
Jinzhu Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5494559/publications.pdf Version: 2024-02-01

INZHII CHEN

#	Article	lF	CITATIONS
1	Electrochemical hydrogenation of biomass-based furfural in aqueous media by Cu catalyst supported on N-doped hierarchically porous carbon. Applied Catalysis B: Environmental, 2022, 305, 121062.	10.8	38
2	Efficient and selective approach to biomass-based amine by reductive amination of furfural using Ru catalyst. Applied Catalysis B: Environmental, 2022, 309, 121262.	10.8	39
3	An efficient approach to biomass-based tertiary amines by direct and consecutive reductive amination of furfural. Journal of Catalysis, 2022, 410, 164-179.	3.1	11
4	Visible-light-induced hydrogenation of biomass-based aldehydes by graphitic carbon nitride supported metal catalysts. Green Energy and Environment, 2021, 6, 715-724.	4.7	24
5	H ₂ Activation with Co Nanoparticles Encapsulated in Nâ€Doped Carbon Nanotubes for Green Synthesis of Benzimidazoles. ChemSusChem, 2021, 14, 709-720.	3.6	23
6	Cu Catalyst Supported on Nitrogen and Phosphorus Co-Doped Carbon Nanosheets for Homocoupling of Terminal Alkynes Using CO ₂ as a Soft Oxidant. ACS Applied Nano Materials, 2021, 4, 4839-4852.	2.4	6
7	Hydrogenative coupling of nitriles with diamines to benzimidazoles using lignin-derived Rh2P catalyst. IScience, 2021, 24, 103045.	1.9	5
8	Sulfonate-Grafted Metal–Organic Frameworks for Reductive Functionalization of CO ₂ to Benzimidazoles and <i>N</i> -Formamides. ACS Catalysis, 2021, 11, 13983-13999.	5.5	26
9	Metal-Free H ₂ Activation for Highly Selective Hydrogenation of Nitroaromatics Using Phosphorus-Doped Carbon Nanotubes. ACS Applied Materials & Interfaces, 2020, 12, 654-666.	4.0	53
10	CO Activation Using Nitrogen-Doped Carbon Nanotubes for Reductive Carbonylation of Nitroaromatics to Benzimidazolinone and Phenyl Urea. ACS Applied Materials & Interfaces, 2020, 12, 48700-48711.	4.0	7
11	Chemical Fixation of CO ₂ Using Highly Dispersed Cu on Hierarchically Porous N-Doped Carbon. ACS Applied Materials & Interfaces, 2020, 12, 40236-40247.	4.0	23
12	Hierarchically Nanoporous Titanium-Based Coordination Polymers for Photocatalytic Synthesis of Benzimidazole. ACS Applied Nano Materials, 2020, 3, 10720-10731.	2.4	8
13	Metal-Free <i>N</i> -Formylation of Amines with CO ₂ and Hydrosilane by Nitrogen-Doped Graphene Nanosheets. ACS Applied Materials & Interfaces, 2019, 11, 38838-38848.	4.0	38
14	Applications of lignin-derived catalysts for green synthesis. Green Energy and Environment, 2019, 4, 210-244.	4.7	91
15	Transformations of biomass-based levulinate ester into Î ³ -valerolactone and pyrrolidones using carbon nanotubes-grafted N-heterocyclic carbene ruthenium complexes. Journal of Energy Chemistry, 2019, 39, 29-38.	7.1	15
16	Copper(I) atalyzed Four omponent Coupling Using Renewable Building Blocks of CO ₂ and Biomassâ€Based Aldehydes. European Journal of Organic Chemistry, 2018, 2018, 3105-3113.	1.2	14
17	Chemical Fixation of CO ₂ by Using Carbon Material-Grafted <i>N</i> -Heterocyclic Carbene Silver and Copper Complexes. ACS Applied Nano Materials, 2018, 1, 6463-6476.	2.4	42
18	Visible-Light-Induced Catalytic Transfer Hydrogenation of Aromatic Aldehydes by Palladium Immobilized on Amine-Functionalized Iron-Based Metal–Organic Frameworks. ACS Applied Nano Materials, 2018, 1, 4247-4257.	2.4	36

