharides: evaluation of operational strategies. Bioresource Technology, 2005, 96, 889-896.	9.6	113
29	Recent developments on the extraction and application of ursolic acid. A review. Food Research International, 2018, 103, 130-149.	6.2	113
30	Antioxidant activity of the phenolic compounds released by hydrothermal treatments of olive tree pruning. Food Chemistry, 2009, 114, 806-812.	8.2	112
31	Antioxidant and Antimicrobial Effects of Extracts from Hydrolysates of Lignocellulosic Materials. Journal of Agricultural and Food Chemistry, 2001, 49, 2459-2464.	5.2	110
32	Seaweed biorefinery. Reviews in Environmental Science and Biotechnology, 2019, 18, 335-388.	8.1	109
33	Autohydrolysis of agricultural residues: Study of reaction byproducts. Bioresource Technology, 2007, 98, 1951-1957.	9.6	105
34	Solvent extraction of hemicellulosic wood hydrolysates: a procedure useful for obtaining both detoxified fermentation media and polyphenols with antioxidant activity. Food Chemistry, 1999, 67, 147-153.	8.2	102
35	Antioxidant activity of byproducts from the hydrolytic processing of selected lignocellulosic materials. Trends in Food Science and Technology, 2004, 15, 191-200.	15.1	102
36	Bioconversion of posthydrolysed autohydrolysis liquors: an alternative for xylitol production from corn cobs. Enzyme and Microbial Technology, 2002, 31, 431-438.	3.2	101

#	Article	IF	CITATIONS
37	A green approach for alginate extraction from Sargassum muticum brown seaweed using ultrasound-assisted technique. International Journal of Biological Macromolecules, 2019, 124, 451-459.	7.5	101
38	Simultaneous Extraction and Depolymerization of Fucoidan from Sargassum muticum in Aqueous Media. Marine Drugs, 2013, 11, 4612-4627.	4.6	91
39	Interpretation of deacetylation and hemicellulose hydrolysis during hydrothermal treatments on the basis of the severity factor. Process Biochemistry, 2002, 37, 1067-1073.	3.7	90
40	Charcoal adsorption of wood hydrolysates for improving their fermentability: Influence of the operational conditions. Bioresource Technology, 1996, 57, 179-185.	9.6	87
41	Application of hull, bur and leaf chestnut extracts on the shelf-life of beef patties stored under MAP: Evaluation of their impact on physicochemical properties, lipid oxidation, antioxidant, and antimicrobial potential. Food Research International, 2018, 112, 263-273.	6.2	86
42	Ulva lactuca, A Source of Troubles and Potential Riches. Marine Drugs, 2019, 17, 357.	4.6	85
43	Extraction of antioxidants from several berries pressing wastes using conventional and supercritical solvents. European Food Research and Technology, 2010, 231, 669-677.	3.3	84
44	Processing of Rice Husk Autohydrolysis Liquors for Obtaining Food Ingredients. Journal of Agricultural and Food Chemistry, 2004, 52, 7311-7317.	5.2	82
45	Biotechnological production of xylitol. Part 2: Operation in culture media made with commercial sugars. Bioresource Technology, 1998, 65, 203-212.	9.6	79
46	Production of Substituted Oligosaccharides by Hydrolytic Processing of Barley Husks. Industrial & Lamp; Engineering Chemistry Research, 2004, 43, 1608-1614.	3.7	78
47	Antioxidant activity of extracts from Gevuina avellana and Rosa rubiginosa defatted seeds. Food Research International, 2001, 34, 103-109.	6.2	77
48	Valorization of Sargassum muticum Biomass According to the Biorefinery Concept. Marine Drugs, 2015, 13, 3745-3760.	4.6	77
49	Supercritical CO2 extraction of fatty acids, phenolics and fucoxanthin from freeze-dried Sargassum muticum. Journal of Applied Phycology, 2015, 27, 957-964.	2.8	77
50	Potential of antioxidant extracts produced by aqueous processing of renewable resources for the formulation of cosmetics. Industrial Crops and Products, 2014, 58, 104-110.	5. 2	74
51	Enzyme-assisted hexane extraction of soya bean oil. Food Chemistry, 1995, 54, 223-231.	8.2	72
52	Production of antioxidants from Eucalyptus globulus wood by solvent extraction of hemicellulose hydrolysates. Food Chemistry, 2004, 84, 243-251.	8.2	72
53	Membrane-Assisted Processing of Xylooligosaccharide-Containing Liquors. Journal of Agricultural and Food Chemistry, 2006, 54, 5430-5436.	5.2	72
54	Hydrothermal fractionation of Sargassum muticum biomass. Journal of Applied Phycology, 2012, 24, 1569-1578.	2.8	72

