Johannes Stökl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5492755/publications.pdf Version: 2024-02-01

ΙΟΗΛΝΝΕς STöKI

#	Article	IF	CITATIONS
1	Transposable element islands facilitate adaptation to novel environments in an invasive species. Nature Communications, 2014, 5, 5495.	12.8	183
2	A Deceptive Pollination System Targeting Drosophilids through Olfactory Mimicry of Yeast. Current Biology, 2010, 20, 1846-1852.	3.9	165
3	Drosophila Avoids Parasitoids by Sensing Their Semiochemicals via a Dedicated Olfactory Circuit. PLoS Biology, 2015, 13, e1002318.	5.6	145
4	Chemical ecology and pollinator-driven speciation in sexually deceptive orchids. Phytochemistry, 2011, 72, 1667-1677.	2.9	107
5	The Role of Sexual Selection in the Evolution of Chemical Signals in Insects. Insects, 2014, 5, 423-438.	2.2	84
6	Environmentally sustainable pest control options for <i>Drosophila suzukii</i> . Journal of Applied Entomology, 2018, 142, 3-17.	1.8	72
7	Smells like aphids: orchid flowers mimic aphid alarm pheromones to attract hoverflies for pollination. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 1216-1222.	2.6	63
8	Scent variation and hybridization cause the displacement of a sexually deceptive orchid species. American Journal of Botany, 2008, 95, 472-481.	1.7	61
9	MÉNAGE À TROIS-TWO ENDEMIC SPECIES OF DECEPTIVE ORCHIDS AND ONE POLLINATOR SPECIES. Evolution; International Journal of Organic Evolution, 2009, 63, 2222-2234.	2.3	61
10	Evolutionary origin of insect pheromones. Current Opinion in Insect Science, 2017, 24, 36-42.	4.4	61
11	Pollinator attracting odour signals in sexually deceptive orchids of the Ophrys fusca group. Plant Systematics and Evolution, 2005, 254, 105-120.	0.9	57
12	A nonspecific defensive compound evolves into a competition avoidance cue and a female sex pheromone. Nature Communications, 2013, 4, 2767.	12.8	51
13	Integrating past and present studies on Ophrys pollination - a comment on Bradshaw et al Botanical Journal of the Linnean Society, 2011, 165, 329-335.	1.6	48
14	Sexual selection on cuticular hydrocarbons of male sagebrush crickets in the wild. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20132353.	2.6	48
15	A hormone-related female anti-aphrodisiac signals temporary infertility and causes sexual abstinence to synchronize parental care. Nature Communications, 2016, 7, 11035.	12.8	48
16	Comparison of the flower scent of the sexually deceptive orchid Ophrys iricolor and the female sex pheromone of its pollinator Andrena morio. Chemoecology, 2007, 17, 231-233.	1.1	39
17	Speciation in sexually deceptive orchids: pollinator-driven selection maintains discrete odour phenotypes in hybridizing species. Biological Journal of the Linnean Society, 0, 98, 439-451.	1.6	37
18	Stereoselective Chemical Defense in the Drosophila Parasitoid Leptopilina heterotoma is Mediated by (â^')-Iridomyrmecin and (+)-Isoiridomyrmecin. Journal of Chemical Ecology, 2012, 38, 331-339.	1.8	32

Johannes Stökl

#	Article	IF	CITATIONS
19	Increased divergence in floral morphology strongly reduces gene flow in sympatric sexually deceptive orchids with the same pollinator. Evolutionary Ecology, 2015, 29, 703-717.	1.2	25
20	Pollination strategies in Cretan Arum lilies. Biological Journal of the Linnean Society, 2010, 101, 991-1001.	1.6	21
21	High Chemical Diversity in a Wasp Pheromone: a Blend of Methyl 6-Methylsalicylate, Fatty Alcohol Acetates and Cuticular Hydrocarbons Releases Courtship Behavior in the Drosophila Parasitoid Asobara tabida. Journal of Chemical Ecology, 2014, 40, 159-168.	1.8	19
22	Beyond Cuticular Hydrocarbons: Chemically Mediated Mate Recognition in the Subsocial Burying Beetle Nicrophorus vespilloides. Journal of Chemical Ecology, 2017, 43, 84-93.	1.8	19
23	Pollinator-Driven Speciation in Sexually Deceptive Orchids of the Genus Ophrys. , 2010, , 101-118.		17
24	Molecular phylogeny of the genus <i>Arum</i> (Araceae) inferred from multi–locus sequence data and AFLPs. Taxon, 2010, 59, 405-415.	0.7	16
25	Pheromones involved in insect parental care and family life. Current Opinion in Insect Science, 2017, 24, 89-95.	4.4	13
26	Interference of chemical defence and sexual communication can shape the evolution of chemical signals. Scientific Reports, 2018, 8, 321.	3.3	12
27	Variation in lipid synthesis, but genetic homogeneity, among <i>Leptopilina</i> parasitic wasp populations. Ecology and Evolution, 2018, 8, 7355-7364.	1.9	12
28	Burying Beetle Parents Adaptively Manipulate Information Broadcast from a Microbial Community. American Naturalist, 2021, 197, 366-378.	2.1	12
29	Semiochemicals Mediating Defense, Intraspecific Competition, and Mate Finding in Leptopilina ryukyuensis and L. japonica (Hymenoptera: Figitidae), Parasitoids of Drosophila. Journal of Chemical Ecology, 2019, 45, 241-252.	1.8	11
30	Species Specificity of the Putative Male Antennal Aphrodisiac Pheromone in <i>Leptopilina heterotoma</i> , <i>Leptopilina boulardi</i> , and <i>Leptopilina victoriae</i> . BioMed Research International, 2015, 2015, 1-6.	1.9	10
31	Pheromones Regulating Reproduction in Subsocial Beetles: Insights with References to Eusocial Insects. Journal of Chemical Ecology, 2018, 44, 785-795.	1.8	10
32	Morphology and ultrastructure of the allomone and sex-pheromone producing mandibular gland of the parasitoid wasp Leptopilina heterotoma (Hymenoptera: Figitidae). Arthropod Structure and Development, 2016, 45, 333-340.	1.4	8
33	Size Exclusion High Performance Liquid Chromatography: Re-Discovery of a Rapid and Versatile Method for Clean-Up and Fractionation in Chemical Ecology. Journal of Chemical Ecology, 2015, 41, 574-583.	1.8	7
34	Dispersal From Natal Patch Correlates With the Volatility of Female Sex Pheromones in Parasitoid Wasps. Frontiers in Ecology and Evolution, 2020, 8, .	2.2	6
35	Below ground efficiency of a parasitic wasp for Drosophila suzukii biocontrol in different soil types. Scientific Reports, 2022, 12,	3.3	6
36	Behavioural flexibility of the chemical defence in the parasitoid wasp Leptopilina heterotoma. Die Naturwissenschaften, 2015, 102, 67.	1.6	5

Johannes Stökl

#	Article	IF	CITATIONS
37	The preference of Trichopria drosophilae for pupae of Drosophila suzukii is independent of host size. Scientific Reports, 2021, 11, 995.	3.3	5
38	Mate attraction, chemical defense, and competition avoidance in the parasitoid wasp Leptopilina pacifica. Chemoecology, 2021, 31, 101-114.	1.1	4
39	Chemical Ecology of Parasitic Hymenoptera. BioMed Research International, 2016, 2016, 1-2.	1.9	0