S Majid Hassanizadeh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5493980/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A two-way coupled model for the co-transport of two different colloids in porous media. Journal of Contaminant Hydrology, 2022, 244, 103922.	3.3	2
2	Anaerobic degradation of benzene and other aromatic hydrocarbons in a tar-derived plume: Nitrate versus iron reducing conditions. Journal of Contaminant Hydrology, 2022, 248, 104006.	3.3	2
3	A quantitative study of salinity effect on water diffusion in n-alkane phases: From pore-scale experiments to molecular dynamic simulation. Fuel, 2022, 324, 124716.	6.4	3
4	Experimental Analysis of Mass Exchange Across a Heterogeneity Interface: Role of Counter urrent Transport and Non‣inear Diffusion. Water Resources Research, 2022, 58, .	4.2	3
5	The Complexity of Porous Media Flow Characterized in a Microfluidic Model Based on Confocal Laser Scanning Microscopy and Micro-PIV. Transport in Porous Media, 2021, 136, 343-367.	2.6	10
6	Spontaneous Imbibition and Drainage of Water in a Thin Porous Layer: Experiments and Modeling. Transport in Porous Media, 2021, 139, 381-396.	2.6	3
7	The effect of particle shape on porosity of swelling granular materials: Discrete element method and the multi-sphere approximation. Powder Technology, 2020, 360, 1295-1304.	4.2	8
8	Evaluation of LNAPL Behavior in Water Table Inter-Fluctuate Zone under Groundwater Drawdown Condition. Water (Switzerland), 2020, 12, 2337.	2.7	13
9	Impact of groundwater flow on methane gas migration and retention in unconsolidated aquifers. Journal of Contaminant Hydrology, 2020, 230, 103619.	3.3	27
10	Unsaturated flow in a packing of swelling particles; a grain-scale model. Advances in Water Resources, 2020, 142, 103642.	3.8	7
11	The dissolution and microbial degradation of mobile aromatic hydrocarbons from a Pintsch gas tar DNAPL source zone. Science of the Total Environment, 2020, 722, 137797.	8.0	7
12	Impact of water salinity differential on a crude oil droplet constrained in a capillary: Pore-scale mechanisms. Fuel, 2020, 274, 117798.	6.4	17
13	Continuum-scale modeling of water infiltration into a stack of two thin fibrous layers and their inter-layer space. Chemical Engineering Science, 2019, 207, 769-779.	3.8	5
14	Imaging Spontaneous Imbibition in Full Darcyâ€Scale Samples at Poreâ€Scale Resolution by Fast Xâ€ray Tomography. Water Resources Research, 2019, 55, 7072-7085.	4.2	25
15	Experimental and Numerical Studies of Saturation Overshoot during Infiltration into a Dry Soil. Vadose Zone Journal, 2019, 18, 1-13.	2.2	4
16	Occurrence and fate of methane leakage from cut and buried abandoned gas wells in the Netherlands. Science of the Total Environment, 2019, 659, 773-782.	8.0	53
17	Effect of Nanoscale Surface Textures on Multiphase Flow Dynamics in Capillaries. Langmuir, 2019, 35, 7322-7331.	3.5	8
18	Capillary pressure–saturation curves of thin hydrophilic fibrous layers: effects of overburden pressure, number of layers, and multiple imbibition–drainage cycles. Textile Reseach Journal, 2019, 89, 4906-4915.	2.2	10

#	Article	IF	CITATIONS
19	The Effect of Mixed Wettability on Pore cale Flow Regimes Based on a Flooding Experiment in Ketton Limestone. Geophysical Research Letters, 2019, 46, 3225-3234.	4.0	76
20	The Effect of Dynamic Capillarity in Modeling Saturation Overshoot during Infiltration. Vadose Zone Journal, 2019, 18, 1-14.	2.2	3
21	Internal flow patterns of a droplet pinned to the hydrophobic surfaces of a confined microchannel using micro-PIV and VOF simulations. Chemical Engineering Journal, 2019, 370, 444-454.	12.7	27