#	Article	IF	CITATIONS
55	Ultrasound-assisted extraction of fucoidan from Sargassum muticum. Journal of Applied Phycology, 2017, 29, 1553-1561.	2.8	72
56	Production of antioxidants by non-isothermal autohydrolysis of lignocellulosic wastes. LWT - Food Science and Technology, 2011, 44, 436-442.	5.2	71
57	Manufacture and Refining of Oligosaccharides from Industrial Solid Wastes. Industrial & Samp; Engineering Chemistry Research, 2005, 44, 614-620.	3.7	70
58	Potential of intensification techniques for the extraction and depolymerization of fucoidan. Algal Research, 2018, 30, 128-148.	4.6	69
59	Microwave hydrodiffusion and gravity processing of Sargassum muticum. Process Biochemistry, 2014, 49, 981-988.	3.7	65
60	Membrane concentration of antioxidants from Castanea sativa leaves aqueous extracts. Chemical Engineering Journal, 2011, 175, 95-102.	12.7	64
61	Production of xylitol from concentrated wood hydrolysates by Debaryomyces hansenii: Effect of the initial cell concentration. Biotechnology Letters, 1996, 18, 593-598.	2.2	62
62	Valorisation of waste fractions from autohydrolysis of selected lignocellulosic materials. Journal of Chemical Technology and Biotechnology, 2003, 78, 392-398.	3.2	62
63	Preparation of fermentation media from agricultural wastes and their bioconversion into xylitol. Food Biotechnology, 2000, 14, 79-97.	1.5	60
64	Effects of Eucalyptus globulus Wood Autohydrolysis Conditions on the Reaction Products. Journal of Agricultural and Food Chemistry, 2007, 55, 9006-9013.	5.2	59
65	Evaluation of ultra- and nanofiltration for refining soluble products from rice husk xylan. Bioresource Technology, 2008, 99, 5341-5351.	9.6	57
66	Recovery of bioactive and gelling extracts from edible brown seaweed Laminaria ochroleuca by non-isothermal autohydrolysis. Food Chemistry, 2019, 277, 353-361.	8.2	57
67	Enzymatic saccharification of alkali-treated sunflower hulls. Bioresource Technology, 1994, 49, 53-59.	9.6	56
68	Optimization of the enzymatic treatment during aqueous oil extraction from sunflower seeds. Food Chemistry, 1998, 61, 467-474.	8.2	56
69	Assessment of the Production of Antioxidants from Winemaking Waste Solids. Journal of Agricultural and Food Chemistry, 2004, 52, 5612-5620.	5.2	56
70	Bioactive Properties of Marine Phenolics. Marine Drugs, 2020, 18, 501.	4.6	56
71	Aqueous processing of sunflower kernels with enzymatic technology. Food Chemistry, 1995, 53, 427-434.	8.2	55
72	Functional ingredients from algae for foods and nutraceuticals. , 2013, , .		55

#	Article	IF	Citations
73	Successful Approaches for a Red Seaweed Biorefinery. Marine Drugs, 2019, 17, 620.	4.6	54
74	Comparative environmental assessment of valorization strategies of the invasive macroalgae Sargassum muticum. Bioresource Technology, 2014, 161, 137-148.	9.6	52
75	Characterization, refining and antioxidant activity of saccharides derived from hemicelluloses of wood and rice husks. Food Chemistry, 2013, 141, 495-502.	8.2	51
76	Non-isothermal autohydrolysis of barley husks: Product distribution and antioxidant activity of ethyl acetate soluble fractions. Journal of Food Engineering, 2008, 84, 544-552.	5.2	50
77	Xylitol production from Eucalyptus wood hydrolysates extracted with organic solvents. Process Biochemistry, 1997, 32, 599-604.	3.7	48
78	Membrane processing of liquors from Eucalyptus globulus autohydrolysis. Journal of Food Engineering, 2008, 87, 257-265.	5.2	48
79	Recovery of antioxidants from industrial waste liquors using membranes and polymeric resins. Journal of Food Engineering, 2010, 96, 127-133.	5.2	48
80	Recovery and Concentration of Antioxidants from Winery Wastes. Molecules, 2012, 17, 3008-3024.	3.8	47
81	Enhancing the potential of oligosaccharides from corncob autohydrolysis as prebiotic food ingredients. Industrial Crops and Products, 2006, 24, 152-159.	5.2	45
82	Fractionation of Antioxidants from Autohydrolysis of Barley Husks. Journal of Agricultural and Food Chemistry, 2008, 56, 10651-10659.	5.2	45
83	Batch and fixed bed column studies on phenolic adsorption from wine vinasses by polymeric resins. Journal of Food Engineering, 2017, 209, 52-60.	5.2	45
84	Fractionation and Enzymatic Hydrolysis of Soluble Protein Present in Waste Liquors from Soy Processing. Journal of Agricultural and Food Chemistry, 2005, 53, 7600-7608.	5.2	44
85	Antioxidant activity of extracts produced by solvent extraction of almond shells acid hydrolysates. Food Chemistry, 2007, 101, 193-201.	8.2	44
