List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5493080/publications.pdf Version: 2024-02-01

EMILY | ROCALSKI

#	Article	IF	CITATIONS
1	Alzheimer and frontotemporal pathology in subsets of primary progressive aphasia. Annals of Neurology, 2008, 63, 709-719.	5.3	457
2	A novel frontal pathway underlies verbal fluency in primary progressive aphasia. Brain, 2013, 136, 2619-2628.	7.6	399
3	Asymmetry and heterogeneity of Alzheimer's and frontotemporal pathology in primary progressive aphasia. Brain, 2014, 137, 1176-1192.	7.6	283
4	Quantitative classification of primary progressive aphasia at early and mild impairment stages. Brain, 2012, 135, 1537-1553.	7.6	277
5	Primary progressive aphasia and the evolving neurology of the language network. Nature Reviews Neurology, 2014, 10, 554-569.	10.1	269
6	Progression of language decline and cortical atrophy in subtypes of primary progressive aphasia. Neurology, 2011, 76, 1804-1810.	1.1	212
7	Quantitative Template for Subtyping Primary Progressive Aphasia. Archives of Neurology, 2009, 66, 1545-51.	4.5	205
8	Anatomy of Language Impairments in Primary Progressive Aphasia. Journal of Neuroscience, 2011, 31, 3344-3350.	3.6	187
9	The Wernicke conundrum and the anatomy of language comprehension in primary progressive aphasia. Brain, 2015, 138, 2423-2437.	7.6	186
10	Words and objects at the tip of the left temporal lobe in primary progressive aphasia. Brain, 2013, 136, 601-618.	7.6	183
11	Age at symptom onset and death and disease duration in genetic frontotemporal dementia: an international retrospective cohort study. Lancet Neurology, The, 2020, 19, 145-156.	10.2	175
12	The Northwestern Anagram Test: Measuring Sentence Production in Primary Progressive Aphasia. American Journal of Alzheimer's Disease and Other Dementias, 2009, 24, 408-416.	1.9	152
13	Superior Memory and Higher Cortical Volumes in Unusually Successful Cognitive Aging. Journal of the International Neuropsychological Society, 2012, 18, 1081-1085.	1.8	139
14	Prevalence of amyloidâ€Î² pathology in distinct variants of primary progressive aphasia. Annals of Neurology, 2018, 84, 729-740.	5.3	132
15	Youthful Memory Capacity in Old Brains: Anatomic and Genetic Clues from the Northwestern SuperAging Project. Journal of Cognitive Neuroscience, 2013, 25, 29-36.	2.3	126
16	Clinically concordant variations of Alzheimer pathology in aphasic versus amnestic dementia. Brain, 2012, 135, 1554-1565.	7.6	123
17	Neurology of anomia in the semantic variant of primary progressive aphasia. Brain, 2009, 132, 2553-2565.	7.6	119
18	Morphometric and Histologic Substrates of Cingulate Integrity in Elders with Exceptional Memory Capacity. Journal of Neuroscience, 2015, 35, 1781-1791.	3.6	109

