Chikara Ohtsuki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5494068/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polymer-induced liquid precursors (PILPs) and bone regeneration. , 2021, , 391-398.		1
2	Bioactive ceramics: Past and future. , 2021, , 377-388.		1
3	Incorporation behavior and biomedical applications of inorganic-layered compounds. , 2021, , 139-158.		1
4	Incorporation of tetracarboxylate ions into octacalcium phosphate for the development of next-generation biofriendly materials. Communications Chemistry, 2021, 4, .	2.0	19
5	Thixotropic Hydrogels Composed of Self-Assembled Nanofibers of Double-Hydrophobic Elastin-Like Block Polypeptides. International Journal of Molecular Sciences, 2021, 22, 4104.	1.8	14
6	Selective adsorption of dyes on TiO2-modified hydroxyapatite photocatalysts morphologically controlled by solvothermal synthesis. Journal of Environmental Chemical Engineering, 2021, 9, 105738.	3.3	15
7	Organic modification of layered zirconium phosphate/phosphonate for controlled release of therapeutic inorganic ions. Science and Technology of Advanced Materials, 2021, 22, 1000-1012.	2.8	4
8	Preparation of layered calcium silicate organically modified with two types of functional groups for varying chemical stability. Journal of Asian Ceramic Societies, 2021, 9, 113-123.	1.0	4
9	Tearable and Fillable Composite Sponges Capable of Heat Generation and Drug Release in Response to Alternating Magnetic Field. Materials, 2020, 13, 3637.	1.3	5
10	Hydroxyapatite Formation from Octacalcium Phosphate and Its Related Compounds: A Discussion of the Transformation Mechanism. Bulletin of the Chemical Society of Japan, 2020, 93, 701-707.	2.0	18
11	Human stem cell response to layered zirconium phosphate. RSC Advances, 2020, 10, 36051-36057.	1.7	3
12	Behaviour of calcium phosphate ester salts in a simulated body fluid modified with alkaline phosphatase: a new concept of ceramic biomaterials. Materials Advances, 2020, 1, 3215-3220.	2.6	3
13	Rheology of Dispersions of High-Aspect-Ratio Nanofibers Assembled from Elastin-Like Double-Hydrophobic Polypeptides. International Journal of Molecular Sciences, 2019, 20, 6262.	1.8	7
14	Apatite coating on dendrimer-modified buckypaper and the formation of nanoapatite on MWCNTs. Polymer Journal, 2018, 50, 911-917.	1.3	4
15	Ring-Like Assembly of Silica Nanospheres in the Presence of Amphiphilic Block Copolymer: Effects of Particle Size. Langmuir, 2018, 34, 7751-7758.	1.6	11
16	Introduction of Alkylammonium into Calcium Silicate Hydrate Towards Application in Development of Novel Biomaterial. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2018, 65, 325-327.	0.1	0
17	Doubleâ€hydrophobic elastinâ€like polypeptides with added functional motifs: Selfâ€assembly and cytocompatibility. Journal of Biomedical Materials Research - Part A, 2017, 105, 2475-2484.	2.1	16

#	Article	IF	CITATIONS
19	Periodic Surface-Ring Pattern Formation for Hydroxyapatite Thin Films Formed by Biomineralization-Inspired Processes. Langmuir, 2017, 33, 10077-10083.	1.6	6
20	Ceramic-Polymer Composites for Biomedical Applications. , 2016, , 287-300.		1
21	Rapid and topotactic transformation from octacalcium phosphate to hydroxyapatite (HAP): a new approach to self-organization of free-standing thin-film HAP-based nanohybrids. CrystEngComm, 2016, 18, 8388-8395.	1.3	21
22	Hydroxyapatite formation from calcium carbonate single crystal under hydrothermal condition: Effects of processing temperature. Ceramics International, 2016, 42, 1886-1890.	2.3	27
23	Fabrication of Porous <l>α</l> -TCP/Gellan Gum Scaffold for Bone Tissue Engineering. Journal of Nanoscience and Nanotechnology, 2016, 16, 3077-3083.	0.9	7
24	Calcium phosphate-forming ability of magnetite and related materials in a solution mimicking in vivo conditions. Journal of Asian Ceramic Societies, 2015, 3, 44-49.	1.0	10
25	A unified in vitro evaluation for apatite-forming ability of bioactive glasses and their variants. Journal of Materials Science: Materials in Medicine, 2015, 26, 115.	1.7	275
26	Fabrication of self-standing films consisting of enamel-like oriented nanorods using artificial peptide. CrystEngComm, 2015, 17, 5551-5555.	1.3	18
27	Continuous expansion of the interplanar spacing of octacalcium phosphate by incorporation of dicarboxylate ions with a side chain. Dalton Transactions, 2015, 44, 7943-7950.	1.6	35
28	Hydroxyapatite formation on oxidized cellulose nanofibers in a solution mimicking body fluid. Polymer Journal, 2015, 47, 158-163.	1.3	25
29	Hydroxyapatite formation on titania-based materials in a solution mimicking body fluid: Effects of manganese and iron addition in anatase. Materials Science and Engineering C, 2015, 48, 279-286.	3.8	7
30	Ceramic-Polymer Composites for Biomedical Applications. , 2015, , 1-12.		2
31	Organic-Inorganic Composites Toward Biomaterial Application. Frontiers of Oral Biology, 2015, 17, 33-38.	1.5	7
32	Utilization of star-shaped polymer architecture in the creation of high-density polymer brush coatings for the prevention of platelet and bacteria adhesion. Biomaterials Science, 2014, 2, 1172.	2.6	18
33	Hydroxyapatite formation through dissolution–precipitation reaction: Effects of solubility of starting materials. Ceramics International, 2014, 40, 14385-14390.	2.3	13
34	Formation of serrated nanorods of hydroxyapatite through organic modification under hydrothermal processing. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	3
35	Effects of polymer concentration on the morphology of calcium phosphate crystals formed in polyacrylamide hydrogels. Journal of Crystal Growth, 2013, 383, 166-171.	0.7	12
36	Characteristics of glass ionomer cements composed of glass powders in CaO–SrO–ZnO–SiO2 system prepared by two different synthetic routes. Journal of Materials Science: Materials in Medicine, 2013, 24, 2677-2682.	1.7	1

