Martin Werner

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5493525/martin-werner-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

121
papers7,690
citations38
h-index87
g-index195
ext. papers8,727
ext. citations7.3
avg, IF5.58
L-index

#	Paper	IF	Citations
121	Simulating glacial dust changes in the Southern Hemisphere using ECHAM6.3-HAM2.3. <i>Climate of the Past</i> , 2022 , 18, 67-87	3.9	1
120	Overview of the MOSAiC expedition tmosphere. <i>Elementa</i> , 2022 , 10,	3.6	15
119	Calendar effects on surface air temperature and precipitation based on model-ensemble equilibrium and transient simulations from PMIP4 and PACMEDY. <i>Climate of the Past</i> , 2022 , 18, 1047-10	709	1
118	Disentangling different moisture transport pathways over the eastern subtropical North Atlantic using multi-platform isotope observations and high-resolution numerical modelling. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 16319-16347	6.8	1
117	Continuous monitoring of surface water vapour isotopic compositions at Neumayer Station III, East Antarctica. <i>Cryosphere</i> , 2021 , 15, 4745-4767	5.5	2
116	The role of airBea fluxes for the water vapour isotope signals in the cold and warm sectors of extratropical cyclones over the Southern Ocean. <i>Weather and Climate Dynamics</i> , 2021 , 2, 331-357	3.3	3
115	A global climatology of the ocean surface during the Last Glacial Maximum mapped on a regular grid (GLOMAP). <i>Climate of the Past</i> , 2021 , 17, 805-824	3.9	4
114	A data Thodel approach to interpreting speleothem oxygen isotope records from monsoon regions. <i>Climate of the Past</i> , 2021 , 17, 1119-1138	3.9	0
113	How precipitation intermittency sets an optimal sampling distance for temperature reconstructions from Antarctic ice cores. <i>Climate of the Past</i> , 2021 , 17, 1587-1605	3.9	O
112	Applying an isotope-enabled regional climate model over the Greenland ice sheet: effect of spatial resolution on model bias. <i>Climate of the Past</i> , 2021 , 17, 1685-1699	3.9	2
111	Limited Retreat of the Wilkes Basin Ice Sheet During the Last Interglacial. <i>Geophysical Research Letters</i> , 2020 , 47, e2020GL088131	4.9	6
110	Validation of ECHAM AGCMs Using Laser Spectrometer Data from Two Arctic Stations. <i>Atmospheric and Oceanic Optics</i> , 2020 , 33, 702-707	0.8	1
109	Moisture origin as a driver of temporal variabilities of the water vapour isotopic composition in the Lena River Delta, Siberia. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 10493-10511	6.8	10
108	Seasonal reconstructions coupling ice core data and an isotope-enabled climate model Imethodological implications of seasonality, climate modes and selection of proxy data. <i>Climate of the Past</i> , 2020 , 16, 1737-1758	3.9	5
107	Snowfall and Water Stable Isotope Variability in East Antarctica Controlled by Warm Synoptic Events. <i>Journal of Geophysical Research D: Atmospheres</i> , 2020 , 125, e2020JD032863	4.4	6
106	Moisture origin and stable isotope characteristics of precipitation in southeast Siberia. <i>Hydrological Processes</i> , 2020 , 34, 51-67	3.3	16
105	Evaluating model outputs using integrated global speleothem records of climate change since the last glacial. <i>Climate of the Past</i> , 2019 , 15, 1557-1579	3.9	22

(2017-2019)