22	Dynamic Pore-Network Models Development. Advances in Mechanics and Mathematics, 2019, , 337-356.	0.7	1
23	Characterization of the Interface Between Coating and Fibrous Layers of Paper. Transport in Porous Media, 2019, 127, 143-155.	2.6	9
24	Direct simulations of two-phase flow experiments of different geometry complexities using Volume-of-Fluid (VOF) method. Chemical Engineering Science, 2019, 195, 820-827.	3.8	52
25	Theoretical and experimental investigations on the role of transient effects in the water retention behaviour of unsaturated granular soils. Geomechanics for Energy and the Environment, 2018, 15, 54-64.	2.5	13
26	Manufacturing a Micro-model with Integrated Fibre Optic Pressure Sensors. Transport in Porous Media, 2018, 122, 221-234.	2.6	15
27	A Two-Phase SPH Model for Dynamic Contact Angles Including Fluid–Solid Interactions at the Contact Line. Transport in Porous Media, 2018, 122, 253-277.	2.6	10
28	Impact of an historic underground gas well blowout on the current methane chemistry in a shallow groundwater system. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 296-301.	7.1	35
29	Continuum-Scale Modeling of Liquid Redistribution in a Stack of Thin Hydrophilic Fibrous Layers. Transport in Porous Media, 2018, 122, 203-219.	2.6	16
30	Reply to the Comments on "Bridging Effective Stress and Soil Water Retention Equations in Deforming Unsaturated Porous Media: A Thermodynamic Approachâ€â€"by Nasser Khalili and Arman Khoshghalb. Transport in Porous Media, 2018, 122, 521-526.	2.6	1
31	Velocity distributions in trapped and mobilized non-wetting phase ganglia in porous media. Scientific Reports, 2018, 8, 13228.	3.3	32
32	Revealing how interfaces in stacked thin fibrous layers affect liquid ingress and transport properties by single-sided NMR. Journal of Magnetic Resonance, 2018, 294, 16-23.	2.1	7
33	Droplet Imbibition into Paper Coating Layer: Pore-Network Modeling Simulation. Transport in Porous Media, 2018, 125, 239-258.	2.6	10
34	Dynamic Poreâ€Scale Model of Drainage in Granular Porous Media: The Poreâ€Unit Assembly Method. Water Resources Research, 2018, 54, 4193-4213.	4.2	13
35	Upscaling of nanoparticle transport in porous media under unfavorable conditions: Pore scale to Darcy scale. Journal of Contaminant Hydrology, 2017, 200, 1-14.	3.3	30
36	Bridging Effective Stress and Soil Water Retention Equations in Deforming Unsaturated Porous Media: A Thermodynamic Approach. Transport in Porous Media, 2017, 117, 349-365.	2.6	14

#	Article	IF	CITATIONS
37	Analysis of the Hysteretic Hydraulic Properties of Unsaturated Soil. Vadose Zone Journal, 2017, 16, 1-9.	2.2	21
38	Capillary pressure–saturation relationships for porous granular materials: Pore morphology method vs. pore unit assembly method. Advances in Water Resources, 2017, 107, 22-31.	3.8	46
39	The role of interfacial tension in colloid retention and remobilization during two-phase flow in a polydimethylsiloxane micro-model. Chemical Engineering Science, 2017, 168, 437-443.	3.8	15
40	Heat release at the wetting front during capillary filling of cellulosic micro-substrates. Journal of Colloid and Interface Science, 2017, 504, 751-757.	9.4	13
41	Dissolution kinetics of volatile organic compound vapors in water: An integrated experimental and computational study. Journal of Contaminant Hydrology, 2017, 196, 43-51.	3.3	4
42	Grain-Scale Modelling of Swelling Granular Materials Using the Discrete Element Method and the Multi-Sphere Approximation. , 2017, , .		4