#	Article	IF	CITATIONS
37	Biomimetic mineralization of calcium phosphates in polymeric hydrogels containing carboxyl groups. Journal of Asian Ceramic Societies, 2013, 1, 155-162.	1.0	24
38	Formation of <i>c</i> -axis-oriented columnar structures through controlled epitaxial growth of hydroxyapatite. Journal of Asian Ceramic Societies, 2013, 1, 143-148.	1.0	15
39	Syntheses, structures, and photochemical properties of (μ3-O)tris{bis(μ-carboxylato)}trimanganese complexes with naphthylacetate ligands with relevance to artificial solar energy-harvesting systems. Inorganica Chimica Acta, 2013, 406, 130-137.	1.2	2
40	Apatite mineralization behavior on polyglutamic acid hydrogels in aqueous condition: Effects of molecular weight. Bio-Medical Materials and Engineering, 2013, 23, 339-347.	0.4	5
41	Development of highly functionalized ceramic biomaterials. Journal of the Ceramic Society of Japan, 2013, 121, 129-134.	0.5	4
42	Organic–Inorganic Composites Designed for Biomedical Applications. Biological and Pharmaceutical Bulletin, 2013, 36, 1670-1675.	0.6	28
43	Formation of organically modified octacalcium phosphate in solutions containing various amounts of benzenedicarboxylic acids. Journal of the Ceramic Society of Japan, 2013, 121, 219-225.	0.5	21
44	Behavior of hydroxyapatite crystals in a simulated body fluid: effects of crystal face. Journal of the Ceramic Society of Japan, 2013, 121, 807-812.	0.5	23
45	Biomineralization on chemically synthesized collagen containing immobilized poly-γ-glutamic acid. Dental Materials Journal, 2013, 32, 544-549.	0.8	14
46	Comparative study of hydroxyapatite formation from \hat{I}_{\pm} - and \hat{I}_{\pm} -tricalcium phosphates under hydrothermal conditions. Journal of the Ceramic Society of Japan, 2012, 120, 131-137.	0.5	19
47	Formation of octacalcium phosphates with co-incorporated succinate and suberate ions. Dalton Transactions, 2012, 41, 2732.	1.6	18
48	MINERALIZATION OF CALCIUM PHOSPHATE ON OCTACALCIUM PHOSPHATE IN A SOLUTION MIMICKING IN VIVO CONDITIONS. Phosphorus Research Bulletin, 2012, 26, 71-76.	0.1	12
49	Interfacial shear strength of bioactiveâ€coated carbon fiber reinforced polyetheretherketone after in vivo implantation. Journal of Orthopaedic Research, 2012, 30, 1618-1625.	1.2	51
50	Hydroxyapatite formation by solvothermal treatment of α-tricalcium phosphate with water–ethanol solution. Ceramics International, 2012, 38, 1003-1010.	2.3	32
51	Synthesis of octacalcium phosphate with incorporated succinate and suberate ions. Ceramics International, 2012, 38, 3815-3820.	2.3	19
52	Hydrothermal synthesis of composites of well-crystallized hydroxyapatite and poly(vinyl alcohol) hydrogel. Materials Science and Engineering C, 2012, 32, 397-403.	3.8	19
53	Formation of Oriented Hydroxyapatite Rods by Hydrothermal Treatment of Calcite Single Crystal. Korean Journal of Materials Research, 2012, 22, 397-402.	0.1	4
54	Modification of Polyglutamic Acid with Silanol Groups and Calcium Salts to Induce Calcification in a Simulated Body Fluid. Journal of Biomaterials Applications, 2011, 25, 581-594.	1.2	22

#	Article	IF	CITATIONS
55	Strategy to reduce carbonate incorporation in the fabrication of hydroxyapatite nanopowders. Journal of the Ceramic Society of Japan, 2011, 119, 947-953.	0.5	2
56	In vitrostudy of carbonated hydroxyapatite compacts prepared by double-step hydrothermal method. IOP Conference Series: Materials Science and Engineering, 2011, 18, 192008.	0.3	0
57	Effect of urea on formation of hydroxyapatite through double-step hydrothermal processing. Materials Science and Engineering C, 2011, 31, 1383-1388.	3.8	18
58	Thermoreversible behavior of κ-carrageenan and its apatite-forming ability in simulated body fluid. Materials Science and Engineering C, 2011, 31, 1472-1476.	3.8	27
59	Effect of ammonium carbonate on formation of calcium-deficient hydroxyapatite through double-step hydrothermal processing. Journal of Materials Science: Materials in Medicine, 2011, 22, 209-216.	1.7	9
60	Control of setting behavior of calcium phosphate paste using gelatinized starch. Journal of the Ceramic Society of Japan, 2010, 118, 421-424.	0.5	12
61	Apatite formation abilities of various carrageenan gels in simulated body environment. Journal of the Ceramic Society of Japan, 2010, 118, 487-490.	0.5	10
62	Formation of octacalcium phosphate with incorporated succinic acid through gel-mediated processing. Journal of the Ceramic Society of Japan, 2010, 118, 491-497.	0.5	13
63	Fabrication of porous blocks of calcium phosphate through hydrothermal processing under glycine coexistence. Journal of the Ceramic Society of Japan, 2010, 118, 559-563.	0.5	12
64	Hydroxyapatite-forming capability and mechanical properties of organic-inorganic hybrids and .ALPHAtricalcium phosphate porous bodies. Journal of the Ceramic Society of Japan, 2010, 118, 57-61.	0.5	8
65	Effects of surface carboxylic acid groups of cerasomes, morphologically stable vesicles having a silica surface, on biomimetic deposition of hydroxyapatite in body fluid conditions. Journal of Materials Science: Materials in Medicine, 2010, 21, 11-19.	1.7	15
66	In vitro apatite formation on organic–inorganic hybrids in the CaO–SiO2–PO5/2–poly(tetramethylene) ⁻	Γϳ Ε <u>Τ</u> Ωq0 C) 0 ₂ rgBT /Ove
67	Sensing of protein adsorption with a porous bulk composite comprising silver nanoparticles deposited on hydroxyapatite. Journal of Materials Science: Materials in Medicine, 2010, 21, 1225-1232.	1.7	17
68	Hydroxyapatite formation on porous ceramics of alpha-tricalcium phosphate in a simulated body fluid. Journal of Materials Science: Materials in Medicine, 2010, 21, 1921-1926.	1.7	26
69	Crystallization of calcium phosphate in polyacrylamide hydrogels containing phosphate ions. Journal of Crystal Growth, 2010, 312, 2376-2382.	0.7	20
70	Biomimetic mineralization of calcium phosphate crystals in polyacrylamide hydrogel: Effect of concentrations of calcium and phosphate ions on crystalline phases and morphology. Materials Science and Engineering C, 2010, 30, 154-159.	3.8	39
71	Acceleration of calcium phosphate formation on bioactive PMMA-based bone cement by controlling spatial design. Materials Science and Engineering C, 2010, 30, 624-630.	3.8	2