86	Oil extractability from enzymatically treated soybean and sunflower: range of operational variables. Food Chemistry, 1993, 46, 277-284.	8.2	43
87	Manufacture of Xylose-Based Fermentation Media from Corncobs by Posthydrolysis of Autohydrolysis Liquors. Applied Biochemistry and Biotechnology, 2001, 95, 195-208.	2.9	43
88	Study of the seasonal variation on proximate composition of oven-dried Sargassum muticum biomass collected in Vigo Ria, Spain. Journal of Applied Phycology, 2016, 28, 1943-1953.	2.8	42
89	Title is missing!. World Journal of Microbiology and Biotechnology, 2001, 17, 817-822.	3.6	38
90	Microwave hydrodiffusion and gravity (MHG) processing of Laminaria ochroleuca brown seaweed. Journal of Cleaner Production, 2018, 197, 1108-1116.	9.3	38

#	Article	IF	CITATIONS
91	Applying Seaweed Compounds in Cosmetics, Cosmeceuticals and Nutricosmetics. Marine Drugs, 2021, 19, 552.	4.6	38
92	Anti-oxidant activity of isolates from acid hydrolysates of Eucalyptus globulus wood. Food Chemistry, 2005, 90, 503-511.	8.2	37
93	Charcoal adsorption of phenolic compounds present in distilled grape pomace. Journal of Food Engineering, 2008, 84, 156-163.	5.2	37
94	What is new on the hop extraction?. Trends in Food Science and Technology, 2019, 93, 12-22.	15.1	37
95	The microwave assisted extraction sway on the features of antioxidant compounds and gelling biopolymers from Mastocarpus stellatus. Algal Research, 2020, 51, 102081.	4.6	37
96	Subcritical Water for the Extraction and Hydrolysis of Protein and Other Fractions in Biorefineries from Agro-food Wastes and Algae: a Review. Food and Bioprocess Technology, 2021, 14, 373-387.	4.7	37
97	Antiviral Activity of Carrageenans and Processing Implications. Marine Drugs, 2021, 19, 437.	4.6	37
98	Enzymatic treatment of sunflower kernels before oil extraction. Food Research International, 1995, 28, 537-545.	6.2	36
99	Influence of molecular weight on the properties of Sargassum muticum fucoidan. Algal Research, 2019, 38, 101393.	4.6	36
100	Title is missing!. Biotechnology Letters, 2000, 22, 1895-1898.	2.2	35
101	Antioxidant activity of liquors from steam explosion of Olea europea wood. Wood Science and Technology, 2008, 42, 579-592.	3.2	35
102	Trends in kiwifruit and byproducts valorization. Trends in Food Science and Technology, 2021, 107, 401-414.	15.1	35
103	Algae Polysaccharides' Chemical Characterization and their Role in the Inflammatory Process. Current Medicinal Chemistry, 2017, 24, 149-175.	2.4	35
104	Hydrolytic Processing of Rice Husks in Aqueous Media: A Kinetic Assessment. Collection of Czechoslovak Chemical Communications, 2002, 67, 509-530.	1.0	34
105	ENZYMATIC PROCESSING OF CRUDE XYLOOLIGOMER SOLUTIONS OBTAINED BY AUTOHYDROLYSIS OF EUCALYPTUS WOOD. Food Biotechnology, 2002, 16, 91-105.	1.5	34
106	NH4OH-Based pretreatment for improving the nutritional quality of single-cell protein (SCP). Applied Biochemistry and Biotechnology, 1995, 55, 133-149.	2.9	32
107	Extraction and functionality of membrane-concentrated protein from defatted Rosa rubiginosa seeds. Food Chemistry, 2001, 74, 327-339.	8.2	32
108	Optimization of antioxidants – Extraction from Castanea sativa leaves. Chemical Engineering Journal, 2012, 203, 101-109.	12.7	32

#	Article	IF	Citations
109	Extraction of low-molar-mass phenolics and lipophilic compounds from Pinus pinaster wood with compressed CO2. Journal of Supercritical Fluids, 2013, 81, 193-199.	3.2	32
110	Thermal stability of antioxidants obtained from wood and industrial wastes. Food Chemistry, 2007, 100, 1059-1064.	8.2	30
111	In vitro bioactive properties of phlorotannins recovered from hydrothermal treatment of Sargassum muticum. Separation and Purification Technology, 2016, 167, 117-126.	7.9	30
112	A membrane process for the recovery of a concentrated phenolic product from white vinasses. Chemical Engineering Journal, 2017, 327, 210-217.	12.7	30
113	Biorefinery concept for discarded potatoes: Recovery of starch and bioactive compounds. Journal of Food Engineering, 2020, 275, 109886.	5.2	30
114	Prehydrolysis of Eucalyptus wood with dilute sulphuric acid: operation in autoclave. European Journal of Wood and Wood Products, 1994, 52, 102-108.	2.9	29