#	Article	IF	CITATIONS
19	Increased Frequency of Learning Disability in Patients With Primary Progressive Aphasia and Their First-Degree Relatives. Archives of Neurology, 2008, 65, 244-8.	4.5	107
20	Rate of entorhinal and hippocampal atrophy in incipient and mild AD: Relation to memory function. Neurobiology of Aging, 2010, 31, 1089-1098.	3.1	93
21	Asymmetry of cortical decline in subtypes of primary progressive aphasia. Neurology, 2014, 83, 1184-1191.	1.1	88
22	A152T tau allele causes neurodegeneration that can be ameliorated in a zebrafish model by autophagy induction. Brain, 2017, 140, 1128-1146.	7.6	84
23	A cortical pathway to olfactory naming: evidence from primary progressive aphasia. Brain, 2013, 136, 1245-1259.	7.6	68
24	Neural Mechanisms of Object Naming and Word Comprehension in Primary Progressive Aphasia. Journal of Neuroscience, 2012, 32, 4848-4855.	3.6	66
25	Anatomical evidence of an indirect pathway for word repetition. Neurology, 2020, 94, e594-e606.	1.1	65
26	Behavioural interventions for enhancing life participation in behavioural variant frontotemporal dementia and primary progressive aphasia. International Review of Psychiatry, 2013, 25, 237-245.	2.8	61
27	Longitudinal Neuropsychological Performance of Cognitive SuperAgers. Journal of the American Geriatrics Society, 2014, 62, 1598-1600.	2.6	61
28	Aphasic variant of Alzheimer disease. Neurology, 2016, 87, 1337-1343.	1.1	59
29	Speech and language therapy approaches to managing primary progressive aphasia. Practical Neurology, 2020, 20, 154-161.	1.1	58
30	Thinking Outside the Stroke: Treating Primary Progressive Aphasia (PPA). Perspectives on Gerontology, 2012, 17, 37-49.	0.1	54
31	Age-related changes in parahippocampal white matter integrity: A diffusion tensor imaging study. Neuropsychologia, 2012, 50, 1759-1765.	1.6	52
32	Rates of Cortical Atrophy in Adults 80 Years and Older With Superior vs Average Episodic Memory. JAMA - Journal of the American Medical Association, 2017, 317, 1373.	7.4	52
33	Communication Bridge: A pilot feasibility study of Internetâ€based speech–language therapy for individuals with progressive aphasia. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2016, 2, 213-221.	3.7	51
34	Naming vs knowing faces in primary progressive aphasia. Neurology, 2013, 81, 658-664.	1.1	50
35	Objective features of subjective cognitive decline in a United States national database. Alzheimer's and Dementia, 2017, 13, 1337-1344.	0.8	48
36	Clinical Trajectories and Biological Features of Primary Progressive Aphasia (PPA). Current Alzheimer Research, 2009, 6, 331-336.	1.4	47

#	Article	IF	CITATIONS
37	Von Economo neurons of the anterior cingulate across the lifespan and in Alzheimer's disease. Cortex, 2018, 99, 69-77.	2.4	47
38	Anatomic, clinical, and neuropsychological correlates of spelling errors in primary progressive aphasia. Neuropsychologia, 2012, 50, 1929-1935.	1.6	44
39	Cognitive trajectories and spectrum of neuropathology in <scp>S</scp> uper <scp>A</scp> gers: The first 10 cases. Hippocampus, 2019, 29, 458-467.	1.9	44
40	Genetic screening of a large series of North American sporadic and familial frontotemporal dementia cases. Alzheimer's and Dementia, 2020, 16, 118-130.	0.8	43
41	What do pauses in narrative production reveal about the nature of word retrieval deficits in PPA?. Neuropsychologia, 2015, 77, 211-222.	1.6	41
42	Frontotemporal networks and behavioral symptoms in primary progressive aphasia. Neurology, 2016, 86, 1393-1399.	1.1	41
43	Psychological well-being in elderly adults with extraordinary episodic memory. PLoS ONE, 2017, 12, e0186413.	2.5	41
44	ApoE E4 is a Susceptibility Factor in Amnestic But Not Aphasic Dementias. Alzheimer Disease and Associated Disorders, 2011, 25, 159-163.	1.3	40
45	Individualized atrophy scores predict dementia onset in familial frontotemporal lobar degeneration. Alzheimer's and Dementia, 2020, 16, 37-48.	0.8	38
46	Accumulation of neurofibrillary tangles and activated microglia is associated with lower neuron densities in the aphasic variant of Alzheimer's disease. Brain Pathology, 2021, 31, 189-204.	4.1	36
47	Activated Microglia in Cortical White Matter Across Cognitive Aging Trajectories. Frontiers in Aging Neuroscience, 2019, 11, 94.	3.4	35
48	Changes in parahippocampal white matter integrity in amnestic mild cognitive impairment: a diffusion tensor imaging study. Behavioural Neurology, 2009, 21, 51-61.	2.1	35
49	The Longitudinal Earlyâ€onset Alzheimer's Disease Study (LEADS): Framework and methodology. Alzheimer's and Dementia, 2021, 17, 2043-2055.	0.8	34
50	An update on primary progressive aphasia. Current Neurology and Neuroscience Reports, 2007, 7, 388-392.	4.2	33
51	Word comprehension in temporal cortex and Wernicke area. Neurology, 2019, 92, e224-e233.	1.1	33
52	Variations in Acetylcholinesterase Activity within Human Cortical Pyramidal Neurons Across Age and Cognitive Trajectories. Cerebral Cortex, 2018, 28, 1329-1337.	2.9	32
53	Assessment of executive function declines in presymptomatic and mildly symptomatic familial frontotemporal dementia: NIHâ€EXAMINER as a potential clinical trial endpoint. Alzheimer's and Dementia, 2020, 16, 11-21.	0.8	32
54	Genetic screen in a large series of patients with primary progressive aphasia. Alzheimer's and Dementia, 2019, 15, 553-560.	0.8	30