104	Assessing the robustness of Antarctic temperature reconstructions over the past 2´millennia using pseudoproxy and data assimilation experiments. <i>Climate of the Past</i> , 2019 , 15, 661-684	3.9	15	
103	Challenges associated with the climatic interpretation of water stable isotope records from a highly resolved firn core from Adlle Land, coastal Antarctica. <i>Cryosphere</i> , 2019 , 13, 1297-1324	5.5	9	
102	Resolving the controls of water vapour isotopes in the Atlantic sector. <i>Nature Communications</i> , 2019 , 10, 1632	17.4	31	
101	North Atlantic weather regimes in ¶8O of winter precipitation: isotopic fingerprint of the response in the atmospheric circulation after volcanic eruptions. <i>Tellus, Series B: Chemical and Physical Meteorology</i> , 2019 , 71, 1633848	3.3	0	
100	Global analysis reveals climatic controls on the oxygen isotope composition of cave drip water. <i>Nature Communications</i> , 2019 , 10, 2984	17.4	45	
99	Water isotopes Elimate relationships for the mid-Holocene and preindustrial period simulated with an isotope-enabled version of MPI-ESM. <i>Climate of the Past</i> , 2019 , 15, 1913-1937	3.9	17	
98	Hydroclimate in the Pamirs Was Driven by Changes in Precipitation-Evaporation Seasonality Since the Last Glacial Period. <i>Geophysical Research Letters</i> , 2019 , 46, 13972-13983	4.9	16	
97	Last Interglacial Hydroclimate Seasonality Reconstructed From Tropical Atlantic Corals. <i>Paleoceanography and Paleoclimatology</i> , 2018 , 33, 198-213	3.3	9	
96	The Climatological Impacts of Continental Surface Evaporation, Rainout, and Subcloud Processes on D of Water Vapor and Precipitation in Europe. <i>Journal of Geophysical Research D: Atmospheres</i> , 2018 , 123, 4390-4409	4.4	14	
95	Water stable isotope spatio-temporal variability in Antarctica in 1960\(\textit{0}\)013: observations and simulations from the ECHAM5-wiso atmospheric general circulation model. <i>Climate of the Past</i> , 2018 , 14, 923-946	3.9	15	
94	North Pacific freshwater events linked to changes in glacial ocean circulation. <i>Nature</i> , 2018 , 559, 241-24	15 0.4	33	
93	The influence of volcanic eruptions on weather regimes over the North Atlantic simulated by ECHAM5/MPI-OM ensemble runs from 800 to 2000 CE. <i>Atmospheric Research</i> , 2018 , 213, 211-223	5.4	3	
92	Modeling of water isotopes with model ECHAM6-wiso in nudging mode with reanalysis ERA5 2018,		1	
91	Solar and volcanic forcing of North Atlantic climate inferred from a process-based reconstruction. <i>Climate of the Past</i> , 2018 , 14, 1179-1194	3.9	22	
90	Reconciling glacial Antarctic water stable isotopes with ice sheet topography and the isotopic paleothermometer. <i>Nature Communications</i> , 2018 , 9, 3537	17.4	31	
89	Estimates of late Cenozoic climate change relevant to Earth surface processes in tectonically active orogens. <i>Earth Surface Dynamics</i> , 2018 , 6, 271-301	3.8	18	
88	Evaluating the skills of isotope-enabled general circulation models against in situ atmospheric water vapor isotope observations. <i>Journal of Geophysical Research D: Atmospheres</i> , 2017 , 122, 246-263	4.4	35	
87	Synchronous and proportional deglacial changes in Atlantic meridional overturning and northeast Brazilian precipitation. <i>Paleoceanography</i> , 2017 , 32, 622-633		70	

