
Frédéric M Maillard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5492500/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrochemical transformation of Fe-N-C catalysts into iron oxides in alkaline medium and its impact on the oxygen reduction reaction activity. Applied Catalysis B: Environmental, 2022, 311, 121366.	20.2	22
2	(Invited) Benchmarking Oxygen Evolution Reaction Activity and Stability of Unsupported and Supported IrO _x Nanoparticles. ECS Meeting Abstracts, 2022, MA2022-01, 1754-1754.	0.0	0
3	Identification of durable and non-durable FeNx sites in Fe–N–C materials for proton exchange membrane fuel cells. Nature Catalysis, 2021, 4, 10-19.	34.4	368
4	Fe–N–C Electrocatalysts' Durability: Effects of Single Atoms' Mobility and Clustering. ACS Catalysis, 2021, 11, 484-494.	11.2	53
5	Oxygen reduction reaction mechanism and kinetics on M-NxCy and M@N-C active sites present in model M-N-C catalysts under alkaline and acidic conditions. Journal of Solid State Electrochemistry, 2021, 25, 45-56.	2.5	59
6	Oxygen Evolution Reaction Activity and Stability Benchmarks for Supported and Unsupported IrO _{<i>x</i>} Electrocatalysts. ACS Catalysis, 2021, 11, 4107-4116.	11.2	69
7	(Invited) Benchmarking Oxygen Evolution Reaction Activity and Stability of Unsupported and Supported IrOx Nanoparticles. ECS Meeting Abstracts, 2021, MA2021-01, 1920-1920.	0.0	0
8	Towards comprehensive understanding of proton-exchange membrane fuel cells using high energy x-rays. JPhys Energy, 2021, 3, 031003.	5.3	2
9	Impact of ionomer structuration on the performance of bio-inspired noble-metal-free fuel cell anodes. Chem Catalysis, 2021, 1, 88-105.	6.1	14
10	Imaging Heterogeneous Electrocatalyst Stability and Decoupling Degradation Mechanisms in Operating Hydrogen Fuel Cells. ACS Energy Letters, 2021, 6, 2742-2749.	17.4	26
11	Disclosing Pt-Bimetallic Alloy Nanoparticle Surface Lattice Distortion with Electrochemical Probes. ACS Energy Letters, 2020, 5, 162-169.	17.4	35
12	On the Influence of Oxygen on the Degradation of Feâ€N Catalysts. Angewandte Chemie, 2020, 132, 3261-3269.	2.0	133
13	On the Influence of Oxygen on the Degradation of Feâ€N Catalysts. Angewandte Chemie - International Edition, 2020, 59, 3235-3243.	13.8	160
14	Building Practical Descriptors for Defect Engineering of Electrocatalytic Materials. ACS Catalysis, 2020, 10, 9046-9056.	11.2	30
15	Manipulating the Corrosion Resistance of SnO ₂ Aerogels through Doping for Efficient and Durable Oxygen Evolution Reaction Electrocatalysis in Acidic Media. ACS Catalysis, 2020, 10, 7283-7294.	11.2	49
16	Oxygen Reduction Reaction on Metal and Nitrogen–Doped Carbon Electrocatalysts in the Presence of Sodium Borohydride. Electrocatalysis, 2020, 11, 365-373.	3.0	8
17	Tailoring the Oxygen Reduction Activity of Pt Nanoparticles through Surface Defects: A Simple Top-Down Approach. ACS Catalysis, 2020, 10, 3131-3142.	11.2	50
18	Durability of Alternative Metal Oxide Supports for Application at a Proton-Exchange Membrane Fuel Cell Cathode—Comparison of Antimony- and Niobium-Doped Tin Oxide. Energies, 2020, 13, 403.	3.1	13

#	Article	IF	CITATIONS
19	(Invited) Assessing Corrosion Resistance of Antimony-, Niobium- and Tantalum-Doped Tin Oxide Aerogels As Oxygen Evolution Reaction Catalyst Supports in Acidic Media. ECS Meeting Abstracts, 2020, MA2020-01, 2798-2798.	0.0	0