115	Characterisation of protein concentrates from pressed cakes of Guevina avellana (Chilean hazelnut). Food Chemistry, 2002, 78, 179-186.	8.2	29
116	Purified Phenolics from Hydrothermal Treatments of Biomass: Ability To Protect Sunflower Bulk Oil and Model Food Emulsions from Oxidation. Journal of Agricultural and Food Chemistry, 2011, 59, 9158-9165.	5.2	29
117	Ethanol extraction of polyphenols in an immersion extractor. Effect of pulsing flow. JAOCS, Journal of the American Oil Chemists' Society, 1996, 73, 1121-1125.	1.9	28
118	Xylitol Production from Wood Hydrolyzates by Entrapped Debaryomyces hansenii and Candida guilliermondii Cells. Applied Biochemistry and Biotechnology, 1999, 81, 119-130.	2.9	28
119	Edible Brown Seaweed in Gluten-Free Pasta: Technological and Nutritional Evaluation. Foods, 2019, 8, 622.	4.3	28
120	Prehydrolysis of Eucalyptus wood with dilute sulphuric acid: operation at atmospheric pressure. European Journal of Wood and Wood Products, 1993, 51, 357-363.	2.9	27
121	Flowers of Ulex europaeus L. – Comparing two extraction techniques (MHG and distillation). Comptes Rendus Chimie, 2016, 19, 718-725.	0.5	26
122	Cosmetics from Marine Sources. , 2015, , 1015-1042.		25
123	Retrieving of high-value biomolecules from edible Himanthalia elongata brown seaweed using hydrothermal processing. Food and Bioproducts Processing, 2019, 117, 275-286.	3.6	25
124	Fucoidans: The importance of processing on their anti-tumoral properties. Algal Research, 2020, 45, 101748.	4.6	25
125	Antioxidant activity of liquors from aqueous treatments of Pinus radiata wood. Wood Science and Technology, 2005, 39, 129-139.	3.2	24
126	Purification of oligosaccharides from rice husk autohydrolysis liquors by ultra- and nano-filtration. Desalination, 2006, 199, 541-543.	8.2	24

#	Article	IF	CITATIONS
127	Valorization of chestnut husks by non-isothermal hydrolysis. Industrial Crops and Products, 2012, 36, 172-176.	5.2	24
128	Potential use of Cytisus scoparius extracts in topical applications for skin protection against oxidative damage. Journal of Photochemistry and Photobiology B: Biology, 2013, 125, 83-89.	3.8	24
129	Photodamage attenuation effect by a tetraprenyltoluquinol chromane meroterpenoid isolated from Sargassum muticum. Journal of Photochemistry and Photobiology B: Biology, 2015, 148, 51-58.	3 . 8	24
130	Ethanolic extraction of sunflower oil in a pulsing extractor. JAOCS, Journal of the American Oil Chemists' Society, 1998, 75, 753-754.	1.9	23
131	Recovery of bioactive compounds from Pinus pinaster wood by consecutive extraction stages. Wood Science and Technology, 2014, 48, 311-323.	3.2	23
132	Potential of Paulownia sp. for biorefinery. Industrial Crops and Products, 2020, 155, 112739.	5.2	23
133	Supercritical fluid extraction as a suitable technology to recover bioactive compounds from flowers. Journal of Supercritical Fluids, 2022, 188, 105652.	3.2	23
134	Production of nutraceutics from chestnut burs by hydrolytic treatment. Food Research International, 2014, 65, 359-366.	6.2	22
135	Adsorption technologies to recover and concentrate food polyphenols. Current Opinion in Food Science, 2018, 23, 165-172.	8.0	22
136	Personal-Care Products Formulated with Natural Antioxidant Extracts. Cosmetics, 2018, 5, 13.	3.3	22
137	Alternative environmental friendly process for dehydration of edible Undaria pinnatifida brown seaweed by microwave hydrodiffusion and gravity. Journal of Food Engineering, 2019, 261, 15-25.	5 . 2	22
138	Valorisation of potato wastes. International Journal of Food Science and Technology, 2020, 55, 2296-2304.	2.7	22
139	Clean technologies applied to the recovery of bioactive extracts from Camellia sinensis leaves agricultural wastes. Food and Bioproducts Processing, 2020, 122, 214-221.	3.6	22
140	Inhibition of cellulase activity by sun_ower polyphenols. Biotechnology Letters, 1997, 19, 521-524.	2.2	21
141	Microstructural features of enzymatically treated oilseeds. , 1998, 78, 491-497.		21
142	Biorefinery processes for the integral valorization of agroindustrial and forestal wastes Procesos de biorrefinerÃa para la valorización integral de residuos agroindustriales y forestales. CYTA - Journal of Food, 2011, 9, 282-289.	1.9	21
143	Sequential extraction of Hericium erinaceus using green solvents. LWT - Food Science and Technology, 2015, 64, 397-404.	5.2	21