86	A 60-year ice-core record of regional climate from Adlle Land, coastal Antarctica. <i>Cryosphere</i> , 2017 , 11, 343-362	5.5	14
85	MUSICA MetOp/IASI {H₂O,<i></i>D} pair retrieval simulations for validating tropospheric moisture pathways in atmospheric models. <i>Atmospheric Measurement Techniques</i> , 2017 , 10, 507-525	4	13
84	Antarctic climate variability on regional and continental scales over the last 2000 years. <i>Climate of the Past</i> , 2017 , 13, 1609-1634	3.9	92
83	An Experimental Investigation of Kinetic Fractionation of Open-Water Evaporation Over a Large Lake. <i>Journal of Geophysical Research D: Atmospheres</i> , 2017 , 122, 11,651-11,663	4.4	16
82	Late quaternary climate, precipitation 180, and Indian monsoon variations over the Tibetan Plateau. <i>Earth and Planetary Science Letters</i> , 2017 , 457, 412-422	5.3	17
81	Coherency of late Holocene European speleothem [180 records linked to North Atlantic Ocean circulation. <i>Climate Dynamics</i> , 2017 , 49, 595-618	4.2	35
80	Links between central Greenland stable isotopes, blocking and extreme climate variability over Europe at decadal to multidecadal time scales. <i>Climate Dynamics</i> , 2017 , 49, 649-663	4.2	5
79	Simulating climate and stable water isotopes during the Last Interglacial using a coupled climate-isotope model. <i>Journal of Advances in Modeling Earth Systems</i> , 2017 , 9, 2027-2045	7.1	17
78	Precipitation regime and stable isotopes at Dome Fuji, East Antarctica 2016,		2
77	Isotopic exchange on the diurnal scale between near-surface snow and lower atmospheric water vapor at Kohnen station, East Antarctica. <i>Cryosphere</i> , 2016 , 10, 1647-1663	5.5	40
76	Modern precipitation 180 and trajectory analysis over the Himalaya-Tibet Orogen from ECHAM5-wiso simulations. <i>Journal of Geophysical Research D: Atmospheres</i> , 2016 , 121, 10,432-10,452	4.4	8
75	Precipitation regime and stable isotopes at Dome Fuji, East Antarctica. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 6883-6900	6.8	17
74	The effect of the East Atlantic pattern on the precipitation [180-NAO relationship in Europe. <i>Climate Dynamics</i> , 2016 , 47, 2059-2069	4.2	34
73	North Atlantic Oscillation controls on oxygen and hydrogen isotope gradients in winter precipitation across Europe; implications for palaeoclimate studies. <i>Climate of the Past</i> , 2016 , 12, 2127	-23.43	18
72	GlacialInterglacial changes in H₂¹⁸O, HDO and deuterium excess Iresults from the fully coupled ECHAM5/MPI-OM Earth system model. <i>Geoscientific Model Development</i> , 2016 , 9, 647-670	6.3	47
71	Precipitation 180 over the Himalaya-Tibet orogen from ECHAM5-wiso simulations: Statistical analysis of temperature, topography and precipitation. <i>Journal of Geophysical Research D: Atmospheres</i> , 2016 , 121, 9278-9300	4.4	10
70	Tropical circulation intensification and tectonic extension recorded by Neogene terrestrial 180 records of the western United States. <i>Geology</i> , 2016 , 44, 971-974	5	9
69	North-West African Hydrologic Changes in the Holocene: A Combined Isotopic Data and Model Approach. <i>SpringerBriefs in Earth System Sciences</i> , 2015 , 109-114	1	

(2013-2015)

68	The summer 2012 Greenland heat wave: In situ and remote sensing observations of water vapor isotopic composition during an atmospheric river event. <i>Journal of Geophysical Research D: Atmospheres</i> , 2015 , 120, 2970-2989	4.4	66
67	Simulation of the isotopic composition of stratospheric water vapour (Part 1: Description and evaluation of the EMAC model. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 5537-5555	6.8	10
66	Recent changes in north-west Greenland climate documented by NEEM shallow ice core data and simulations, and implications for past-temperature reconstructions. <i>Cryosphere</i> , 2015 , 9, 1481-1504	5.5	36
65	Late-glacial to late-Holocene shifts in global precipitation ¹⁸O. <i>Climate of the Past</i> , 2015 , 11, 1375-1393	3.9	45
64	Climate modeling for Yamal territory using supercomputer atmospheric circulation model ECHAM5-wiso 2015 ,		1
63	Enriching the isotopic toolbox for migratory connectivity analysis: a new approach for migratory species breeding in remote or unexplored areas. <i>Diversity and Distributions</i> , 2015 , 21, 416-427	5	23
62	Long-term winter warming trend in the Siberian Arctic during the mid- to late Holocene. <i>Nature Geoscience</i> , 2015 , 8, 122-125	18.3	77
61	Comparing past accumulation rate reconstructions in East Antarctic ice cores using ¹⁰Be, water isotopes and CMIP5-PMIP3 models. <i>Climate of the Past</i> , 2015 , 11, 355-367	3.9	13
60	Variations of oxygen-18 in West Siberian precipitation during the last 50 years. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 5853-5869	6.8	27
59	Developing a western Siberia reference site for tropospheric water vapour isotopologue observations obtained by different techniques (in situ and remote sensing). <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 5943-5957	6.8	8
58	A posteriori calculation of ¹⁸ O and D in atmospheric water vapour from ground-based near-infrared FTIR retrievals of H ₂ ¹⁶ O,	4	15
57	H ₂ ¹⁸ O, and HD ¹⁶ O. Stable isotopes in surface snow along a traverse route from Zhongshan station to Dome A, East Antarctica. Climate Dynamics, 2013, 41, 2427-2438	4.2	16
56	A review of climatic controls on 🛮 80 in precipitation over the Tibetan Plateau: Observations and simulations. <i>Reviews of Geophysics</i> , 2013 , 51, 525-548	23.1	449
55	Estimating the hydrogen isotopic composition of past precipitation using leaf-waxes from western Africa. <i>Quaternary Science Reviews</i> , 2013 , 65, 88-101	3.9	68
54	Influence of orbital forcing and solar activity on water isotopes in precipitation during the mid- and late Holocene. <i>Climate of the Past</i> , 2013 , 9, 13-26	3.9	10
53	Early Cenozoic evolution of topography, climate, and stable isotopes in precipitation in the North American Cordillera. <i>Numerische Mathematik</i> , 2013 , 313, 613-648	5.3	33
52	Stable water isotopes in the coupled atmosphereland surface model ECHAM5-JSBACH. <i>Geoscientific Model Development</i> , 2013 , 6, 1463-1480	6.3	70
51	Simulated European stalagmite record and its relation to a quasi-decadal climate mode. <i>Climate of the Past</i> , 2013 , 9, 89-98	3.9	9

