Fabrice Legeai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5493249/publications.pdf

Version: 2024-02-01

70 papers

7,932 citations

33 h-index 91872 69 g-index

78 all docs 78 docs citations

78 times ranked 11257 citing authors

#	Article	IF	CITATIONS
1	The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature, 2007, 449, 463-467.	27.8	3,384
2	Predotar: A tool for rapidly screening proteomes forN-terminal targeting sequences. Proteomics, 2004, 4, 1581-1590.	2.2	817
3	Rapid transcriptional plasticity of duplicated gene clusters enables a clonally reproducing aphid to colonise diverse plant species. Genome Biology, 2017, 18, 27.	8.8	624
4	FEELnc: a tool for long non-coding RNA annotation and its application to the dog transcriptome. Nucleic Acids Research, 2017, 45, gkw1306.	14.5	281
5	Two genomes of highly polyphagous lepidopteran pests (Spodoptera frugiperda, Noctuidae) with different host-plant ranges. Scientific Reports, 2017, 7, 11816.	3.3	242
6	An Expressed Sequence Tag collection from the male antennae of the Noctuid moth Spodoptera littoralis: a resource for olfactory and pheromone detection research. BMC Genomics, 2011, 12, 86.	2.8	145
7	Analysis of Virion Structural Components Reveals Vestiges of the Ancestral Ichnovirus Genome. PLoS Pathogens, 2010, 6, e1000923.	4.7	126
8	Large-scale gene discovery in the pea aphid Acyrthosiphon pisum (Hemiptera). Genome Biology, 2006, 7, R21.	9.6	123
9	Spodoptera frugiperda (Lepidoptera: Noctuidae) host-plant variants: two host strains or two distinct species?. Genetica, 2015, 143, 305-316.	1.1	117
10	A Comparison of the Olfactory Gene Repertoires of Adults and Larvae in the Noctuid Moth Spodoptera littoralis. PLoS ONE, 2013, 8, e60263.	2.5	109
11	Bioinformatic prediction, deep sequencing of microRNAs and expression analysis during phenotypic plasticity in the pea aphid, Acyrthosiphon pisum. BMC Genomics, 2010, 11, 281.	2.8	95
12	Whole genome sequence of the soybean aphid, Aphis glycines. Insect Biochemistry and Molecular Biology, 2020, 123, 102917.	2.7	91
13	Candidate chemosensory Genes in Female Antennae of the Noctuid Moth Spodoptera littoralis. International Journal of Biological Sciences, 2012, 8, 1036-1050.	6.4	83
14	Large Gene Family Expansion and Variable Selective Pressures for Cathepsin B in Aphids. Molecular Biology and Evolution, 2007, 25, 5-17.	8.9	75
15	MiR-202 controls female fecundity by regulating medaka oogenesis. PLoS Genetics, 2018, 14, e1007593.	3.5	7 5
16	TriAnnot: A Versatile and High Performance Pipeline for the Automated Annotation of Plant Genomes. Frontiers in Plant Science, 2012, 3, 5.	3.6	73
17	Genetic Control of Contagious Asexuality in the Pea Aphid. PLoS Genetics, 2014, 10, e1004838.	3.5	67
18	Fast Evolution and Lineage-Specific Gene Family Expansions of Aphid Salivary Effectors Driven by Interactions with Host-Plants. Genome Biology and Evolution, 2018, 10, 1554-1572.	2.5	67