20	Investigating the oxygen evolution reaction on Ir(111) electrode in acidic medium using conventional and dynamic electrochemical impedance spectroscopy. Electrochimica Acta, 2019, 320, 134536.	5.2	9
21	Determination of Electroactive Surface Area of Ni-, Co-, Fe-, and Ir-Based Oxide Electrocatalysts. ACS Catalysis, 2019, 9, 9222-9230.	11.2	80
22	Probing Surface Oxide Formation and Dissolution on/of Ir Single Crystals via X-ray Photoelectron Spectroscopy and Inductively Coupled Plasma Mass Spectrometry. ACS Catalysis, 2019, 9, 9859-9869.	11.2	36
23	Doped tin oxide aerogels as oxygen evolution reaction catalyst supports. International Journal of Hydrogen Energy, 2019, 44, 24331-24341.	7.1	26
24	Carbon Corrosion in Protonâ€Exchange Membrane Fuel Cells: Spectrometric Evidence for Ptâ€Catalysed Decarboxylation at Anodeâ€Relevant Potentials. ChemPhysChem, 2019, 20, 3106-3111.	2.1	44
25	Degradation of Carbon-Supported Platinum-Group-Metal Electrocatalysts in Alkaline Media Studied by in Situ Fourier Transform Infrared Spectroscopy and Identical-Location Transmission Electron Microscopy. ACS Catalysis, 2019, 9, 5613-5622.	11.2	80
26	Degradation Mechanisms of Oxygen Evolution Reaction Electrocatalysts: A Combined Identical-Location Transmission Electron Microscopy and X-ray Photoelectron Spectroscopy Study. ACS Catalysis, 2019, 9, 4688-4698.	11.2	100
27	Top-Down Synthesis of Nanostructured Platinum–Lanthanide Alloy Oxygen Reduction Reaction Catalysts: Pt _{<i>x</i>} Pr/C as an Example. ACS Applied Materials & Interfaces, 2019, 11, 5129-5135.	8.0	60
28	Disentangling the Degradation Pathways of Highly Defective PtNi/C Nanostructures – An Operando Wide and Small Angle X-ray Scattering Study. ACS Catalysis, 2019, 9, 160-167.	11.2	22
29	(Keynote) Benefits and Limitations of Metal-Oxide Supports in Proton-Exchange Membrane Fuel Cells and Water Electrolyzers. ECS Meeting Abstracts, 2019, , .	0.0	0
30	(Invited) Promoting Surface Distortion for Improved Fuel Cell Electrocatalysis. ECS Meeting Abstracts, 2019, , .	0.0	0
31	Iron-Nitrogen-Carbon (Fe-N-C) Active Sites Imaging By Scanning Transmission Electron Microscopy (STEM). ECS Meeting Abstracts, 2019, , .	0.0	0
32	Design of Pd-Pb Catalysts for Glycerol and Ethylene Glycol Electrooxidation in Alkaline Medium. Electrocatalysis, 2018, 9, 480-485.	3.0	20
33	Sb-Doped SnO ₂ Aerogels Based Catalysts for Proton Exchange Membrane Fuel Cells: Pt Deposition Routes, Electrocatalytic Activity and Durability. Journal of the Electrochemical Society, 2018, 165, F3036-F3044.	2.9	22
34	Tools and Electrochemical In Situ and On-Line Characterization Techniques for Nanomaterials. , 2018, , 383-439.		0
35	Selected Review of the Degradation of Pt and Pdâ€based Carbonâ€supported Electrocatalysts for Alkaline Fuel Cells: Towards Mechanisms of Degradation. Fuel Cells, 2018, 18, 229-238.	2.4	70
36	A Review on Recent Developments and Prospects for the Oxygen Reduction Reaction on Hollow Ptâ€alloy Nanoparticles. ChemPhysChem, 2018, 19, 1552-1567.	2.1	64

#	Article	IF	CITATIONS
37	Porous Hollow PtNi/C Electrocatalysts: Carbon Support Considerations To Meet Performance and Stability Requirements. ACS Catalysis, 2018, 8, 893-903.	11.2	67
38	Utilization of graphitized and fluorinated carbon as platinum nanoparticles supports for application in proton exchange membrane fuel cell cathodes. Journal of Power Sources, 2018, 404, 28-38.	7.8	16