43	Experimental Investigation of Hysteretic Dynamic Capillarity Effect in Unsaturated Flow. Water Resources Research, 2017, 53, 9078-9088.	4.2	29
44	Revisiting the horizontal redistribution of water in soils: Experiments and numerical modeling. Water Resources Research, 2017, 53, 7576-7589.	4.2	10
45	Occurrence of temperature spikes at a wetting front during spontaneous imbibition. Scientific Reports, 2017, 7, 7268.	3.3	11
46	Study of Hydraulic Properties of Uncoated Paper: Image Analysis and Pore-Scale Modeling. Transport in Porous Media, 2017, 120, 67-81.	2.6	32
47	Pore-Network Modeling of Water and Vapor Transport in the Micro Porous Layer and Gas Diffusion Layer of a Polymer Electrolyte Fuel Cell. Computation, 2016, 4, 21.	2.0	17
48	Determination of the relationship among capillary pressure, saturation and interfacial area: a pore unit assembly approach. E3S Web of Conferences, 2016, 9, 02002.	0.5	3
49	Modeling of Horizontal Water Redistribution in an Unsaturated Soil. Vadose Zone Journal, 2016, 15, 1-11.	2.2	8
50	Poreâ€scale network modeling of microbially induced calcium carbonate precipitation: Insight into scale dependence of biogeochemical reaction rates. Water Resources Research, 2016, 52, 8794-8810.	4.2	51
51	Long-term inactivation of bacteriophage PRD1 as a function of temperature, pH, sodium and calcium concentration. Water Research, 2016, 103, 66-73.	11.3	11
52	Megascale thermodynamics in the presence of a conservative field: The watershed case. Advances in Water Resources, 2016, 97, 73-86.	3.8	5
53	The Effects of Swelling and Porosity Change on Capillarity: DEM Coupled with a Pore-Unit Assembly Method. Transport in Porous Media, 2016, 113, 207-226.	2.6	41
54	Study of Multi-phase Flow in Porous Media: Comparison of SPH Simulations with Micro-model Experiments. Transport in Porous Media, 2016, 114, 581-600.	2.6	59

#	Article	IF	CITATIONS
55	Correlation equations for average deposition rate coefficients of nanoparticles in a cylindrical pore. Water Resources Research, 2015, 51, 8034-8059.	4.2	27
56	Pore-Scale Study of Flow Rate on Colloid Attachment and Remobilization in a Saturated Micromodel. Journal of Environmental Quality, 2015, 44, 1376-1383.	2.0	26
57	Modeling two-phase flow in a micro-model with local thermal non-equilibrium on the Darcy scale. International Journal of Heat and Mass Transfer, 2015, 88, 822-835.	4.8	3
58	Modeling the co-transport of viruses and colloids in unsaturated porous media. Journal of Contaminant Hydrology, 2015, 181, 82-101.	3.3	22
59	Bias by the inappropriate use of the pseudo-first order approach to estimate second-order reaction rate constants: Reply to the commentary by Tratnyek (this issue). Science of the Total Environment, 2015, 502, 724-725.	8.0	3
60	Solute Mass Exchange Between Water Phase and Biofilm for a Single Pore. Transport in Porous Media, 2015, 109, 255-278.	2.6	2
61	Evaluation of a horizontal permeable reactive barrier for preventing upward diffusion of volatile organic compounds through the unsaturated zone. Journal of Environmental Management, 2015, 163, 204-213.	7.8	13
62	Pore-Network Modeling of Solute Transport and Biofilm Growth in Porous Media. Transport in Porous Media, 2015, 110, 345-367.	2.6	34
63	Micromodel study of twoâ€phase flow under transient conditions: Quantifying effects of specific interfacial area. Water Resources Research, 2014, 50, 8125-8140.	4.2	74