⁷²Synthesis of a bi-structured hybrid in a CaOâ€"SiO2-PTMO system and in vitro evaluation on its potential
of bone-bonding property. Materials Science and Engineering C, 2010, 30, 454-459.3.81

#	Article	IF	CITATIONS
73	Sensing of Protein Adsorption by Composites Consisting of Silver Nanoparticles and Hydroxyapatite. Advances in Science and Technology, 2010, 76, 90-99.	0.2	Ο
74	Synthesis of Bioactive HEMA—MPS—CaCl ₂ Hybrid Gels: Effects of Catalysts in the Sol—Gel Processing on Mechanical Properties and <i>in vitro</i> Hydroxyapatite Formation in a Simulated Body Fluid. Journal of Biomaterials Applications, 2009, 23, 519-532.	1.2	6
75	Bioactive ceramic-based materials with designed reactivity for bone tissue regeneration. Journal of the Royal Society Interface, 2009, 6, S349-60.	1.5	135
76	Synthesis of calcium phosphate crystals in a silica hydrogel containing phosphate ions. Journal of Materials Research, 2009, 24, 2154-2160.	1.2	17
77	Effect of spatial design and thermal oxidation on apatite formation on Ti–15Zr–4Ta–4Nb alloy. Acta Biomaterialia, 2009, 5, 298-304.	4.1	52
78	Apatite formation abilities and mechanical properties of hydroxyethylmethacrylate-based organic–inorganic hybrids incorporated with sulfonic groups and calcium ions. Journal of Materials Science: Materials in Medicine, 2009, 20, 157-161.	1.7	18
79	The effect of glass synthesis route on mechanical and physical properties of resultant glass ionomer cements. Journal of Materials Science: Materials in Medicine, 2009, 20, 1991-1999.	1.7	20
80	Fabrication of spherical CaO–SrO–ZnO–SiO2 particles by sol–gel processing. Journal of Materials Science: Materials in Medicine, 2009, 20, 2267-2273.	1.7	5
81	Characterisation and mechanical testing of hydrothermally treated HA/ZrO2 composites. Journal of Materials Science: Materials in Medicine, 2009, 20, 2235-2241.	1.7	8
82	Effect of preparation conditions on the properties of bioactive glasses for testing SBF. Journal of Materials Science: Materials in Medicine, 2009, 20, 2419-2426.	1.7	3
83	Apatite mineralization abilities and mechanical properties of covalently cross-linked pectin hydrogels. Materials Science and Engineering C, 2009, 29, 1765-1769.	3.8	27
84	Bioactive Composites Consisting of PEEK and Calcium Silicate Powders. Journal of Biomaterials Applications, 2009, 24, 105-118.	1.2	61
85	Hybridization of silver nanoparticles on hydroxyapatite in an aqueous solution. Journal of the Ceramic Society of Japan, 2009, 117, 294-298.	0.5	7
86	Induced deposition of bone-like hydroxyapatite on thermally oxidized titanium substrates using a spatial gap in a solution that mimics a body fluid. Journal of the Ceramic Society of Japan, 2009, 117, 515-520.	0.5	28
87	Formation of needle-like hydroxyapatite by hydrothermal treatment of CaHPO4 2H2O combined with .BETACa3(PO4)2. Journal of the Ceramic Society of Japan, 2009, 117, 759-764.	0.5	15
88	Protein adsorption on needle-shaped hydroxyapatite prepared by hydrothermal treatment of mixture composed of CaHPO4 2H2O and .BETACa3(PO4)2. Journal of the Ceramic Society of Japan, 2009, 117, 847-850.	0.5	16
89	Development of Bioactive Organic–Inorganic Hybrids Through Sol–Gel Processing. , 2009, , 769-793.		1
90	Apatite-Forming Ability of Organic-Inorganic Hybrids Prepared from Calcium Silicate and Glucomannan. Key Engineering Materials, 2008, 361-363, 567-570.	0.4	0

#	Article	IF	CITATIONS
91	Synthesis of Si-Containing Tricalcium Phosphate and its Sintering Behavior. Key Engineering Materials, 2008, 361-363, 59-62.	0.4	14
92	Preparation of bioactive microspheres of organic modified calcium silicates through sol–gel processing. Journal of Sol-Gel Science and Technology, 2008, 45, 43-49.	1.1	7
93	Biomimetic deposition of hydroxyapatite on a synthetic polypeptide with β sheet structure in a solution mimicking body fluid. Journal of Materials Science: Materials in Medicine, 2008, 19, 387-393.	1.7	22
94	Relationship between apatite-forming ability and mechanical properties of bioactive PMMA-based bone cement modified with calcium salts and alkoxysilane. Journal of Materials Science: Materials in Medicine, 2008, 19, 1399-1405.	1.7	31
95	Apatite-forming ability of polyglutamic acid hydrogels in a body-simulating environment. Journal of Materials Science: Materials in Medicine, 2008, 19, 2269-2274.	1.7	55
96	Preparation of bioactive spherical particles in the CaO–SiO2 system through sol–gel processing under coexistence of poly(ethylene glycol). Journal of the European Ceramic Society, 2008, 28, 1595-1602.	2.8	19
97	Review Paper: Behavior of Ceramic Biomaterials Derived from Tricalcium Phosphate in Physiological Condition. Journal of Biomaterials Applications, 2008, 23, 197-212.	1.2	232
98	Indirect selective laser sintering of apatite—wollostonite glass—ceramic. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2008, 222, 1107-1114.	1.0	34
99	In vivo Response of Bioactive PMMA-based Bone Cement Modified with Alkoxysilane and Calcium Acetate. Journal of Biomaterials Applications, 2008, 23, 213-228.	1.2	19
100	Formation of hydroxyapatite on ceramics consisting of tricalcium phosphate in a simulated body fluid. Journal of the Ceramic Society of Japan, 2008, 116, 96-99.	0.5	10
101	Structure-Photodynamic Effect Relationships of 24 Glycoconjugated Photosensitizers in HeLa Cells. Biological and Pharmaceutical Bulletin, 2008, 31, 2265-2272.	0.6	25
102	Surface Topography Designed to Provide Osteoconductivity to Titanium after Thermal Oxidation. Materials Transactions, 2008, 49, 428-434.	0.4	28
103	Apatite-forming ability of organic-inorganic hybrids fabricated from glucomannan by chemical modification with alkoxysilane and calcium salt. Journal of the Ceramic Society of Japan, 2008, 116, 46-49.	0.5	1
104	Synthesis of octacalcium phosphate intercalated with dicarboxylate ions from calcium carbonate and phosphoric acid. Journal of the Ceramic Society of Japan, 2008, 116, 481-485.	0.5	33
105	Synthesis of ceramics in MOn/2-SiO2 systems through sol-gel processing under coexistence of polyethylene glycol and in vitro evaluation of their bioactivity. Journal of the Ceramic Society of Japan, 2008, 116, 56-62.	0.5	3
106	Preparation of hydroxyapatite porous ceramics with different porous structures using a hydrothermal treatment with different aqueous solutions. Journal of the Ceramic Society of Japan, 2008, 116, 6-9.	0.5	38
107	Evaluation of apatite-forming ability and mechanical property of pectin hydrogels. Journal of the Ceramic Society of Japan, 2008, 116, 74-78.	0.5	14
108	Preparation and Structural Analysis of Cao-SiO2Gel by Sol-Gel Method. Journal of the Korean Ceramic Society, 2008, 45, 644-650.	1.1	0