Jinzhu Chen

#	Article	IF	CITATIONS
19	<i>N</i> -Formylation of Amines with CO ₂ and H ₂ Using Pd–Au Bimetallic Catalysts Supported on Polyaniline-Functionalized Carbon Nanotubes. ACS Sustainable Chemistry and Engineering, 2017, 5, 2516-2528.	3.2	77
20	Selective Transfer Hydrogenation of Biomass-Based Furfural and 5-Hydroxymethylfurfural over Hydrotalcite-Derived Copper Catalysts Using Methanol as a Hydrogen Donor. ACS Sustainable Chemistry and Engineering, 2017, 5, 5982-5993.	3.2	158
21	Polymeric Ruthenium Porphyrin-Functionalized Carbon Nanotubes and Graphene for Levulinic Ester Transformations into γ-Valerolactone and Pyrrolidone Derivatives. ACS Omega, 2017, 2, 3228-3240.	1.6	41
22	Carbon Nanotube-Based Solid Sulfonic Acids as Catalysts for Production of Fatty Acid Methyl Ester via Transesterification and Esterification. ACS Sustainable Chemistry and Engineering, 2016, 4, 3140-3150.	3.2	76
23	Highly recyclable and magnetic catalyst of a metalloporphyrin-based polymeric composite for cycloaddition of CO ₂ to epoxide. RSC Advances, 2016, 6, 96455-96466.	1.7	10
24	Hydrogenation of Levulinic Acid into γ-Valerolactone Over Ruthenium Catalysts Supported on Metal–Organic Frameworks in Aqueous Medium. Catalysis Letters, 2016, 146, 2041-2052.	1.4	32
25	Hydrodeoxygenation of biodiesel-related fatty acid methyl esters to diesel-range alkanes over zeolite-supported ruthenium catalysts. Catalysis Science and Technology, 2016, 6, 7239-7251.	2.1	53
26	Photo-induced reduction of biomass-derived 5-hydroxymethylfurfural using graphitic carbon nitride supported metal catalysts. RSC Advances, 2016, 6, 101968-101973.	1.7	56
27	Bifunctional catalyst of a metallophthalocyanine-carbon nitride hybrid for chemical fixation of CO ₂ to cyclic carbonate. RSC Advances, 2016, 6, 2810-2818.	1.7	40
28	Titanate nanotube-promoted chemical fixation of carbon dioxide to cyclic carbonate: a combined experimental and computational study. Catalysis Science and Technology, 2016, 6, 780-790.	2.1	20
29	Bicomponent Assembly of VO ₂ and Polyanilineâ€Functionalized Carbon Nanotubes for the Selective Oxidation of Biomassâ€Based 5â€Hydroxymethylfurfural to 2,5â€Diformylfuran. ChemPlusChem, 2015, 80, 1760-1768.	1.3	34
30	Metalloporphyrin-based organic polymers for carbon dioxide fixation to cyclic carbonate. Journal of Materials Chemistry A, 2015, 3, 9807-9816.	5.2	110
31	Direct hydroxylation of benzene to phenol with molecular oxygen over vanadium oxide nanospheres and study of its mechanism. RSC Advances, 2015, 5, 94164-94170.	1.7	23
32	Hydrogenation of biomass-derived levulinic acid to Î ³ -valerolactone catalyzed by PNP-Ir pincer complexes: A computational study. Journal of Organometallic Chemistry, 2015, 797, 165-170.	0.8	13
33	Ruthenium complex immobilized on poly(4-vinylpyridine)-functionalized carbon-nanotube for selective aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran. RSC Advances, 2015, 5, 5933-5940.	1.7	55
34	Selective Hydrogenation of Biomass-Based 5-Hydroxymethylfurfural over Catalyst of Palladium Immobilized on Amine-Functionalized Metal–Organic Frameworks. ACS Catalysis, 2015, 5, 722-733.	5.5	165
35	A computational study on the hydrogenation of CO2 catalyzed by a tetraphos-ligated cobalt complex: monohydride vs. dihydride. Catalysis Science and Technology, 2015, 5, 1006-1013.	2.1	23
36	Amine-functionalized metal-organic frameworks for the transesterification of triglycerides. Journal of Materials Chemistry A, 2014, 2, 7205-7213.	5.2	68

Jinzhu Chen

#	Article	IF	CITATIONS
37	Conversion of fructose into 5-hydroxymethylfurfural catalyzed by recyclable sulfonic acid-functionalized metal–organic frameworks. Green Chemistry, 2014, 16, 2490-2499.	4.6	267
38	Selective hydrogenation of phenol and related derivatives. Catalysis Science and Technology, 2014, 4, 3555-3569.	2.1	95
39	Kinetic Aspects for the Reduction of CO ₂ and CS ₂ with Mixed-Ligand Ruthenium(II) Hydride Complexes Containing Phosphine and Bipyridine. Inorganic Chemistry, 2014, 53, 9570-9580.	1.9	36
40	Selective Conversion of Cellulose into Ethylene Glycol over Metal–Organic Framework-Derived Multifunctional Catalysts. Catalysis Letters, 2014, 144, 1728-1734.	1.4	24
41	Hydrodeoxygenation of Lignin-Derived Phenolic Monomers and Dimers to Alkane Fuels over Bifunctional Zeolite-Supported Metal Catalysts. ACS Sustainable Chemistry and Engineering, 2014, 2, 683-691.	3.2	204
42	Efficient production of 5-hydroxymethylfurfural and alkyl levulinate from biomass carbohydrate using ionic liquid-based polyoxometalate salts. RSC Advances, 2014, 4, 4194-4202.	1.7	63
43	Conversion of fructose into 5-hydroxymethylfurfural and alkyl levulinates catalyzed by sulfonic acid-functionalized carbon materials. Green Chemistry, 2013, 15, 2895.	4.6	188
44	Selective Hydrogenation of Phenol and Derivatives over Polymerâ€Functionalized Carbonâ€Nanofiberâ€Supported Palladium Using Sodium Formate as the Hydrogen Source. ChemPlusChem, 2013, 78, 1370-1378.	1.3	42
45	Synthesis, characterization and computational study of heterobimetallic CoFe complexes for mimicking hydrogenase. RSC Advances, 2013, 3, 3557.	1.7	14
46	Selective hydrogenation of phenol and derivatives over an ionic liquid-like copolymer stabilized palladium catalyst in aqueous media. RSC Advances, 2013, 3, 4171.	1.7	33
47	Conversion of Cellulose and Cellobiose into Sorbitol Catalyzed by Ruthenium Supported on a Polyoxometalate/Metal–Organic Framework Hybrid. ChemSusChem, 2013, 6, 1545-1555.	3.6	107
48	Preparation and photoelectrochemical characterization of WO3/TiO2 nanotube array electrode. Journal of Materials Science, 2011, 46, 416-421.	1.7	33
49	Preparation and Photocatalytic Performance of Anatase/Rutile Mixed-Phase TiO2 Nanotubes. Catalysis Letters, 2010, 139, 129-133.	1.4	50
50	Synthesis of new unsymmetric N,N′-dipyridylurea derivatives by selenium and selenium dioxide-catalyzed reductive carbonylation of substituted nitropyridines. Tetrahedron, 2003, 59, 8251-8256.	1.0	33