50	Atmospheric response to the extreme Arctic sea ice conditions in 2007. <i>Geophysical Research Letters</i> , 2012 , 39, n/a-n/a	4.9	40
49	Simulated oxygen isotopes in cave drip water and speleothem calcite in European caves. <i>Climate of the Past</i> , 2012 , 8, 1781-1799	3.9	28
48	Water isotope variations in the global ocean model MPI-OM. <i>Geoscientific Model Development</i> , 2012 , 5, 809-818	6.3	30
47	Water isotope variations in the global ocean model MPI-OM 2012 ,		1
46	Stable water isotopes in the ECHAM5 general circulation model: Toward high-resolution isotope modeling on a global scale. <i>Journal of Geophysical Research</i> , 2011 , 116,		187
45	Climate information imprinted in oxygen-isotopic composition of precipitation in Europe. <i>Earth and Planetary Science Letters</i> , 2011 , 311, 144-154	5.3	50
44	Laepple et al. reply. <i>Nature</i> , 2011 , 479, E2-E4	50.4	2
43	Synchronicity of Antarctic temperatures and local solar insolation on orbital timescales. <i>Nature</i> , 2011 , 471, 91-4	50.4	65
42	Modelling stable water isotopes: Status and perspectives. <i>EPJ Web of Conferences</i> , 2010 , 9, 73-82	0.3	0
41	An analysis of present and future ECHAM5 pressure fields using a classification of circulation patterns. <i>International Journal of Climatology</i> , 2009 , 29, 1796-1810	3.5	89
40	Orbitally driven east west antiphasing of South American precipitation. <i>Nature Geoscience</i> , 2009 , 2, 210-	-2:1843	230
39	Effect of lake evaporation on D values of lacustrine n-alkanes: A comparison of Nam Co (Tibetan Plateau) and Holzmaar (Germany). <i>Organic Geochemistry</i> , 2008 , 39, 711-729	3.1	118
38	Orbital and millennial Antarctic climate variability over the past 800,000 years. Science, 2007, 317, 793-0	633.3	1535
37	Modeling the isotopic composition of Antarctic snow using backward trajectories: Simulation of snow pit records. <i>Journal of Geophysical Research</i> , 2006 , 111,		45
36	Stable isotopes in East African precipitation record Indian Ocean zonal mode. <i>Geophysical Research Letters</i> , 2005 , 32,	4.9	32
35	Stable isotopes in precipitation in the Asian monsoon region. <i>Journal of Geophysical Research</i> , 2005 , 110,		184
34	The aerosol-climate model ECHAM5-HAM. Atmospheric Chemistry and Physics, 2005, 5, 1125-1156	6.8	839
33	Stable isotopes in precipitation recording South American summer monsoon and ENSO variability: observations and model results. <i>Climate Dynamics</i> , 2005 , 25, 401-413	4.2	175

(1998-2005)