#	Article	IF	CITATIONS
109	Gap Effect on the Heterogeneous Nucleation of Apatite on Thermally Oxidized Titanium Substrate. Key Engineering Materials, 2007, 361-363, 621-624.	0.4	10
110	Apatite-Forming Ability of Pectin Gels in Simulated Body Environment. Key Engineering Materials, 2007, 330-332, 675-678.	0.4	0
111	Effects of Polyethylene Glycol on Morphology of Bioactive CaO-SiO ₂ Gel. Key Engineering Materials, 2007, 330-332, 177-180.	0.4	0
112	Apatite-Forming Ability of Polyglutamic Acid Gel in Simulated Body Fluid: Effect of Cross-Linking Agent. Key Engineering Materials, 2007, 330-332, 683-686.	0.4	4
113	Synthesis of Osteoconductive Organic—Inorganic Nanohybrids through Modification of Chitin with Alkoxysilane and Calcium Chloride. Journal of Biomaterials Applications, 2007, 22, 71-81.	1.2	8
114	Effects of Cross-Linking Agent on Apatite-Forming Ability and Mechanical Property of Organic-Inorganic Hybrids Based on Starch. Materials Transactions, 2007, 48, 317-321.	0.4	12
115	Synthesis of Calcium Phosphates Containing Metal Ions and Evaluation of their Catalytic Activity for the Decomposition of Hydrogen Peroxide. Journal of the Ceramic Society of Japan, 2007, 115, 425-428.	1.3	3
116	Synthesis of Organic-Inorganic Hybrids of Poly(Tetramethylene Oxide)-Calcium Silicate and in vitro Evaluation of Their Bioactivity. Journal of the Ceramic Society of Japan, 2007, 115, 732-737.	0.5	4
117	Sugar-dependent photodynamic effect of glycoconjugated porphyrins: A study on photocytotoxicity, photophysical properties and binding behavior to bovine serum albumin (BSA). Biochimica Et Biophysica Acta - General Subjects, 2007, 1770, 1204-1211.	1.1	45
118	Coating of bone-like apatite for development of bioactive materials for bone reconstruction. Biomedical Materials (Bristol), 2007, 2, R17-R23.	1.7	48
119	Apatite-forming ability of micro-arc plasma oxidized layer of titanium in simulated body fluids. Surface and Coatings Technology, 2007, 201, 5651-5654.	2.2	29
120	Design of novel bioactive materials through organic modification of calcium silicate. Journal of the European Ceramic Society, 2007, 27, 1527-1533.	2.8	25
121	Coating bone-like apatite onto organic substrates using solutions mimicking body fluid. Journal of Tissue Engineering and Regenerative Medicine, 2007, 1, 33-38.	1.3	71
122	Optical oxygen-sensing properties of porphyrin derivatives anchored on ordered porous aluminium oxide plates. Photochemical and Photobiological Sciences, 2007, 6, 794.	1.6	14
123	In vitro apatite formation on polyamide containing carboxyl groups modified with silanol groups. Journal of Materials Science: Materials in Medicine, 2007, 18, 1037-1042.	1.7	29
124	Biological evaluation of an apatite–mullite glass-ceramic produced via selective laser sintering. Acta Biomaterialia, 2007, 3, 221-231.	4.1	81
125	Fabrication of poly(vinyl alcohol)–apatite hybrids through biomimetic process. Journal of the European Ceramic Society, 2007, 27, 1585-1588	2.8	20
126	Apatite Formation Behavior on Tricalcium Phosphate (TCP) Porous Body in a Simulated Body Fluid. Key Engineering Materials, 2006, 309-311, 251-254.	0.4	8