144	Ecofriendly extraction of bioactive fractions from Sargassum muticum. Process Biochemistry, 2019, 79, 166-173.	3.7	21

#	Article	IF	CITATIONS
145	Tailoring hybrid carrageenans from Mastocarpus stellatus red seaweed using microwave hydrodiffusion and gravity. Carbohydrate Polymers, 2020, 248, 116830.	10.2	21
146	Integrated valorization of Sargassum muticum in biorefineries. Chemical Engineering Journal, 2021, 404, 125635.	12.7	21
147	Feasibility of posthydrolysis processing of hydrothermal extracts from Sargassum muticum. Algal Research, 2017, 27, 73-81.	4.6	20
148	Valorisation of edible brown seaweeds by the recovery of bioactive compounds from aqueous phase using MHG to develop innovative hydrogels. Process Biochemistry, 2019, 78, 100-107.	3.7	20
149	Aqueous Extraction and Membrane Isolation of Protein from Defatted Gevuina avellana. Journal of Food Science, 2002, 67, 688-696.	3.1	19
150	Algae as a source of biologically active ingredients for the formulation of functional foods and nutraceuticals. , 2013 , , $1-19$.		19
151	Hydrothermal systems to obtain high value-added compounds from macroalgae for bioeconomy and biorefineries. Bioresource Technology, 2022, 343, 126017.	9.6	19
152	Xylitol from wood: study of some operational strategies. Food Chemistry, 1996, 57, 531-535.	8.2	18
153	Dimorphic behaviour of Debaryomyces hansenii grown on barley bran acid hydrolyzates. Biotechnology Letters, 2000, 22, 605-610.	2.2	18
154	Water-Soluble Components of Pinus pinaster Wood. BioResources, 2013, 8, .	1.0	18
155	Effects of caffeic acid and bovine serum albumin in reducing the rate of development of rancidity in oil-in-water and water-in-oil emulsions. Food Chemistry, 2011, 129, 1652-1659.	8.2	17
156	Advances in the biorefinery of Sargassum muticum: Valorisation of the alginate fractions. Industrial Crops and Products, 2019, 138, 111483.	5.2	17
157	Green technologies for cascade extraction of Sargassum muticum bioactives. Journal of Applied Phycology, 2019, 31, 2481-2495.	2.8	17
158	Eco-friendly extraction of Mastocarpus stellatus carrageenan for the synthesis of gold nanoparticles with improved biological activity. International Journal of Biological Macromolecules, 2021, 183, 1436-1449.	7.5	17
159	Chondrus crispus treated with ultrasound as a polysaccharides source with improved antitumoral potential. Carbohydrate Polymers, 2021, 273, 118588.	10.2	17
160	Improving the nutritional performance of gluten-free pasta with potato peel autohydrolysis extract. Innovative Food Science and Emerging Technologies, 2020, 63, 102374.	5.6	17
161	Ultrafiltration of industrial waste liquors from the manufacture of soy protein concentrates. Journal of Chemical Technology and Biotechnology, 2006, 81, 1252-1258.	3.2	16
162	Fractionation of industrial solids containing barley husks in aqueous media. Food and Bioproducts Processing, 2009, 87, 208-214.	3.6	16

#	Article	IF	CITATIONS
163	Protective effect against oxygen reactive species and skin fibroblast stimulation of <i>Couroupita guianensis </i> leaf extracts. Natural Product Research, 2012, 26, 314-322.	1.8	16
164	Valuable Polyphenolic Antioxidants from Wine Vinasses. Food and Bioprocess Technology, 2012, 5, 2708-2716.	4.7	16
165	Non-isothermal autohydrolysis of nixtamalized maize pericarp: Production of nutraceutical extracts. LWT - Food Science and Technology, 2014, 58, 550-556.	5. 2	16
166	Microwave hydrothermal processing of Undaria pinnatifida for bioactive peptides. Bioresource Technology, 2021, 342, 125882.	9.6	16
167	Protein concentrates from yeast cultured in wood hydrolysates. Food Chemistry, 1995, 53, 157-163.	8.2	15
168	Supercritical extraction of borage seed oil coupled to conventional solvent extraction of antioxidants. European Journal of Lipid Science and Technology, 2008, 110, 1035-1044.	1.5	15
169	Study of fucoidans as natural biomolecules for therapeutical applications in osteoarthritis. Carbohydrate Polymers, 2021, 258, 117692.	10.2	15
170	Enzyme-aided alternative processes for the extraction of oil from Rosa rubiginosa. JAOCS, Journal of the American Oil Chemists' Society, 2001, 78, 437-439.	1.9	14
171	Enzymatic Processing of Rice Husk Autohydrolysis Products for Obtaining Low Molecular Weight Oligosaccharides. Food Biotechnology, 2008, 22, 31-46.	1.5	14
172	Manufacture of Prebiotics from Biomass Sources. , 2009, , 535-589.		14
