Zhaoyang Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5494350/publications.pdf

Version: 2024-02-01

45 papers 9,887 citations

34 h-index 205818 48 g-index

49 all docs

49 docs citations

49 times ranked 15389 citing authors

#	Article	IF	CITATIONS
1	High-performance transition metal–doped Pt ₃ Ni octahedra for oxygen reduction reaction. Science, 2015, 348, 1230-1234.	6.0	1,623
2	Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science, 2016, 354, 1414-1419.	6.0	1,292
3	Holey graphene frameworks for highly efficient capacitive energy storage. Nature Communications, 2014, 5, 4554.	5.8	1,161
4	Solution-processable 2D semiconductors for high-performance large-area electronics. Nature, 2018, 562, 254-258.	13.7	644
5	Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis. Nature Catalysis, 2019, 2, 495-503.	16.1	464
6	Double-negative-index ceramic aerogels for thermal superinsulation. Science, 2019, 363, 723-727.	6.0	429
7	General synthesis of two-dimensional van der Waals heterostructure arrays. Nature, 2020, 579, 368-374.	13.7	393
8	Monolayer atomic crystal molecular superlattices. Nature, 2018, 555, 231-236.	13.7	323
9	Wafer-scale growth of large arrays of perovskite microplate crystals for functional electronics and optoelectronics. Science Advances, 2015, 1, e1500613.	4.7	265
10	Microwaveâ€Assisted Rapid Synthesis of Grapheneâ€Supported Single Atomic Metals. Advanced Materials, 2018, 30, e1802146.	11.1	244
11	A rational design of cosolvent exfoliation of layered materials by directly probing liquid–solid interaction. Nature Communications, 2013, 4, 2213.	5.8	235
12	Nanowire Electronics: From Nanoscale to Macroscale. Chemical Reviews, 2019, 119, 9074-9135.	23.0	210
13	One-step strategy to graphene/Ni(OH)2 composite hydrogels as advanced three-dimensional supercapacitor electrode materials. Nano Research, 2013, 6, 65-76.	5.8	202
14	Layer-by-Layer Degradation of Methylammonium Lead Tri-iodide Perovskite Microplates. Joule, 2017, 1 , 548-562.	11.7	199
15	Three-dimensional graphene framework with ultra-high sulfur content for a robust lithium–sulfur battery. Nano Research, 2016, 9, 240-248.	5.8	165
16	High-order superlattices by rolling up van der Waals heterostructures. Nature, 2021, 591, 385-390.	13.7	163
17	Significantly Enhanced Visible Light Photoelectrochemical Activity in TiO ₂ Nanowire Arrays by Nitrogen Implantation. Nano Letters, 2015, 15, 4692-4698.	4.5	159
18	Building two-dimensional materials one row at a time: Avoiding the nucleation barrier. Science, 2018, 362, 1135-1139.	6.0	155

#	Article	IF	Citations
19	Thickness-Tunable Synthesis of Ultrathin Type-II Dirac Semimetal PtTe ₂ Single Crystals and Their Thickness-Dependent Electronic Properties. Nano Letters, 2018, 18, 3523-3529.	4.5	147
20	Van der Waals thin-film electronics. Nature Electronics, 2019, 2, 378-388.	13.1	131
21	Highly-anisotropic optical and electrical properties in layered SnSe. Nano Research, 2018, 11, 554-564.	5.8	114
22	A Solution Processable Highâ€Performance Thermoelectric Copper Selenide Thin Film. Advanced Materials, 2017, 29, 1606662.	11.1	96
23	Chemical vapor deposition growth of single-crystalline cesium lead halide microplatelets and heterostructures for optoelectronic applications. Nano Research, 2017, 10, 1223-1233.	5.8	96
24	Highly stretchable van der Waals thin films for adaptable and breathable electronic membranes. Science, 2022, 375, 852-859.	6.0	96
25	Layered Intercalation Materials. Advanced Materials, 2021, 33, e2004557.	11.1	92
26	In Situ Probing Molecular Intercalation in Two-Dimensional Layered Semiconductors. Nano Letters, 2019, 19, 6819-6826.	4.5	72
27	Solution Processable Colloidal Nanoplates as Building Blocks for High-Performance Electronic Thin Films on Flexible Substrates. Nano Letters, 2014, 14, 6547-6553.	4.5	69
28	Cosolvent Approach for Solution-Processable Electronic Thin Films. ACS Nano, 2015, 9, 4398-4405.	7.3	63
29	Tuning the Catalytic Activity of a Metal–Organic Framework Derived Copper and Nitrogen Co-Doped Carbon Composite for Oxygen Reduction Reaction. ACS Applied Materials & Samp; Interfaces, 2016, 8, 26769-26774.	4.0	63
30	Probing photoelectrical transport in lead halide perovskites with van der Waals contacts. Nature Nanotechnology, 2020, 15, 768-775.	15.6	63
31	Programmable devices based on reversible solid-state doping of two-dimensional semiconductors with superionic silver iodide. Nature Electronics, 2020, 3, 630-637.	13.1	61
32	Approaching the intrinsic exciton physics limit in two-dimensional semiconductor diodes. Nature, 2021, 599, 404-410.	13.7	57
33	Scalable solution-phase epitaxial growth of symmetry-mismatched heterostructures on two-dimensional crystal soft template. Science Advances, 2016, 2, e1600993.	4.7	52
34	High-yield exfoliation of 2D semiconductor monolayers and reassembly of organic/inorganic artificial superlattices. CheM, 2021, 7, 1887-1902.	5.8	36
35	Three-dimensional graphene membrane cathode for high energy density rechargeable lithium-air batteries in ambient conditions. Nano Research, 2017, 10, 472-482.	5.8	32
36	Large-Area Synthesis and Patterning of All-Inorganic Lead Halide Perovskite Thin Films and Heterostructures. Nano Letters, 2021, 21, 1454-1460.	4.5	27

ZHAOYANG LIN

#	Article	IF	CITATIONS
37	Highâ€Performance Flexible Bismuth Telluride Thin Film from Solution Processed Colloidal Nanoplates. Advanced Materials Technologies, 2020, 5, 2000600.	3.0	26
38	Molecular ligand modulation of palladium nanocatalysts for highly efficient and robust heterogeneous oxidation of cyclohexenone to phenol. Science Advances, 2017, 3, e1600615.	4.7	24
39	Plasmonic/Nonlinear Optical Material Core/Shell Nanorods as Nanoscale Plasmon Modulators and Optical Voltage Sensors. Angewandte Chemie - International Edition, 2016, 55, 583-587.	7.2	21
40	van der Waals Integrated Devices Based on Nanomembranes of 3D Materials. Nano Letters, 2020, 20, 1410-1416.	4.5	19
41	Two-dimensional van der Waals thin film transistors as active matrix for spatially resolved pressure sensing. Nano Research, 2021, 14, 3395-3401.	5.8	19
42	Doping on demand in 2D devices. Nature Electronics, 2020, 3, 77-78.	13.1	18
43	Improvement by Channel Recess of Contact Resistance and Gate Control in Large-Scale Spin-Coated MoS ₂ MOSFETs. IEEE Electron Device Letters, 2018, 39, 1453-1456.	2.2	6
44	Graphene Hydrogels: Functionalized Graphene Hydrogel-Based High-Performance Supercapacitors (Adv. Mater. 40/2013). Advanced Materials, 2013, 25, 5828-5828.	11.1	3
45	Quantitative Surface Plasmon Interferometry via Upconversion Photoluminescence Mapping. Research, 2019, 2019, 8304824.	2.8	2