4

#	Article	IF	CITATIONS
55	Verbal and Nonverbal Memory in Primary Progressive Aphasia: The Three Words-Three Shapes Test. Behavioural Neurology, 2013, 26, 67-76.	2.1	29
56	Functional Connectivity is Reduced in Early-stage Primary Progressive Aphasia When Atrophy is not Prominent. Alzheimer Disease and Associated Disorders, 2017, 31, 101-106.	1.3	28
57	A Life Participation Approach to Primary Progressive Aphasia Intervention. Seminars in Speech and Language, 2018, 39, 284-296.	0.8	28
58	Are there susceptibility factors for primary progressive aphasia?. Brain and Language, 2013, 127, 135-138.	1.6	27
59	Development of a Psycho-Educational Support Program for Individuals with Primary Progressive Aphasia and their Care-Partners. Dementia, 2019, 18, 1310-1327.	2.0	27
60	Clinical and volumetric changes with increasing functional impairment in familial frontotemporal lobar degeneration. Alzheimer's and Dementia, 2020, 16, 49-59.	0.8	27
61	Semantic interference during object naming in agrammatic and logopenic primary progressive aphasia (PPA). Brain and Language, 2012, 120, 237-250.	1.6	26
62	Perturbations of language network connectivity in primary progressive aphasia. Cortex, 2019, 121, 468-480.	2.4	26
63	Neuropathological fingerprints of survival, atrophy and language in primary progressive aphasia. Brain, 2022, 145, 2133-2148.	7.6	26
64	<i>APOE</i> is a correlate of phenotypic heterogeneity in Alzheimer disease in a national cohort. Neurology, 2020, 94, e607-e612.	1.1	25
65	The CARE Pathway Model for Dementia. Psychiatric Clinics of North America, 2015, 38, 333-352.	1.3	23
66	Am I looking at a cat or a dog? Gaze in the semantic variant of primary progressive aphasia is subject to excessive taxonomic capture. Journal of Neurolinguistics, 2016, 37, 68-81.	1.1	23
67	Associations of MAP2K3 Gene Variants With Superior Memory in SuperAgers. Frontiers in Aging Neuroscience, 2018, 10, 155.	3.4	22
68	Nosology of Primary Progressive Aphasia and the Neuropathology of Language. Advances in Experimental Medicine and Biology, 2021, 1281, 33-49.	1.6	22
69	False recognition of incidentally learned pictures and words in primary progressive aphasia. Neuropsychologia, 2007, 45, 368-377.	1.6	21
70	What are the later life contributions to reserve, resilience, and compensation?. Neurobiology of Aging, 2019, 83, 140-144.	3.1	21
71	Primary Progressive Aphasia: Relationship Between Gender and Severity of Language Impairment. Cognitive and Behavioral Neurology, 2007, 20, 38-43.	0.9	20
72	Association Between the Prevalence of Learning Disabilities and Primary Progressive Aphasia. JAMA Neurology, 2014, 71, 1576.	9.0	20