173	Phenolics production from alkaline hydrolysis of autohydrolysis liquors. CYTA - Journal of Food, 2016, 14, 255-265.	1.9	14
174	Microwave-Assisted Water Extraction. , 2017, , 163-198.		14
175	Recovery of aqueous phase of broccoli obtained by MHG technique for development of hydrogels with antioxidant properties. LWT - Food Science and Technology, 2019, 107, 98-106.	5. 2	14
176	Innovative technologies for the extraction of saccharidic and phenolic fractions from Pleurotus eryngii. LWT - Food Science and Technology, 2019, 101, 774-782.	5.2	14
177	Bioactive properties of Acacia dealbata flowers extracts. Waste and Biomass Valorization, 2020, 11, 2549-2557.	3.4	14
178	Tools for a multiproduct biorefinery of Acacia dealbata biomass. Industrial Crops and Products, 2021, 169, 113655.	5.2	14
179	Efficient extraction of carrageenans from Chondrus crispus for the green synthesis of gold nanoparticles and formulation of printable hydrogels. International Journal of Biological Macromolecules, 2022, 206, 553-566.	7. 5	14
180	Depolymerization of xylan-derived products in an enzymatic membrane reactor. Journal of Membrane Science, 2008, 320, 224-231.	8.2	13

#	Article	IF	CITATIONS
181	Recovery of phenols from autohydrolysis liquors of barley husks: Kinetic and equilibrium studies. Industrial Crops and Products, 2017, 103, 175-184.	5.2	13
182	Sensory Evaluation and Oxidative Stability of a Suncream Formulated with Thermal Spring Waters from Ourense (NW Spain) and Sargassum muticum Extracts. Cosmetics, 2017, 4, 19.	3.3	12
183	Impact of counterions on the thermo-rheological features of hybrid carrageenan systems isolated from red seaweed Gigartina skottsbergii. Food Hydrocolloids, 2018, 84, 321-329.	10.7	12
184	Microwave hydrodiffusion and gravity versus conventional distillation for Acacia dealbata flowers. Recovery of bioactive extracts for cosmetic purposes. Journal of Cleaner Production, 2020, 274, 123143.	9.3	12
185	Valorization of Artichoke Industrial By-Products Using Green Extraction Technologies: Formulation of Hydrogels in Combination with Paulownia Extracts. Molecules, 2021, 26, 4386.	3.8	12
186	Continuous fermentation of d-xylose by immobilizedpichia stipitis comparison between cstr and cpfr. Applied Biochemistry and Biotechnology, 1991, 28-29, 731-739.	2.9	11
187	Simulation of multistage extraction of antioxidants from Chilean hazelnut (Gevuina avellana) hulls. JAOCS, Journal of the American Oil Chemists' Society, 2003, 80, 389-396.	1.9	11
188	An approach to assess the synergistic effect of natural antioxidants on the performance of the polypropylene stabilizing systems. Journal of Applied Polymer Science, 2012, 126, 1852-1858.	2.6	11
189	Multi-response optimal hot pressurized liquid recovery of extractable polyphenols from leaves of maqui (Aristotelia chilensis [Mol.] Stuntz). Food Chemistry, 2021, 357, 129729.	8.2	11
190	Valorisation of the industrial hybrid carrageenan extraction wastes using eco-friendly treatments. Food Hydrocolloids, 2022, 122, 107070.	10.7	11
191	Update on potential of edible mushrooms: highâ€value compounds, extraction strategies and bioactive properties. International Journal of Food Science and Technology, 2022, 57, 1378-1385.	2.7	11
192	Pressurized hot water extraction of $\hat{l}^2 \hat{a} \in g$ lucans from <i>Cantharellus tubaeformis</i> . Electrophoresis, 2018, 39, 1892-1898.	2.4	10
193	Valorisation of Camellia sinensis branches as a raw product with green technology extraction methods. Current Research in Food Science, 2020, 2, 20-24.	5.8	10
194	Antioxidant capacity of the extracts from flowers of Erica australis L.: Comparison between microwave hydrodiffusion and gravity (MHG) and distillation extraction techniques - Formulation of sunscreen creams. Industrial Crops and Products, 2020, 145, 112079.	5.2	10
195	Autohydrolysis of Lentinus edodes for Obtaining Extracts with Antiradical Properties. Foods, 2020, 9, 74.	4.3	10
196	Bioactive extracts from edible nettle leaves using microwave hydrodiffusion and gravity and distillation extraction techniques. Process Biochemistry, 2020, 94, 66-78.	3.7	10
197	Synthesis, process optimization and characterization of gold nanoparticles using crude fucoidan from the invasive brown seaweed Sargassum muticum. Algal Research, 2021, 58, 102377.	4.6	10