#	Article	IF	CITATIONS
127	Removal of Formaldehyde by Hydroxyapatite Layer Biomimetically Deposited on Polyamide Film. Environmental Science & Technology, 2006, 40, 4281-4285.	4.6	41
128	Structure and Photochemical Properties of (μ-Alkoxo)bis(μ-carboxylato)diruthenium Complexes with Naphthylacetate Ligands. Inorganic Chemistry, 2006, 45, 3048-3056.	1.9	6
129	APATITE FORMATION ON CaO,SiO2-BASED GLASS-CERAMICS IN A SIMULATED BODY FLUID. Phosphorus Research Bulletin, 2006, 20, 101-110.	0.1	5
130	Effect of Silane-Coupling Treatment on Thermal Decomposition of Octacalcium Phosphate. Zairyo/Journal of the Society of Materials Science, Japan, 2006, 55, 881-884.	0.1	11
131	Preparation of Porous Glass-Ceramics Containing Whitlockite and Diopside for Bone Repair. Journal of the Ceramic Society of Japan, 2006, 114, 82-86.	1.3	15
132	Synthesis of Bioactive Organic-Inorganic Hybrids from Tetraisopropyl Titanate and Hydroxyethylmethacrylate. Journal of the Ceramic Society of Japan, 2006, 114, 87-91.	1.3	8
133	Hydroxyapatite-Forming Ability and Mechanical Properties of Organic-Inorganic Hybrids Reinforced by Calcium Phosphates. Journal of the Ceramic Society of Japan, 2006, 114, 692-696.	1.3	4
134	Effect of ZnO addition on bioactive CaO–SiO2–P2O5–CaF2 glass–ceramics containing apatite and wollastonite. Acta Biomaterialia, 2006, 2, 467-471.	4.1	64
135	Mechanical and histological evaluation of a PMMA-based bone cement modified with γ-methacryloxypropyltrimethoxysilane and calcium acetate. Biomaterials, 2006, 27, 3897-3903.	5.7	50
136	Sugar-dependent aggregation of glycoconjugated chlorins and its effect on photocytotoxicity in HeLa cells. Journal of Photochemistry and Photobiology B: Biology, 2006, 84, 56-63.	1.7	38
137	Repair of 20-mm long rabbit radial bone defects using BMP-derived peptide combined with an α-tricalcium phosphate scaffold. Journal of Biomedical Materials Research - Part A, 2006, 77A, 700-706.	2.1	74
138	Apatite Formation on Synthetic Polypeptide with \hat{I}^2 Sheet Structure in a Solution Mimicking Body Environment. Key Engineering Materials, 2006, 309-311, 489-492.	0.4	2
139	Comparison of Apatite Formation on Polyamide Films Containing Carboxyl and Sulfonic Groups in a Solution Mimicking Body Fluid. Key Engineering Materials, 2006, 309-311, 477-480.	0.4	0
140	Effects of Polyethylene Glycol and Methacryloxypropyltrimethoxysilane on Morphology and Bioactivity of CaO-SiO ₂ Gel Prepared by Sol-Gel Method. Key Engineering Materials, 2006, 309-311, 317-320.	0.4	4
141	Development of Novel Bioactive PMMA-Based Bone Cement and its In Vitro and In Vivo Evaluation. Key Engineering Materials, 2006, 309-311, 801-804.	0.4	5
142	Apatite Deposition on Polypeptides Derived from Plants in a Solution Mimicking Body Fluid. Key Engineering Materials, 2006, 309-311, 671-674.	0.4	0
143	I : New Fabrication Process Mimicking Surface Reaction of Material under Body Environment. Zairyo/Journal of the Society of Materials Science, Japan, 2006, 55, 885-890.	0.1	0
144	A Comparative Study of Apatite Deposition on Polyamide Films Containing Different Functional Groups under a Biomimetic Condition. Journal of the Ceramic Society of Japan, 2005, 113, 588-592.	1.3	17

#	Article	IF	CITATIONS
145	Cellular uptake and photocytotoxicity of glycoconjugated chlorins in HeLa cells. Journal of Photochemistry and Photobiology B: Biology, 2005, 78, 7-15.	1.7	46
146	Synthesis and insulin-mimetic activities of metal complexes with 3-hydroxypyridine-2-carboxylic acid. Journal of Inorganic Biochemistry, 2005, 99, 1275-1282.	1.5	56
147	Mesoporous Calcium Phosphate Via Post-Treatment of alpha-TCP. Journal of the American Ceramic Society, 2005, 88, 822-826.	1.9	29
148	Accelerated bone repair with the use of a synthetic BMP-2-derived peptide and bone-marrow stromal cells. Journal of Biomedical Materials Research Part B, 2005, 72A, 77-82.	3.0	95
149	Enhanced fixation of implants by bone ingrowth to titanium fiber mesh: Effect of incorporation of hydroxyapatite powder. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2005, 75B, 168-176.	1.6	16
150	Synthesis of poly(Pro-Hyp-Gly)n by direct polycondensation of (Pro-Hyp-Gly)n, wheren = 1, 5, and 10, and stability of the triple-helical structure. Biopolymers, 2005, 79, 163-172.	1.2	53
151	Bonelike�/PLGA hybrid materials for bone regeneration: Preparation route and physicochemical characterisation. Journal of Materials Science: Materials in Medicine, 2005, 16, 253-259.	1.7	19
152	Synthesis of poly(isobutyl-co-2,2,2-trifluoroethyl methacrylate) with 5,10,15,20-tetraphenylporphinato platinum(II) moiety as an oxygen-sensing dye for pressure-sensitive paint. Journal of Polymer Science Part A, 2005, 43, 2997-3006.	2.5	32
153	Thermosensitive gel formation of novel polypeptides containing a collagen-derived Pro-Hyp-Gly sequence and an elastin-derived Val-Pro-Gly-Val-Gly sequence. Journal of Polymer Science Part A, 2005, 43, 6048-6056.	2.5	20
154	Development of Bloactive Organic-inorganic Hybrid Based on Starch. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2005, 52, 360-363.	0.1	4
155	Apatite Formation on Organic-Inorganic Hybrid Containing Sulfonic Group. Key Engineering Materials, 2005, 284-286, 725-728.	0.4	2
156	In Vitro Aging Test for Bioactive PMMA-Based Bone Cement Using Simulated Body Fluid. Key Engineering Materials, 2005, 284-286, 153-156.	0.4	3
157	Apatite Deposition on Polyamide Film Containing Silanol Groups in Simulated Body Environment. Key Engineering Materials, 2005, 284-286, 505-508.	0.4	2
158	Biodegradation of Porous Alpha-Tricalcium Phosphate Coated with Silk Sericin. Key Engineering Materials, 2005, 284-286, 329-332.	0.4	6
159	A composite of hydroxyapatite with electrospun biodegradable nanofibers as a tissue engineering material. Journal of Bioscience and Bioengineering, 2005, 100, 43-49.	1.1	248
160	Heterogeneous nucleation of hydroxyapatite on protein: structural effect of silk sericin. Journal of the Royal Society Interface, 2005, 2, 373-378.	1.5	106
161	Preparation of Porous Biphasic Tricalcium Phosphate and Its In Vivo Behavior. Key Engineering Materials, 2005, 284-286, 281-284.	0.4	21
162	Control of the Microstructure of Porous Tricalcium Phosphate: Effects of addition of Mg, Zn and Fe. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2005, 52, 356-359.	0.1	6