#	Article	IF	Citations
19	Differential gene expression according to race and host plant in the pea aphid. Molecular Ecology, 2016, 25, 4197-4215.	3.9	59
20	Long noncoding RNA repertoire in chicken liver and adipose tissue. Genetics Selection Evolution, 2017, 49, 6.	3.0	59
21	Masculinization of the X Chromosome in the Pea Aphid. PLoS Genetics, 2013, 9, e1003690.	3.5	56
22	Accelerated Evolution of Sex Chromosomes in Aphids, an XO System. Molecular Biology and Evolution, 2012, 29, 837-847.	8.9	55
23	Global patterns in genomic diversity underpinning the evolution of insecticide resistance in the aphid crop pest Myzus persicae. Communications Biology, 2021, 4, 847.	4.4	55
24	Candidate Chemosensory Genes in the Stemborer <i>Sesamia nonagrioides</i> International Journal of Biological Sciences, 2013, 9, 481-495.	6.4	47
25	Multi-scale characterization of symbiont diversity in the pea aphid complex through metagenomic approaches. Microbiome, 2018, 6, 181.	11.1	47
26	Anchoring of a large set of markers onto a BAC library for the development of a draft physical map of the grapevine genome. Theoretical and Applied Genetics, 2006, 113, 344-356.	3.6	46
27	Genomic Approach to Study Floral Development Genes in Rosa sp PLoS ONE, 2011, 6, e28455.	2.5	44
28	Transcriptomic profiling of the reproductive mode switch in the pea aphid in response to natural autumnal photoperiod. Journal of Insect Physiology, 2012, 58, 1517-1524.	2.0	43
29	Disentangling the Causes for Faster-X Evolution in Aphids. Genome Biology and Evolution, 2018, 10, 507-520.	2.5	42
30	Adaptation by copy number variation increases insecticide resistance in the fall armyworm. Communications Biology, 2020, 3, 664.	4.4	41
31	Largeâ€scale identification of genes in the fungus Hebeloma cylindrosporum paves the way to molecular analyses of ectomycorrhizal symbiosis. New Phytologist, 2004, 164, 505-513.	7.3	40
32	The genome sequence of the grape phylloxera provides insights into the evolution, adaptation, and invasion routes of an iconic pest. BMC Biology, 2020, 18, 90.	3.8	40
33	Identification of long non-coding RNAs in insects genomes. Current Opinion in Insect Science, 2015, 7, 37-44.	4.4	39
34	New resources for studying the rose flowering process. Genome, 2008, 51, 827-837.	2.0	37
35	Dosage compensation and sex-specific epigenetic landscape of the X chromosome in the pea aphid. Epigenetics and Chromatin, 2017, 10, 30.	3.9	34
36	Identifying genomic hotspots of differentiation and candidate genes involved in the adaptive divergence of pea aphid host races. Molecular Ecology, 2018, 27, 3287-3300.	3.9	34

#	Article	IF	Citations
37	AphidBase: a database for aphid genomic resources. Bioinformatics, 2007, 23, 783-784.	4.1	32
38	Cytonuclear interactions remain stable during allopolyploid evolution despite repeated wholeâ€genome duplications in ⟨i⟩Brassica⟨ i⟩. Plant Journal, 2019, 98, 434-447.	5.7	32
39	Cabomba as a model for studies of early angiosperm evolution. Annals of Botany, 2011, 108, 589-598.	2.9	30
40	GenoPlante-Info (GPI): a collection of databases and bioinformatics resources for plant genomics. Nucleic Acids Research, 2003, 31, 179-182.	14.5	29
41	Establishment and analysis of a reference transcriptome for Spodoptera frugiperda. BMC Genomics, 2014, 15, 704.	2.8	27
42	Differential Expression of Candidate Salivary Effector Genes in Pea Aphid Biotypes With Distinct Host Plant Specificity. Frontiers in Plant Science, 2019, 10, 1301.	3.6	27
43	Chromosomal scale assembly of parasitic wasp genome reveals symbiotic virus colonization. Communications Biology, 2021, 4, 104.	4.4	27
44	Genome sequence of the wheat stem sawfly, Cephus cinctus, representing an early-branching lineage of the Hymenoptera, illuminates evolution of hymenopteran chemoreceptors. Genome Biology and Evolution, 2018, 10, 2997-3011.	2.5	24
45	Genomic architecture of endogenous ichnoviruses reveals distinct evolutionary pathways leading to virus domestication in parasitic wasps. BMC Biology, 2020, 18, 89.	3.8	24
46	Characterization and expression profiling of microRNAs in response to plant feeding in two host-plant strains of the lepidopteran pest Spodoptera frugiperda. BMC Genomics, 2018, 19, 804.	2.8	23
47	Expressed sequence tags from the phytopathogenic fungus Botrytis cinerea. European Journal of Plant Pathology, 2005, 111, 139-146.	1.7	20
48	De novo transcriptome assembly of the grapevine phylloxera allows identification of genes differentially expressed between leaf- and root-feeding forms. BMC Genomics, 2016, 17, 219.	2.8	19
49	Functional insights from the GC-poor genomes of two aphid parasitoids, Aphidius ervi and Lysiphlebus fabarum. BMC Genomics, 2020, 21, 376.	2.8	19
50	Physical mapping in large genomes: accelerating anchoring of BAC contigs to genetic maps through in silico analysis. Functional and Integrative Genomics, 2008, 8, 29-32.	3.5	17
51	Differential expression of the chemosensory transcriptome in two populations of the stemborer Sesamia nonagrioides. Insect Biochemistry and Molecular Biology, 2015, 65, 28-34.	2.7	16
52	First extensive characterization of the venom gland from an egg parasitoid: structure, transcriptome and functional role. Journal of Insect Physiology, 2018, 107, 68-80.	2.0	15
53	Soybean aphid biotype 1 genome: Insights into the invasive biology and adaptive evolution of a major agricultural pest. Insect Biochemistry and Molecular Biology, 2020, 120, 103334.	2.7	15
54	Selection following Gene Duplication Shapes Recent Genome Evolution in the Pea Aphid Acyrthosiphon pisum. Molecular Biology and Evolution, 2020, 37, 2601-2615.	8.9	12

