Maria-Luisa Pérez Lozano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5493690/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gremlin-1 and BMP-4 Overexpressed in Osteoarthritis Drive an Osteochondral-Remodeling Program in Osteoblasts and Hypertrophic Chondrocytes. International Journal of Molecular Sciences, 2022, 23, 2084.	4.1	12
2	The differentiation of prehypertrophic into hypertrophic chondrocytes drives an OA-remodeling program and IL-34 expression. Osteoarthritis and Cartilage, 2021, 29, 257-268.	1.3	4
3	Emerging Natural-Product-Based Treatments for the Management of Osteoarthritis. Antioxidants, 2021, 10, 265.	5.1	16
4	Mesothelialâ€toâ€mesenchymal transition as a possible therapeutic target in peritoneal metastasis of ovarian cancer. Journal of Pathology, 2017, 242, 140-151.	4.5	83
5	Genomic reprograming analysis of the Mesothelial to Mesenchymal Transition identifies biomarkers in peritoneal dialysis patients. Scientific Reports, 2017, 7, 44941.	3.3	38
6	Mesothelial-to-mesenchymal transition in the pathogenesis of post-surgical peritoneal adhesions. Journal of Pathology, 2016, 239, 48-59.	4.5	82
7	Caveolinâ€l deficiency induces a <scp>MEK</scp> â€ <scp>ERK</scp> 1/2â€6nailâ€lâ€dependent epithelial–mesenchymal transition and fibrosis during peritoneal dialysis. EMBO Molecular Medicine, 2015, 7, 102-123.	6.9	79
8	A Pathogenetic Role for Endothelin-1 in Peritoneal Dialysis-Associated Fibrosis. Journal of the American Society of Nephrology: JASN, 2015, 26, 173-182.	6.1	31
9	Carcinomaâ€associated fibroblasts derive from mesothelial cells via mesothelialâ€toâ€mesenchymal transition in peritoneal metastasis. Journal of Pathology, 2013, 231, 517-531.	4.5	134
10	Functional Relevance of the Switch of VEGF Receptors/Co-Receptors during Peritoneal Dialysis-Induced Mesothelial to Mesenchymal Transition. PLoS ONE, 2013, 8, e60776.	2.5	35
11	Influence of Bicarbonate/Low-GDP Peritoneal Dialysis Fluid (Bicavera) on <i>in Vitro</i> and <i>Ex Vivo</i> Epithelial-to-Mesenchymal Transition of Mesothelial Cells. Peritoneal Dialysis International, 2012, 32, 292-304.	2.3	41
12	Inhibition of Transforming Growth Factor-Activated Kinase 1 (TAK1) Blocks and Reverses Epithelial to Mesenchymal Transition of Mesothelial Cells. PLoS ONE, 2012, 7, e31492.	2.5	46
13	Blocking TGF-β1 Protects the Peritoneal Membrane from Dialysate-Induced Damage. Journal of the American Society of Nephrology: JASN, 2011, 22, 1682-1695.	6.1	146
14	PPAR-γ agonist rosiglitazone protects peritoneal membrane from dialysis fluid-induced damage. Laboratory Investigation, 2010, 90, 1517-1532.	3.7	62
15	p38 maintains E-cadherin expression by modulating TAK1–NF-κB during epithelial-to-mesenchymal transition. Journal of Cell Science, 2010, 123, 4321-4331.	2.0	84
16	BMP-7 blocks mesenchymal conversion of mesothelial cells and prevents peritoneal damage induced by dialysis fluid exposure. Nephrology Dialysis Transplantation, 2010, 25, 1098-1108.	0.7	90
17	Cyclooxygenase-2 Mediates Dialysate-Induced Alterations of the Peritoneal Membrane. Journal of the American Society of Nephrology: JASN, 2009, 20, 582-592.	6.1	65
18	Epithelial-to-mesenchymal transition of peritoneal mesothelial cells is regulated by an ERK/NF-κB/Snail1 pathway. DMM Disease Models and Mechanisms, 2008, 1, 264-274.	2.4	104

#	Article	IF	CITATIONS
19	Mesenchymal Conversion of Mesothelial Cells as a Mechanism Responsible for High Solute Transport Rate in Peritoneal Dialysis: Role of Vascular Endothelial Growth Factor. American Journal of Kidney Diseases, 2005, 46, 938-948.	1.9	188