#	Article	IF	CITATIONS
163	Development of a Bone-Repairing Material Through Hybridization of Biodegradable Polymer with Bone-like Apatite. Journal of Hard Tissue Biology, 2005, 14, 138-139.	0.2	0
164	Biomimetic Process Utilizing a Simulated Body Fluid. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2005, 52, 373-378.	0.1	0
165	Fabrication of α-Tricalcium Phosphate Porous Body Having a Uniform Pore Size Distribution. Key Engineering Materials, 2004, 254-256, 965-968.	0.4	3
166	Bonelike [®] /PLGA Hybrid Materials for Bone Regeneration: In Vivo Evaluation. Materials Science Forum, 2004, 455-456, 374-377.	0.3	1
167	Cellular Uptake and Photocytotoxicity of Glycoconjugated Porphyrins in HeLa Cells¶. Photochemistry and Photobiology, 2004, 80, 301.	1.3	24
168	Hydrophobicity parameters (Log P) of glycoconjugated porphyrins for photodynamic therapy evaluated by reversed phase HPLC. Journal of Porphyrins and Phthalocyanines, 2004, 08, 1289-1292.	0.4	11
169	The controlled resorption of porous Â-tricalcium phosphate using a hydroxypropylcellulose coating. Journal of Materials Science: Materials in Medicine, 2004, 15, 1153-1158.	1.7	41
170	Prolonged ectopic calcification induced by BMP-2-derived synthetic peptide. Journal of Biomedical Materials Research Part B, 2004, 70A, 115-121.	3.0	82
171	A novel covalently crosslinked gel of alginate and silane with the ability to form bone-like apatite. Journal of Biomedical Materials Research Part B, 2004, 71A, 596-601.	3.0	54
172	Coating of an apatite layer on polyamide films containing sulfonic groups by a biomimetic process. Biomaterials, 2004, 25, 4529-4534.	5.7	146
173	DESIGN OF A NOVEL BIOACTIVE CALCIUM PHOSPHATE PASTE CONTAINING ACETYL CELLULOSE. Phosphorus Research Bulletin, 2004, 17, 203-208.	0.1	1
174	DESIGN OF BONE-BONDING ORGANIC-INORGANIC HYBRIDS. Phosphorus Research Bulletin, 2004, 17, 59-66.	0.1	0
175	FABRICATION AND CHEMICAL DURABILITY OF POROUS BODIES CONSISTING OF BIPHASIC TRICALCIUM PHOSPHATES. Phosphorus Research Bulletin, 2004, 17, 95-100.	0.1	19
176	CONTROL OF HYDROXYAPATITE DEPOSITION ON ORGANIC POLYMER UNDER BIOMIMICKING CONDITION. Phosphorus Research Bulletin, 2004, 17, 21-28.	0.1	0
177	Microstructure and Bioresorbable Properties of α-TCP Ceramic Porous Body Fabricated by Direct Casting Method. Materials Transactions, 2004, 45, 983-988.	0.4	55
178	Cellular Uptake and Photocytotoxicity of Glycoconjugated Porphyrins in Hela Cells. [¶] . Photochemistry and Photobiology, 2004, 80, 301-308.	1.3	1
179	Design of bioactive organic-inorganic hybrids on the basis of the bonding mechanism of calcium silicate glass with living bone. European Journal of Control, 2004, 29, 29-39.	1.6	3
180	Apatite deposition on polyamide films containing carboxyl group in a biomimetic solution. Journal of Materials Science: Materials in Medicine, 2003, 14, 569-574.	1.7	107

#	Article	IF	CITATIONS
181	Deposition of bone-like apatite on silk fiber in a solution that mimics extracellular fluid. Journal of Biomedical Materials Research Part B, 2003, 65A, 283-289.	3.0	148
182	Bioactive PMMA bone cement prepared by modification with methacryloxypropyltrimethoxysilane and calcium chloride. Journal of Biomedical Materials Research - Part A, 2003, 67A, 1417-1423.	2.1	58
183	Enhancement of bone growth in titanium fiber mesh by surface modification with hydrogen peroxide solution containing tantalum chloride. Journal of Biomedical Materials Research Part B, 2003, 64B, 19-26.	3.0	29
184	Detection of 1270 nm emission from singlet oxygen and photocytotoxic property of sugar-Pendant [60] fullerenes. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 3289-3292.	1.0	65
185	Activation of osteo-progenitor cells by a novel synthetic peptide derived from the bone morphogenetic protein-2 knuckle epitope. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2003, 1651, 60-67.	1.1	169
186	Apatite Formation on Silk Fiber in a Solution Mimicking Body Fluid. Key Engineering Materials, 2003, 240-242, 31-34.	0.4	4
187	Organic Modification of Porous α-Tricalcium Phosphate to Improve Chemical Durability. Materials Science Forum, 2003, 426-432, 3201-3206.	0.3	6
188	Apatite Formation on Polyamide Films Containing Sulfonic Groups by a Biomimetic Process. Key Engineering Materials, 2003, 240-242, 59-62.	0.4	2
189	Apatite Deposition on Organic-inorganic Hybrids Prepared from Chitin by Modification with Alkoxysilane and Calcium Salt. Key Engineering Materials, 2003, 254-256, 545-548.	0.4	2
190	Apatite Deposition on Silk Sericin in a Solution Mimicking Extracellular Fluid: Effects of Fabrication Process of Sericin Film. Key Engineering Materials, 2003, 254-256, 403-406.	0.4	4
191	Bone-Bonding Behaviour of PMMA Bone Cement Modified with Alkoxysilane and Calcium Acetate. Key Engineering Materials, 2003, 240-242, 361-364.	0.4	3
192	Development of Novel PMMA-Based Bone Cement Reinforced by Bioactive CaO-SiO ₂ Gel Powder. Key Engineering Materials, 2003, 254-256, 285-288.	0.4	2
193	Bioactive PMMA Bone Cement Prepared by Chemical Modification. Materials Science Forum, 2003, 426-432, 3219-3224.	0.3	0
194	Bioactive PMMA-Based Bone Cement Modified with Methacryloxypropyltrimethoxysilane and Calcium Salts-Effects of Calcium Salts on Apatite-Forming Ability Journal of the Ceramic Society of Japan, 2003, 111, 738-742.	1.3	19
195	Synthesis of Bioactive Organic–Inorganic Nanohybrid for Bone Repair through Sol–Gel Processing. Journal of Nanoscience and Nanotechnology, 2003, 3, 511-515.	0.9	34
196	Development of bioactive organic–inorganic hybrid for bone substitutes. Materials Science and Engineering C, 2002, 22, 27-34.	3.8	56
197	Mechanism of bonelike apatite formation on bioactive tantalum metal in a simulated body fluid. Biomaterials, 2002, 23, 827-832.	5.7	211
198	Enhancement of bonding strength by graded structure at interface between apatite layer and bioactive tantalum metal. Journal of Materials Science: Materials in Medicine, 2002, 13, 651-655.	1.7	30