198	Production and Refining of Soluble Products from Eucalyptus globulus Glucuronoxylan. Collection of Czechoslovak Chemical Communications, 2007, 72, 307-320.	1.0	9

#	Article	IF	Citations
199	Lactic acid from apple pomace: a laboratory experiment for teaching valorisation of wastes. CYTA - Journal of Food, 2009, 7, 83-88.	1.9	9
200	Preparation of Hydrogels Composed of Bioactive Compounds from Aqueous Phase of Artichoke Obtained by MHG Technique. Food and Bioprocess Technology, 2019, 12, 1304-1315.	4.7	9
201	ETHANOL-MODIFIED SUPERCRITICAL CO2 EXTRACTION OF CHESTNUT BURS ANTIOXIDANTS. Chemical Engineering and Processing: Process Intensification, 2020, 156, 108092.	3.6	9
202	Supercritical CO2 extracts from Acacia dealbata flowers. Journal of Supercritical Fluids, 2021, 173, 105223.	3.2	9
203	Hydrolysis of microcrystalline cellulose by cellulolytic complex of Trichoderma reesei in low-moisture media. Enzyme and Microbial Technology, 1995, 17, 809-815.	3.2	8
204	Extraction of phenolics from broom branches using green technologies. Journal of Chemical Technology and Biotechnology, 2017, 92, 1345-1352.	3.2	8
205	Microwave hydrogravity pretreatment of <i>Sargassum muticum</i> before solvent extraction of antioxidant and antiobesity compounds. Journal of Chemical Technology and Biotechnology, 2019, 94, 256-264.	3.2	8
206	Microwave Hydrodiffusion and Gravity (MHG) Extraction from Different Raw Materials with Cosmetic Applications. Molecules, 2020, 25, 92.	3.8	8
207	Environmentally friendly processing of Laminaria ochroleuca for soft food applications with bioactive properties. Journal of Applied Phycology, 2020, 32, 1455-1465.	2.8	8
208	Ultrasound-Assisted Water Extraction of Mastocarpus stellatus Carrageenan with Adequate Mechanical and Antiproliferative Properties. Marine Drugs, 2021, 19, 280.	4.6	8
209	Antioxidant Extraction by Supercritical Fluids. , 2007, , 275-303.		8
210	Eliminaci \tilde{A}^3 n de \tilde{A}_i cido clorog \tilde{A} ©nico durante el procesado acuoso de las almendras de girasol. Grasas Y Aceites, 1993, 44, 235-242.	0.9	8
211	Antiradical and functional properties of subcritical water extracts from edible mushrooms and from commercial counterparts. International Journal of Food Science and Technology, 2022, 57, 1420-1428.	2.7	8
212	Antifibrotic effect of brown algae-derived fucoidans on osteoarthritic fibroblast-like synoviocytes. Carbohydrate Polymers, 2022, 282, 119134.	10.2	8
213	ANTIOXIDANT ACTIVITY OF FRACTIONS FROM ACID HYDROLYSATES OF ALMOND SHELLS. Journal of Food Process Engineering, 2008, 31, 817-832.	2.9	7
214	Mechanical Characterization of Biopolymer-Based Hydrogels Enriched with Paulownia Extracts Recovered Using a Green Technique. Applied Sciences (Switzerland), 2020, 10, 8439.	2.5	7
215	Extraction of Fatty Acids and Phenolics from Mastocarpus stellatus Using Pressurized Green Solvents. Marine Drugs, 2021, 19, 453.	4.6	7
216	Green Extraction of Carrageenans from Mastocarpus stellatus. Polymers, 2022, 14, 554.	4.5	7

#	Article	IF	Citations
217	Physicochemical, functional and structural characterization of fibre from defattedRosa rubiginosa andGevuina avellana seeds. Journal of the Science of Food and Agriculture, 2004, 84, 1951-1959.	3.5	6
218	Enzyme-Assisted Aqueous Extraction Processes. , 2017, , 333-368.		6
219	Sargassum muticum Hydrothermal Extract: Effects on Serum Parameters and Antioxidant Activity in Rats. Applied Sciences (Switzerland), 2019, 9, 2570.	2.5	6
220	Antioxidant and Antitumoral Properties of Aqueous Fractions from Frozen Sargassum muticum. Waste and Biomass Valorization, 2020, 11, 1261-1269.	3.4	6
221	Monitoring of the ultrasound assisted depolymerisation kinetics of fucoidans from Sargassum muticum depending on the rheology of the corresponding gels. Journal of Food Engineering, 2021, 294, 110404.	5.2	6
222	Evaluation of sustainable technologies for the processing of <i>Sargassum muticum</i> cascade biorefinery schemes. Green Chemistry, 2021, 23, 7001-7015.	9.0	6
223	Valorization of Arnica montana Wastes after Extraction of the Ethanol Tincture: Application in Polymer-Based Matrices. Polymers, 2021, 13, 3121.	4.5	6
224	Influencia del tratamiento enzimático en la calidad de aceites vegetales. Grasas Y Aceites, 1998, 49, 191-202.	0.9	6
225	Procesado acuoso de soja con tecnologÃa enzimática: extracción de aceite y producción de aislados. Grasas Y Aceites, 1995, 46, 11-20.	0.9	6