#	Article	lF	CITATIONS
73	ls in vivo amyloid distribution asymmetric in primary progressive aphasia?. Annals of Neurology, 2016, 79, 496-501.	5.3	17
74	Familial language network vulnerability in primary progressive aphasia. Neurology, 2020, 95, e847-e855.	1.1	17
75	Will You Still Need Me When I'm 64, or 84, or 104? The Importance of Speech-Language Pathologists in Promoting the Quality of Life of Aging Adults in the United States into the Future. Seminars in Speech and Language, 2016, 37, 185-200.	0.8	16
76	Modularity and granularity across the language network-A primary progressive aphasia perspective. Cortex, 2021, 141, 482-496.	2.4	16
77	Covert Processing of Words and Pictures in Nonsemantic Variants of Primary Progressive Aphasia. Alzheimer Disease and Associated Disorders, 2008, 22, 343-351.	1.3	15
78	Hippocampal subfield surface deformity in nonsemantic primary progressive aphasia. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2015, 1, 14-23.	2.4	15
79	Atrophy and microglial distribution in primary progressive aphasia with transactive response DNAâ€binding proteinâ€43 kDa. Annals of Neurology, 2018, 83, 1096-1104.	5.3	15
80	Prominent microglial activation in cortical white matter is selectively associated with cortical atrophy in primary progressive aphasia. Neuropathology and Applied Neurobiology, 2019, 45, 216-229.	3.2	15
81	Verbal and nonverbal memory in primary progressive aphasia: the Three Words-Three Shapes Test. Behavioural Neurology, 2013, 26, 67-76.	2.1	15
82	Cerebrospinal fluid markers detect Alzheimer's disease in nonamnestic dementia. Alzheimer's and Dementia, 2017, 13, 598-601.	0.8	14
83	A nonverbal route to conceptual knowledge involving the right anterior temporal lobe. Neuropsychologia, 2018, 117, 92-101.	1.6	14
84	Clinical and cortical decline in the aphasic variant of Alzheimer's disease. , 2019, 15, 543-552.		14
85	Montreal Cognitive Assessment (MoCA) Performance and Domain-Specific Index Scores in Amnestic <i>Versus</i> Aphasic Dementia. Journal of the International Neuropsychological Society, 2020, 26, 927-931.	1.8	14
86	Memory Resilience in Alzheimer Disease With Primary Progressive Aphasia. Neurology, 2021, 96, e916-e925.	1.1	14
87	Paucity of Entorhinal Cortex Pathology of the Alzheimer's Type in SuperAgers with Superior Memory Performance. Cerebral Cortex, 2021, 31, 3177-3183.	2.9	14
88	Organizing a Series of Education and Support Conferences for Caregivers of Individuals With Frontotemporal Dementia and Primary Progressive Aphasia. Alzheimer's Care Quarterly, 2006, 7, 243-250.	1.0	13
89	Selective verbal recognition memory impairments are associated with atrophy of the language network in non-semantic variants of primary progressive aphasia. Neuropsychologia, 2017, 100, 10-17.	1.6	12
90	Verb-argument integration in primary progressive aphasia: Real-time argument access and selection. Neuropsychologia, 2019, 134, 107192.	1.6	12