64	Multiphase flow through multilayers of thin porous media: General balance equations and constitutive relationships for a solid–gas–liquid three-phase system. International Journal of Heat and Mass Transfer, 2014, 70, 693-708.	4.8	33
65	Horizontal Redistribution of Two Fluid Phases in a Porous Medium: Experimental Investigations. Transport in Porous Media, 2014, 105, 503-515.	2.6	5
66	Oxidation of trichloroethylene, toluene, and ethanol vapors by a partially saturated permeable reactive barrier. Journal of Contaminant Hydrology, 2014, 164, 193-208.	3.3	18
67	Evaluation of the kinetic oxidation of aqueous volatile organic compounds by permanganate. Science of the Total Environment, 2014, 485-486, 755-763.	8.0	24
68	Simultaneous thermal and optical imaging of two-phase flow in a micro-model. Lab on A Chip, 2014, 14, 2515.	6.0	12
69	Virus-sized colloid transport in a single pore: Model development and sensitivity analysis. Journal of Contaminant Hydrology, 2014, 164, 163-180.	3.3	15
70	Effect of hydrophobicity on colloid transport during twoâ€phase flow in a micromodel. Water Resources Research, 2014, 50, 7677-7691.	4.2	25
71	Principle of Effective Stress in Variably Saturated Porous Media. Vadose Zone Journal, 2014, 13, 1-4.	2.2	5
72	Oxidation of volatile organic vapours in air by solid potassium permanganate. Chemosphere, 2013, 91, 1534-1538.	8.2	18

#	Article	IF	CITATIONS
73	Retention and remobilization of colloids during steady-state and transient two-phase flow. Water Resources Research, 2013, 49, 8005-8016.	4.2	22
74	Saturationâ€dependent solute dispersivity in porous media: Poreâ€scale processes. Water Resources Research, 2013, 49, 1943-1951.	4.2	71
75	Effective Stress in Unsaturated Soils: A Thermodynamic Approach Based on the Interfacial Energy and Hydromechanical Coupling. Transport in Porous Media, 2013, 96, 369-396.	2.6	78
76	Study of colloids transport during two-phase flow using a novel polydimethylsiloxane micro-model. Journal of Colloid and Interface Science, 2013, 401, 141-147.	9.4	15
77	Effect of dissolved calcium on the removal of bacteriophage PRD1 during soil passage: The role of double-layer interactions. Journal of Contaminant Hydrology, 2013, 144, 78-87.	3.3	22
78	Bacteriophage PRD1 batch experiments to study attachment, detachment and inactivation processes. Journal of Contaminant Hydrology, 2013, 152, 12-17.	3.3	15
79	Mechanics of Unsaturated Soils: from Equilibrium to Transient Conditions. , 2013, , .		7
80	On the fabrication of PDMS micromodels by rapid prototyping, and their use in twoâ€phase flow studies. Water Resources Research, 2013, 49, 2056-2067.	4.2	76
81	Direct Simulation of Liquid Water Dynamics in the Gas Channel of a Polymer Electrolyte Fuel Cell. Journal of the Electrochemical Society, 2012, 159, B434-B443.	2.9	19
82	One-Dimensional Phenomenological Model for Liquid Water Flooding in Cathode Gas Channel of a Polymer Electrolyte Fuel Cell. Journal of the Electrochemical Society, 2012, 159, B737-B745.	2.9	10
83	A Review of Micromodels and Their Use in Two-Phase Flow Studies. Vadose Zone Journal, 2012, 11, vzj2011.0072.	2.2	169
84	Analysis of Fundamentals of Two-Phase Flow in Porous Media Using Dynamic Pore-Network Models: A Review. Critical Reviews in Environmental Science and Technology, 2012, 42, 1895-1976.	12.8	285
85	Pore-Scale Modeling of Multiphase Flow and Transport: Achievements and Perspectives. Transport in Porous Media, 2012, 94, 461-464.	2.6	30
86	Uniqueness of Specific Interfacial Area–Capillary Pressure–Saturation Relationship Under Non-Equilibrium Conditions in Two-Phase Porous Media Flow. Transport in Porous Media, 2012, 94, 465-486.	2.6	56