226	Stability of Sun Creams Formulated with Thermal Spring Waters from Ourense, Northwest Spain. Cosmetics, 2016, 3, 42.	3.3	5
227	Potential of Chestnut Wastes for Cosmetics and Pharmaceutical Applications. Waste and Biomass Valorization, 2020, 11, 4721-4730.	3.4	5
228	Hydrothermal Extraction of Valuable Components from Leaves and Petioles from Paulownia elongata x fortunei. Waste and Biomass Valorization, 2020, 12, 4525.	3.4	5
229	Functional Features of Alginates Recovered from Himanthalia elongata Using Subcritical Water Extraction. Molecules, 2021, 26, 4726.	3.8	5
230	Extraction of natural antioxidants from plant foods. , 2013, , 506-594.		4
231	Preliminary evaluation of pressurized hot water extraction for the solubilization of valuable components from hospital kitchen wastes. Biomass Conversion and Biorefinery, 2024, 14, 4621-4633.	4.6	4
232	Conventional purification and isolation. , 2015, , 149-172.		3
233	Psyllium and Laminaria Partnership—An Overview of Possible Food Gel Applications. Applied Sciences (Switzerland), 2019, 9, 4356.	2.5	3
234	Recovery of phytochemical compounds from natural and blanched green broccoli using nonâ€isothermal autohydrolysis. International Journal of Food Science and Technology, 2019, 54, 1276-1282.	2.7	3

#	Article	IF	Citations
235	Hydrothermal Processing of Laminaria ochroleuca for the Production of Crude Extracts Used to Formulate Polymeric Nanoparticles. Marine Drugs, 2020, 18, 336.	4.6	3
236	Formulation and Thermomechanical Characterization of Functional Hydrogels Based on Gluten Free Matrices Enriched with Antioxidant Compounds. Applied Sciences (Switzerland), 2021, 11, 1962.	2.5	3
237	Formulation of bio-hydrogels from Hericium erinaceus in Paulownia elongata x fortunei autohydrolysis aqueous extracts. Food and Bioproducts Processing, 2021, 128, 12-20.	3.6	3
238	The key role of thermal waters in the development of innovative gelled starch-based matrices. Food Hydrocolloids, 2021, 117, 106697.	10.7	3
239	Effect of Hydrothermal Pretreatment on Lignin and Antioxidant Activity., 2017,, 5-43.		3
240	Pressurized Solvent Extraction of Paulownia Bark Phenolics. Molecules, 2022, 27, 254.	3.8	3
241	Teaching Sustainable Development Concepts in the Laboratory: A Solid–Liquid Extraction Experiment. Journal of Chemical Education, 2008, 85, 972.	2.3	2
242	Combination of Water-Based Extraction Technologies. , 2017, , 421-449.		2
243	Acetone Precipitation of Heterofucoidans from Sargassum muticum Autohydrolysis Extracts. Waste and Biomass Valorization, 2021, 12, 867-877.	3.4	2
244	Towards greener approaches in the extraction of bioactives from lichens. Reviews in Environmental Science and Biotechnology, 2021, 20, 917-942.	8.1	2
245	Intensification Strategies for the Extraction of Polyunsaturated Fatty Acids and Other Lipophilic Fractions From Seaweeds. Food and Bioprocess Technology, 0, , 1.	4.7	2
246	A Laboratory Experiment for Measuring Solid-Liquid Mass Transfer Parameters. Journal of Chemical Education, 2004, 81, 1502.	2.3	1
247	Fractionation and characterization of proteins from <i>Gevuina avellana</i> and <i>Rosa rubiginosa</i> seeds. JAOCS, Journal of the American Oil Chemists' Society, 2005, 82, 169-173.	1.9	1
248	Supercritical CO2 extraction of antioxidants from Paulownia elongata $\mathbf x$ fortunei leaves. Biomass Conversion and Biorefinery, 2020, , 1.	4.6	1
249	Pressurized Hot Water Extraction and Bio-Hydrogels Formulation with Aristotelia chilensis [Mol.] Stuntz Leaves. Molecules, 2021, 26, 6402.	3.8	1
250	Advances in recovery bioactive compounds from potato wastes: processing technologies and applications. International Journal of Food Science and Technology, 2020, 55, 2271-2272.	2.7	1
251	Conventional purification and isolation. , 2021, , 129-153.		0
252	The Impact of Supercritical Extraction and Fractionation Technology on the Functional Food and Nutraceutical Industry., 2010,, 407-446.		0

#	Article	IF	CITATIONS
253	Challenges in the extraction of antiinflammatory and antioxidant compounds from new plant sources., 2022,, 427-446.		O
254	Equipment and recent advances in microwave processing. , 2022, , 333-360.		0
255	Edible mushroom bioactives in traditional and in novel foods. International Journal of Food Science and Technology, 2022, 57, 1351-1352.	2.7	O