#	Article	IF	CITATIONS
199	Properties of Bone-bonding PMMA Cement. Proceedings of the 1992 Annual Meeting of JSME/MMD, 2002, 2002, 5-6.	0.0	0
200	Mechanical properties of PMMA-based bone cement with enhanced biological compatibility via a chemical modification. Proceedings of the 1992 Annual Meeting of JSME/MMD, 2002, 2002, 435-436.	0.0	0
201	Bonelike Apatite Formation on Niobium Oxide Gel in a Simulated Body Fluid. Key Engineering Materials, 2001, 192-195, 43-46.	0.4	4
202	Kinetics of Apatite Deposition of Silica Gel Dependent on the Inorganic Ion Composition of Simulated Body Fluids Journal of the Ceramic Society of Japan, 2001, 109, 412-418.	1.3	20
203	Apatite-Forming Ability of Niobium Oxide Gels in a Simulated Body Fluid Journal of the Ceramic Society of Japan, 2001, 109, 929-933.	1.3	83
204	In vivo evaluation of bone-bonding of titanium metal chemically treated with a hydrogen peroxide solution containing tantalum chloride. Biomaterials, 2001, 22, 875-881.	5.7	71
205	Synthesis and In Vitro Behavior of Organically Modified Silicate Containing Ca Ions. Journal of Sol-Gel Science and Technology, 2001, 21, 89-96.	1.1	52
206	Development of bioactive PMMA-based cement by modification with alkoxysilane and calcium salt. Journal of Materials Science: Materials in Medicine, 2001, 12, 895-899.	1.7	47
207	Synthesis of Bioactive Organic-Inorganic Hybrids with γ-Methacryloxypropyltrimethoxysilane. Journal of Sol-Gel Science and Technology, 2000, 19, 745-748.	1.1	29
208	Surface Modification Of Polymers With Grafting And Coating Of Silane Hybrids And Their Bioactivity. Materials Research Society Symposia Proceedings, 1999, 576, 377.	0.1	4
209	Mechanism of Apatite Formation on a Sodium Silicate Glass in a Simulated Body Fluid. Journal of the American Ceramic Society, 1999, 82, 2155-2160.	1.9	94
210	BONE BONDING ABILITY OF TI-6A1-4V ALLOY WITH A HYDROGEN PEROXIDE SOLUTION. , 1999, , .		2
211	SYNTHESIS OF BIOACTIVE ORGANIC-INORGANIC HYBRIDS REINFORCED WITH AEROSIL®. , 1999, , .		2
212	Bioactive Gel Coatings Derived from Vinyltrimethoxysilane. Journal of Sol-Gel Science and Technology, 1998, 13, 237-240.	1.1	19
213	Ultrasonic implantation of calcium metasilicate glass particles into PMMA. Journal of Materials Science: Materials in Medicine, 1998, 9, 479-484.	1.7	15
214	Molecular dynamic simulation of heterogeneity and chemical states of fluorine in amorphous alkaline earth silicate systems. Computational Materials Science, 1998, 9, 337-342.	1.4	6
215	BIOMIMETIC COATING OF BONE-LIKE APATITE ON GLASS BEADS. Zairyo/Journal of the Society of Materials Science, Japan, 1998, 47, 60-63.	0.1	1
216	Spray Pyrolysis Preparation of Apatite-Composite Particles for Biological Application. Journal of Sol-Gel Science and Technology, 1997, 8, 655-661.	1.1	0

#	Article	IF	CITATIONS
217	Bioactivity of sol-gel derived organically modified silicates: part i: in vitro examination. Journal of Materials Science: Materials in Medicine, 1997, 8, 157-161.	1.7	128
218	Evaluation of in vitro bioactivity and biocompatibility of Bioglass-reinforced polyethylene composite. Journal of Materials Science: Materials in Medicine, 1997, 8, 809-813.	1.7	56
219	Spray pyrolysis preparation of apatite-composite particles for biological application. Journal of Sol-Gel Science and Technology, 1997, 8, 655-661.	1.1	6
220	Bioactivity of titanium treated with hydrogen peroxide solutions containing metal chlorides. , 1997, 35, 39-47.		219
221	Bioactivity and structure of organically modified silicate synthesized by the sol-gel method. , 1997, , 33-36.		1
222	Effect of multivalent cations in calcium silicate glasses on bioactivity. , 1997, , 41-44.		0
223	³¹ P MAS-NMR Studies of Phosphate Salts Formation on Calcium-Containing Oxide Glasses in a Simulated Body Fluid. Journal of the Ceramic Society of Japan, 1996, 104, 1000-1003.	1.3	15
224	Apatite formation on silica gel in simulated body fluid: Its dependence on structures of silica gels prepared in different media. , 1996, 33, 145-151.		86
225	Transmission Electron Microscopic Observation of Glass-Ceramic A-W and Apatite Layer Formed on Its Surface in a Simulated Body Fluid. Journal of the Ceramic Society of Japan, 1995, 103, 449-454.	1.3	63
226	Bioactivity of Na2O-CaO-SiO2 Glasses. Journal of the American Ceramic Society, 1995, 78, 2405-2411.	1.9	145
227	Dependence of Apatite Formation on Silica Cel on Its Structure: Effect of Heat Treatment. Journal of the American Ceramic Society, 1995, 78, 1769-1774.	1.9	467
228	The role of hydrated silica, titania, and alumina in inducing apatite on implants. Journal of Biomedical Materials Research Part B, 1994, 28, 7-15.	3.0	664
229	Comment on "Effects of Al/P Composition Ratio on the Crystallization of MgO-CaO-Al ₂ O ₃ -SiO ₂ -P ₂ O ₅ Bioglass-Ceramic System― Journal of the Ceramic Society of Japan, 1994, 102, 315-315.	1.3	0
230	Effects of ions in aqueous media on hydroxyapatite induction by silica gel and its relevance to bioactivity of bioactive glasses and glass-ceramics. Journal of Applied Biomaterials: an Official Journal of the Society for Biomaterials, 1993, 4, 221-229.	1.1	103
231	Apatite formation on three kinds of bioactive material at an early stagein vivo: A comparative study by transmission electron microscopy. Journal of Biomedical Materials Research Part B, 1993, 27, 999-1006.	3.0	229
232	Process of formation of bone-like apatite layer on silica gel. Journal of Materials Science: Materials in Medicine, 1993, 4, 127-131.	1.7	156
233	Effects of ions dissolved from bioactive glass-ceramic on surface apatite formation. Journal of Materials Science: Materials in Medicine, 1993, 4, 1-4.	1.7	74
234	Mechanism of apatite formation on CaOSiO2P2O5 glasses in a simulated body fluid. Journal of Non-Crystalline Solids, 1992, 143, 84-92.	1.5	846