87	Biodegradation of Toluene Under Seasonal and Diurnal Fluctuations of Soil-Water Temperature. Water, Air, and Soil Pollution, 2012, 223, 3579-3588.	2.4	43
88	Numerical studies on liquid water flooding in gas channels used in polymer electrolyte fuel cells. Chemical Engineering Science, 2012, 82, 223-231.	3.8	4
89	A new formulation for poreâ€network modeling of twoâ€phase flow. Water Resources Research, 2012, 48,	4.2	73
90	Effect of Initial Hydraulic Conditions on Capillary Rise in a Porous Medium: Pore-Network Modeling. Vadose Zone Journal, 2012, 11, vzj2011.0128.	2.2	8

#	Article	IF	CITATIONS
91	A novel deep reactive ion etched (DRIE) glass micro-model for two-phase flow experiments. Lab on A Chip, 2012, 12, 3413.	6.0	61
92	Modeling Virus Transport and Remobilization during Transient Partially Saturated Flow. Vadose Zone Journal, 2012, 11, vzj2011.0090.	2.2	19
93	Two-phase flow modeling for the cathode side of a polymer electrolyte fuel cell. Journal of Power Sources, 2012, 197, 136-144.	7.8	54
94	Modeling Concentration Distribution and Deformation During Convection-Enhanced Drug Delivery into Brain Tissue. Transport in Porous Media, 2012, 92, 119-143.	2.6	70
95	Specific interfacial area: The missing state variable in twoâ€phase flow equations?. Water Resources Research, 2011, 47, .	4.2	55
96	Nonequilibrium capillarity effects in twoâ€phase flow through porous media at different scales. Water Resources Research, 2011, 47, .	4.2	62
97	Reservoir-on-a-Chip (ROC): A new paradigm in reservoir engineering. Lab on A Chip, 2011, 11, 3785.	6.0	170
98	Systematic Study of Effects of pH and Ionic Strength on Attachment of Phage PRD1. Ground Water, 2011, 49, 12-19.	1.3	46
99	Comparison of Two-Phase Darcy's Law with a Thermodynamically Consistent Approach. Transport in Porous Media, 2011, 88, 133-148.	2.6	62
100	From Local Measurements to an Upscaled Capillary Pressure–Saturation Curve. Transport in Porous Media, 2011, 88, 271-291.	2.6	26
101	An Overview of Biodegradation of LNAPLs in Coastal (Semi)-arid Environment. Water, Air, and Soil Pollution, 2011, 220, 225-239.	2.4	63
102	Effect of fluids properties on non-equilibrium capillarity effects: Dynamic pore-network modeling. International Journal of Multiphase Flow, 2011, 37, 198-214.	3.4	106
103	Upscaling Transport of Adsorbing Solutes in Porous Media: Poreâ€Network Modeling. Vadose Zone Journal, 2010, 9, 624-636.	2.2	65
104	A New Method for Generating Pore-Network Models of Porous Media. Transport in Porous Media, 2010, 81, 391-407.	2.6	126
105	What is the Correct Definition of Average Pressure?. Transport in Porous Media, 2010, 84, 153-175.	2.6	17
106	Non-equilibrium effects in capillarity and interfacial area in two-phase flow: dynamic pore-network modelling. Journal of Fluid Mechanics, 2010, 655, 38-71.	3.4	226
107	Network model investigation of interfacial area, capillary pressure and saturation relationships in granular porous media. Water Resources Research, 2010, 46, .	4.2	105
108	Vulnerability of unconfined aquifers to virus contamination. Water Research, 2010, 44, 1170-1181.	11.3	32

#	Article	IF	CITATIONS
109	UPSCALING TRANSPORTOF ADSORBING SOLUTES IN POROUS MEDIA. Journal of Porous Media, 2010, 13, 395-408.	1.9	27
110	Non-equilibrium interphase heat and mass transfer during two-phase flow in porous media—Theoretical considerations and modeling. Advances in Water Resources, 2009, 32, 1756-1766.	3.8	39
111	Modeling Kinetic Interphase Mass Transfer for Two-Phase Flow in Porous Media Including Fluid–Fluid Interfacial Area. Transport in Porous Media, 2009, 80, 329-344.	2.6	40