#	Article	IF	CITATIONS
91	Cortical and subcortical pathological burden and neuronal loss in an autopsy series of FTLD-TDP-type C. Brain, 2022, 145, 1069-1078.	7.6	12
92	The Reliability of Telepractice Administration of the Western Aphasia Battery–Revised in Persons With Primary Progressive Aphasia. American Journal of Speech-Language Pathology, 2022, 31, 881-895.	1.8	12
93	Neuropathologic basis of in vivo cortical atrophy in the aphasic variant of Alzheimer's disease. Brain Pathology, 2020, 30, 332-344.	4.1	11
94	Neuropathologic Associations of Learning and Memory in Primary Progressive Aphasia. JAMA Neurology, 2016, 73, 846.	9.0	10
95	Revisiting the utility of TDP-43 immunoreactive (TDP-43-ir) pathology to classify FTLD-TDP subtypes. Acta Neuropathologica, 2019, 138, 167-169.	7.7	10
96	Neuropsychological Profiles of Older Adults with Superior <i>versus</i> Average Episodic Memory: The Northwestern "SuperAger―Cohort. Journal of the International Neuropsychological Society, 2022, 28, 563-573.	1.8	10
97	Proof of concept demonstration of optimal composite MRI endpoints for clinical trials. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2016, 2, 177-181.	3.7	9
98	Eye movements as probes of lexico-semantic processing in a patient with primary progressive aphasia. Neurocase, 2016, 22, 65-75.	0.6	9
99	FTLD-TDP With and Without GRN Mutations Cause Different Patterns of CA1 Pathology. Journal of Neuropathology and Experimental Neurology, 2019, 78, 844-853.	1.7	9
100	ARMADA: Assessing reliable measurement in Alzheimer's disease and cognitive aging project methods. Alzheimer's and Dementia, 2022, 18, 1449-1460.	0.8	9
101	Combined Pathologies in FTLD-TDP Types A and C. Journal of Neuropathology and Experimental Neurology, 2018, 77, 405-412.	1.7	8
102	Speech and Language Presentations of FTLD-TDP Type B Neuropathology. Journal of Neuropathology and Experimental Neurology, 2020, 79, 277-283.	1.7	8
103	Communication Bridgeâ,,¢-2 (CB2): an NIH Stage 2 randomized control trial of a speech-language intervention for communication impairments in individuals with mild to moderate primary progressive aphasia. Trials, 2022, 23, .	1.6	8
104	Differential neurocognitive network perturbation in amnestic and aphasic Alzheimer disease. Neurology, 2020, 94, e699-e704.	1.1	7
105	Primary Progressive AphasiaÂhas a Unique Signature DistinctÂfrom Dementia of the Alzheimer's Type and Behavioral Variant Frontotemporal Dementia Regardless of Pathology. Journal of Neuropathology and Experimental Neurology, 2020, 79, 1379-1381.	1.7	5
106	Functional decline in the aphasic variant of Alzheimer's disease. Alzheimer's and Dementia, 2021, 17, 1641-1648.	0.8	5
107	A Highly Sensitive Sandwich ELISA to Detect CSF Progranulin: A Potential Biomarker for CNS Disorders. Journal of Neuropathology and Experimental Neurology, 2019, 78, 406-415.	1.7	4
108	Relationships among tau burden, atrophy, age, and naming in the aphasic variant of Alzheimer's disease. Alzheimer's and Dementia, 2021, 17, 1788-1797.	0.8	3

#	Article	IF	CITATIONS
109	Toss the Workbooks!. ASHA Leader, 2018, 23, 40-42.	0.1	3
110	NIH Toolbox [®] Episodic Memory Measure Differentiates Older Adults with Exceptional Memory Capacity from those with Average-for-Age Cognition. Journal of the International Neuropsychological Society, 2023, 29, 230-234.	1.8	3
111	P4-267: Caudate volume change in primary progressive aphasia with motor speech symptoms. , 2015, 11, P886-P886.		2
112	[P4–081]: ASSOCIATION OF <i>MAP2K3</i> GENE VARIATION AND THE SUPERAGING PHENOTYPE DETECTED BY WHOLE EXOME SEQUENCING. Alzheimer's and Dementia, 2017, 13, P1290.	0.8	1
113	P4â€⊋27: High Densities of Activated Microglia are Present in Cortical White Matter and Correspond to Regions of Greatest Atrophy in Primary Progressive Aphasia. Alzheimer's and Dementia, 2016, 12, P1116.	0.8	0
114	[P4–436]: PROMINENT MICROGLIAL ACTIVATION IN CORTICAL WHITE MATTER IS SELECTIVELY ASSOCIATED WITH CORTICAL ATROPHY IN PRIMARY PROGRESSIVE APHASIA. Alzheimer's and Dementia, 2017, 13, P1499.	0.8	0
115	Introduction to the de Toledo Morrell special issue. Hippocampus, 2019, 29, 407-408.	1.9	0