#	Article	IF	CITATIONS
55	Strong Heterogeneity in Nucleotidic Composition and Codon Bias in the Pea Aphid (Acyrthosiphon) Tj ETQq1 413-424.	1 0.784314 1.8	4 rgBT /Overloo 11
56	Expression differences in Aphidius ervi (Hymenoptera: Braconidae) females reared on different aphid host species. Peerl, 2017, 5, e3640.	2.0	11
57	RNA interference identifies domesticated viral genes involved in assembly and trafficking of virus-derived particles in ichneumonid wasps. PLoS Pathogens, 2019, 15, e1008210.	4.7	9
58	Contrasting genomic and phenotypic outcomes of hybridization between pairs of mimetic butterfly taxa across a suture zone. Molecular Ecology, 2020, 29, 1328-1343.	3.9	9
59	Evidence for an ichnovirus machinery in parasitoids of coleopteran larvae. Virus Research, 2019, 263, 189-206.	2.2	8
60	Big Genes, Small Effectors: Pea Aphid Cassette Effector Families Composed From Miniature Exons. Frontiers in Plant Science, 2020, 11, 1230.	3.6	8
61	Plantâ€phenotypic changes induced by parasitoid ichnoviruses enhance the performance of both unparasitized and parasitized caterpillars. Molecular Ecology, 2021, 30, 4567-4583.	3.9	7
62	Transcriptome Profiling of Starvation in the Peripheral Chemosensory Organs of the Crop Pest Spodoptera littoralis Caterpillars. Insects, 2021, 12, 573.	2.2	6
63	MinYS: mine your symbiont by targeted genome assembly in symbiotic communities. NAR Genomics and Bioinformatics, 2020, 2, Iqaa047.	3.2	5
64	Proteo-Trancriptomic Analyses Reveal a Large Expansion of Metalloprotease-Like Proteins in Atypical Venom Vesicles of the Wasp Meteorus pulchricornis (Braconidae). Toxins, 2021, 13, 502.	3.4	5
65	LRez: a C++ API and toolkit for analyzing and managing Linked-Reads data. Bioinformatics Advances, 2021, 1, .	2.4	4
66	Genomics of Phenotypic Plasticity in Aphids. , 2016, , 65-96.		3
67	BioMAJ2Galaxy: automatic update of reference data in Galaxy using BioMAJ. GigaScience, 2015, 4, 22.	6.4	2
68	Comparative transcriptome analysis at the onset of speciation in a mimetic butterflyâ€"The Ithomiini <i>Melinaea marsaeus</i> . Journal of Evolutionary Biology, 2021, 34, 1704-1721.	1.7	2
69	RNA sequencing data for responses to drought stress and/or clubroot infection in developing seeds of Brassica napus. Data in Brief, 2021, 38, 107392.	1.0	1
70	AskoR, A R Package for Easy RNASeq Data Analysis. , 0, , .		1