112	Simulating drainage and imbibition experiments in a highâ€porosity micromodel using an unstructured pore network model. Water Resources Research, 2009, 45, .	4.2	77
113	Insights into the Relationships Among Capillary Pressure, Saturation, Interfacial Area and Relative Permeability Using Pore-Network Modeling. Transport in Porous Media, 2008, 74, 201-219.	2.6	210
114	Dimensional analysis of two-phase flow including a rate-dependent capillary pressure–saturation relationship. Advances in Water Resources, 2008, 31, 1137-1150.	3.8	45
115	On the definition of macroscale pressure for multiphase flow in porous media. Water Resources Research, 2008, 44, .	4.2	35
116	A model for twoâ€phase flow in porous media including fluidâ€fluid interfacial area. Water Resources Research, 2008, 44, .	4.2	76
117	Modeling Two-Phase Flow in Porous Media Including Fluid-Fluid Interfacial Area. , 2008, , .		4
118	Interpretation of macroscale variables in Darcy's law. Water Resources Research, 2007, 43, .	4.2	37
119	Role of air-water interfaces on retention of viruses under unsaturated conditions. Water Resources Research, 2006, 42, .	4.2	67
120	Determination of protection zones for Dutch groundwater wells against virus contamination - uncertainty and sensitivity analysis. Journal of Water and Health, 2006, 4, 297-312.	2.6	35
121	Virus Transport in Saturated and Unsaturated Sand Columns. Vadose Zone Journal, 2006, 5, 877-885.	2.2	73
122	Perface on Upscaling Multiphase Flow in Porous Media: From Pore to Core and Beyond. Transport in Porous Media, 2005, 58, 1-3.	2.6	2
123	Bundle-of-Tubes Model for Calculating Dynamic Effects in the Capillary-Pressure- Saturation Relationship. Transport in Porous Media, 2005, 58, 5-22.	2.6	113
124	Macro-Scale Dynamic Effects in Homogeneous and Heterogeneous Porous Media. Transport in Porous Media, 2005, 58, 121-145.	2.6	60
125	Laboratory Experiments and Simulations on the Significance of Non-Equilibrium Effect in the Capillary Pressure-Saturation Relationship. , 2005, , 3-14.		7
126	Bundle-of-Tubes Model for Calculating Dynamic Effects in the Capillary-Pressure-Saturation		2

Relationship. , 2005, , 5-22.

#	Article	IF	CITATIONS
127	Macro-Scale Dynamic Effects in Homogeneous and Heterogeneous Porous Media. , 2005, , 121-145.		11
128	Two-Phase Flow Experiments in a Geocentrifuge and the Significance of Dynamic Capillary Pressure Effect. Journal of Porous Media, 2005, 8, 247-257.	1.9	31
129	A Numerical Study of Micro-Heterogeneity Effects on Upscaled Properties of Two-Phase Flow in Porous Media. Transport in Porous Media, 2004, 56, 329-350.	2.6	32
130	Dynamic effects in capillary pressure relationships for two-phase flow in porous media: insights from bundle-of-tubes models and their implications. Developments in Water Science, 2004, 55, 127-138.	0.1	1
131	Bacteriophages and clostridium spores as indicator organisms for removal of pathogens by passage through saturated dune sand. Water Research, 2003, 37, 2186-2194.	11.3	73
132	Dynamic Effect in the Capillary Pressure–Saturation Relationship and its Impacts on Unsaturated Flow. Vadose Zone Journal, 2002, 1, 38-57.	2.2	304
133	Effects of heterogeneities on capillary pressure–saturation–relative permeability relationships. Journal of Contaminant Hydrology, 2002, 56, 175-192.	3.3	69
134	Two-site kinetic modeling of bacteriophages transport through columns of saturated dune sand. Journal of Contaminant Hydrology, 2002, 57, 259-279.	3.3	89