32	GRIP deuterium excess reveals rapid and orbital-scale changes in Greenland moisture origin. <i>Science</i> , 2005 , 309, 118-21	33.3	249
31	How Much Climatic Information Do Water Isotopes Contain? 2005 , 303-320		11
30	Relative importance of climate and land use in determining present and future global soil dust emission. <i>Geophysical Research Letters</i> , 2004 , 31, n/a-n/a	4.9	246
29	Reply to comment by N. M. Mahowald et al. on B elative importance of climate and land use in determining present and future global soil dust emission <i>Geophysical Research Letters</i> , 2004 , 31,	4.9	8
28	20th Century Climate Change in the Tropical Andes: Observations and Model Results. <i>Climatic Change</i> , 2003 , 59, 75-99	4.5	227
27	Modeling 🛮 80 in precipitation over the tropical Americas: 1. Interannual variability and climatic controls. <i>Journal of Geophysical Research</i> , 2003 , 108,		188
26	Modeling 🛮 80 in precipitation over the tropical Americas: 2. Simulation of the stable isotope signal in Andean ice cores. <i>Journal of Geophysical Research</i> , 2003 , 108,		92
25	Coherent isotope history of Andean ice cores over the last century. <i>Geophysical Research Letters</i> , 2003 , 30,	4.9	99
24	Impact of precipitation seasonality changes on isotopic signals in polar ice cores: a multi-model analysis. <i>Earth and Planetary Science Letters</i> , 2003 , 216, 525-538	5.3	51
23	20th Century Climate Change in the Tropical Andes: Observations and Model Results. <i>Advances in Global Change Research</i> , 2003 , 75-99	1.2	46
22	Modeling interannual variability of water isotopes in Greenland and Antarctica. <i>Journal of Geophysical Research</i> , 2002 , 107, ACL 1-1		61
21	Seasonal and interannual variability of the mineral dust cycle under present and glacial climate conditions. <i>Journal of Geophysical Research</i> , 2002 , 107, AAC 2-1		116
20	Isotopic composition and origin of polar precipitation in present and glacial climate simulations. <i>Tellus, Series B: Chemical and Physical Meteorology</i> , 2001 , 53, 53-71	3.3	85
19	. Tellus, Series B: Chemical and Physical Meteorology, 2001 , 53, 53-71	3.3	100
18	A one-dimensional simulation of the water vapor isotope HDO in the tropical stratosphere. <i>Journal of Geophysical Research</i> , 2001 , 106, 32283-32294		12
17	Borehole versus isotope temperatures on Greenland: Seasonality does matter. <i>Geophysical Research Letters</i> , 2000 , 27, 723-726	4.9	157
16	Possible changes of 🛮 80 in precipitation caused by a meltwater event in the North Atlantic. <i>Journal of Geophysical Research</i> , 2000 , 105, 10161-10167		13
15	Little Ice Age clearly recorded in northern Greenland ice cores. <i>Geophysical Research Letters</i> , 1998 , 25, 1749-1752	4.9	97

14	Water isotope module of the ECHAM atmospheric general circulation model: A study on timescales from days to several years. <i>Journal of Geophysical Research</i> , 1998 , 103, 16871-16896		286
13	High-resolution nudged isotope modelling with ECHAM6-wiso: Impacts of updated model physics and ERA5 reanalysis data. <i>Journal of Advances in Modeling Earth Systems</i> ,	7.1	2
12	ECHAM5-wiso water vapour isotopologues simulation and its comparison with WS-CRDS measurements and retrievals from GOSAT and ground-based FTIR spectra in the atmosphere of Western Siberia		7
11	Variations of oxygen-18 in West Siberian precipitation during the last 50 yr		2
10	Retrieval of ¹⁸ O and D in atmospheric water vapour from ground-based FTIR		2
9	GlacialInterglacial shifts in global and regional precipitation ¹⁸ O		5
8	Simulated European stalagmite record and its relation to a quasi-decadal climate mode		1
7	GlacialIhterglacial changes of H ₂ ¹⁸ O, HDO and deuterium excess Iresults from the fully coupled Earth System Model ECHAM5/MPI-OM		3
6	Isotopic exchange on the diurnal scale between near-surface snow and lower atmospheric water vapor at Kohnen station, East Antarctica		6
5	The role of airBea fluxes for the water vapour isotope signals in the cold and warm sectors of extratropical cyclones over the Southern Ocean		2
4	Recent changes in north-west Greenland climate documented by NEEM shallow ice core data and simulations, and implications for past temperature reconstructions		1
3	Simulated oxygen isotopes in cave drip water and speleothem calcite in European caves		1
2	Oxygen and hydrogen isotopic composition of tap waters in France. <i>Geological Society Special Publication</i> ,SP507-2020-207	1.7	4
1	Eurasian Holocene climate trends in transient coupled climate simulations and stable oxygen isotope records. <i>Journal of Quaternary Science</i> ,	2.3	1