#	Article	IF	CITATIONS
235	Chemical reaction of bioactive glass and glass-ceramics with a simulated body fluid. Journal of Materials Science: Materials in Electronics, 1992, 3, 79-83.	1.1	195
236	Compositional dependence of bioactivity of glasses in the system CaO-SiO2-Al2O3: itsin vitro evaluation. Journal of Materials Science: Materials in Electronics, 1992, 3, 119-125.	1.1	58
237	Apatite Formation Induced by Silica Gel in a Simulated Body Fluid. Journal of the American Ceramic Society, 1992, 75, 2094-2097.	1.9	486
238	Differences in ceramic-bone interface between surface-active ceramics and resorbable ceramics: A study by scanning and transmission electron microscopy. Journal of Biomedical Materials Research Part B, 1992, 26, 255-267.	3.0	151
239	Mechanism and strength of bonding between two bioactive ceramicsin vivo. Journal of Biomedical Materials Research Part B, 1992, 26, 1311-1324.	3.0	8
240	A comparative study of ultrastructures of the interfaces between four kinds of surface-active ceramic and bone. Journal of Biomedical Materials Research Part B, 1992, 26, 1419-1432.	3.0	238
241	Compositional Dependence of Bioactivity of Glasses in the System CaO-SiO ₂ -P ₂ O ₅ . Journal of the Ceramic Society of Japan, 1991, 99, 1-6.	1.3	141
242	The bonding behavior of calcite to bone. Journal of Biomedical Materials Research Part B, 1991, 25, 991-1003.	3.0	111
243	Bone bonding mechanism of ?-tricalcium phosphate. Journal of Biomedical Materials Research Part B, 1991, 25, 1303-1315.	3.0	188
244	Apatite formation on the surface of ceravital-type glass-ceramic in the body. Journal of Biomedical Materials Research Part B, 1991, 25, 1363-1370.	3.0	235
245	Thermal Change in Hot-Pressing TiSe _{1.6} and TiSe _{1.5} . Journal of the Ceramic Society of Japan, 1988, 96, 165-170.	1.3	0
246	Synthesis and Sintering of TiSe ₂ . Journal of the Ceramic Association Japan, 1987, 95, 623-629.	0.2	1
247	Bioactivity and Mechanical Property of Starch-Based Organic-Inorganic Hybrids. Key Engineering Materials, 0, 330-332, 439-442.	0.4	0
248	Design of Bioactive Nano-Hybrids for Bone Tissue Regeneration. , 0, , 339-366.		0
249	Orientation of Hydroxyapatite Rods Formed by Hydrothermal Treatment of Calcium Carbonate. Key Engineering Materials, 0, 529-530, 7-10.	0.4	1
250	Effects of Heat Treatment on Apatite Formation of CaO-SiO ₂ -PEEK Composites. Key Engineering Materials, 0, 529-530, 436-440.	0.4	1
251	Inhibitory Effects of Doped Aluminum and Silicon on HAp-Forming Ability of Titania in Simulated Body Fluid. Key Engineering Materials, 0, 529-530, 641-645.	0.4	0
252	Synthesis of Ag-Containing CaO-SiO ₂ Gel and its Apatite Forming Ability in Simulated Body Fluid. Key Engineering Materials, 0, 587, 56-59.	0.4	2

#	Article	IF	CITATIONS
253	Preparation of Hydroxyapatite Honeycomb through Dissolution-Precipitation Reaction under Hydrothermal Condition. Key Engineering Materials, 0, 720, 203-206.	0.4	2
254	Solvothermal Synthesis of TiO ₂ -Modified Hydroxyapatite Using Water-Isopropanol Solution. Materials Science Forum, 0, 922, 86-91.	0.3	3
255	Apatite Deposition on Organic–Inorganic Hybrids Prepared from Hydroxyethylmethacrylate by Modification with Alkoxysilane and Calcium Salt in Body Environment. Ceramic Engineering and Science Proceedings, 0, , 797-804.	0.1	0
256	Fabrication of Composite for Bone Repairing fromα-Tricalcium Phosphate and Hydroxypropylcellulose. , 0, , 215-220.		0
257	Apatite Formation on the Pmma Bone Cement Modified with Alkoxysilane and Calcium Salt in a Simulated Body Fluid. , 0, , 233-238.		0
258	Hydrothermal Treatment of Alpha Tricalcium Phosphate Porous Ceramics in Various Aqueous Solutions. Ceramic Engineering and Science Proceedings, 0, , 103-112.	0.1	0
259	Apatite-Polyglutamic Acid Composites Prepared Through Biomimetic Process. Ceramic Engineering and Science Proceedings, 0, , 181-187.	0.1	0
260	Formation of Bone-Like Apatite on Tricalcium Phosphate Ceramics in a Solution Mimicking Body Fluid. Ceramic Engineering and Science Proceedings, 0, , 189-198.	0.1	0
261	Transformation behaviour of salts composed of calcium ions and phosphate esters with different linear alkyl chain structures in a simulated body fluid modified with alkaline phosphatase. Science and Technology of Advanced Materials, 0, , .	2.8	0