135	Column experiments to study nonlinear removal of bacteriophages by passage through saturated dune sand. Journal of Contaminant Hydrology, 2002, 58, 243-259.	3.3	26
136	Dynamic Effect in the Capillary Pressure-Saturation Relationship and its Impacts on Unsaturated Flow. Vadose Zone Journal, 2002, 1, 38-57.	2.2	38
137	Dynamic Effect in the Capillary Pressure–Saturation Relationship and its Impacts on Unsaturated Flow. Vadose Zone Journal, 2002, 1, 38.	2.2	40
138	Title is missing!. Transport in Porous Media, 2001, 43, 487-510.	2.6	99
139	Modeling Uranium Transport in Koongarra, Australia: The Effect of a Moving Weathering Zone. Mathematical Geosciences, 2001, 33, 1-29.	0.9	9
140	Effective parameters for two-phase flow in a porous medium with periodic heterogeneities. Journal of Contaminant Hydrology, 2001, 49, 87-109.	3.3	42
141	Modeling Virus Adsorption in Batch and Column Experiments. Quantitative Microbiology, 2000, 2, 5-20.	0.5	22
142	Conservation equations governing hillslope responses: Exploring the physical basis of water balance. Water Resources Research, 2000, 36, 1845-1863.	4.2	115
143	Removal of Viruses by Soil Passage: Overview of Modeling, Processes, and Parameters. Critical Reviews in Environmental Science and Technology, 2000, 30, 49-127.	12.8	466
144	Numerical Simulation and Homogenization of Two-Phase Flow in Heterogeneous Porous Media. , 2000, , 333-338.		0

#	Article	IF	CITATIONS
145	A unifying framework for watershed thermodynamics: balance equations for mass, momentum, energy and entropy, and the second law of thermodynamics. Advances in Water Resources, 1998, 22, 367-398.	3.8	169
146	Comment on "multicomponent, multiphase thermomechanics with interfaces―by S. Achanta, J. H. Cushman and M. R. Okos, Int. J. Engng Sci. 32, 1717–1738 (1994). International Journal of Engineering Science, 1996, 34, 531-534.	5.0	2
147	On the transient non-Fickian dispersion theory. Transport in Porous Media, 1996, 23, 107.	2.6	48
148	A non-linear theory of high-concentration-gradient dispersion in porous media. Advances in Water Resources, 1995, 18, 203-215.	3.8	86
149	Reply [to "Comment on â€~Paradoxes and realities in unsaturated flow theory' by W. G. Gray and S. M. Hassanizadehâ€]. Water Resources Research, 1994, 30, 1625-1626.	4.2	2
150	Toward an improved description of the physics of two-phase flow. Advances in Water Resources, 1993, 16, 53-67.	3.8	209
151	Thermodynamic basis of capillary pressure in porous media. Water Resources Research, 1993, 29, 3389-3405.	4.2	582
152	Paradoxes and Realities in Unsaturated Flow Theory. Water Resources Research, 1991, 27, 1847-1854.	4.2	114
153	Unsaturated Flow Theory Including Interfacial Phenomena. Water Resources Research, 1991, 27, 1855-1863.	4.2	184
154	Derivation of conditions describing transport across zones of reduced dynamics within multiphase systems. Water Resources Research, 1989, 25, 529-539.	4.2	29
155	Boundary and interface conditions in porous media. Water Resources Research, 1989, 25, 1705-1715.	4.2	19
156	On the modeling of brine transport in porous media. Water Resources Research, 1988, 24, 321-330.	4.2	99
157	High velocity flow in porous media. Transport in Porous Media, 1987, 2, 521.	2.6	248
158	Derivation of basic equations of mass transport in porous media, Part 1. Macroscopic balance laws. Advances in Water Resources, 1986, 9, 196-206.	3.8	80
159	Derivation of basic equations of mass transport in porous media, Part 2. Generalized Darcy's and Fick's laws. Advances in Water Resources, 1986, 9, 207-222.	3.8	134