39	Physical and Chemical Considerations for Improving Catalytic Activity and Stability of Non-Precious-Metal Oxygen Reduction Reaction Catalysts. ACS Catalysis, 2018, 8, 11264-11276.	11.2	101
40	Tin dioxide coated carbon materials as an alternative catalyst support for PEMFCs: Impacts of the intrinsic carbon properties and the synthesis parameters on the coating characteristics. Microporous and Mesoporous Materials, 2018, 271, 1-15.	4.4	13
41	Surface distortion as a unifying concept and descriptor in oxygen reduction reaction electrocatalysis. Nature Materials, 2018, 17, 827-833.	27.5	344
42	Activity and Durability of Platinum-Based Electrocatalysts Supported on Bare or Fluorinated Nanostructured Carbon Substrates. Journal of the Electrochemical Society, 2018, 165, F3346-F3358.	2.9	27
43	Electrochemical Stability of Pt Nanoparticles Supported on a Wide Library of Carbon Supports, Either Used Bare, or Modified By Fluorination or Tin Oxide Deposits. ECS Meeting Abstracts, 2018, , .	0.0	0
44	Instability and Degradation Mechanism of Platinum-Group Metal (PGM)-Based Carbon Supported Electrocatalysts in Alkaline Medium. ECS Meeting Abstracts, 2018, , .	0.0	0
45	Degradation of IrO _x Nanoparticles Supported Onto Sb-Doped SnO ₂ Aerogel Monitored By Dynamic Electrochemical Impedance Spectroscopy and Identical-Location TEM. ECS Meeting Abstracts, 2018, MA2018-01, 1668-1668.	0.0	1
46	Platinum-Based PEMFC Electrodes – Can Electrodes with Low Pt Loading be Durable?. ECS Meeting Abstracts, 2018, , .	0.0	0
47	Unveilling the Degradation Pathway of Highly Defective Hollow PtNi/C in Operando Conditions. ECS Meeting Abstracts, 2018, , .	0.0	0
48	Oxygen Evolution Reaction Investigation on Pt(111) and Ir(111) Using Dynamic Electrochemical Impedance Spectroscopy in Acidic Medium. ECS Meeting Abstracts, 2018, , .	0.0	0
49	Durability of Platinum-Based Carbon-Supported Electrocatalysts in Liquid Versus Solid Polymer Alkaline Electrolytes. ECS Meeting Abstracts, 2018, , .	0.0	0
50	Porous Hollow Ptni/C Electrocatalysts: Carbon Support Considerations to Meet Stability Requirements. ECS Meeting Abstracts, 2018, , .	0.0	1
51	Effect of Atomic Vacancies on the Structure and the Electrocatalytic Activity of Ptâ€rich/C Nanoparticles: A Combined Experimental and Density Functional Theory Study. ChemCatChem, 2017, 9, 2324-2338.	3.7	23
52	Insights into the stability of Pt nanoparticles supported on antimony-doped tin oxide in different potential ranges. Electrochimica Acta, 2017, 245, 993-1004.	5.2	37
53	Insights into the mechanism of electrocatalysis of the oxygen reduction reaction by a porphyrinic metal organic framework. Chemical Communications, 2017, 53, 6496-6499.	4.1	73
54	Atomic-Scale Snapshots of the Formation and Growth of Hollow PtNi/C Nanocatalysts. Nano Letters, 2017. 17. 2447-2453.	9.1	40

#	Article	IF	CITATIONS
55	Implementing Structural Disorder as a Promising Direction for Improving the Stability of PtNi/C Nanoparticles. ACS Catalysis, 2017, 7, 3072-3081.	11.2	61
56	(Invited) Porous Hollow PtNi/C Nanoparticles and Their Many Facets. ECS Transactions, 2017, 80, 731-741.	0.5	2
57	Elucidating the Mechanisms Driving the Aging of Porous Hollow PtNi/C Nanoparticles by Means of CO _{ads} Stripping. ACS Applied Materials & Interfaces, 2017, 9, 25298-25307.	8.0	19
58	Pt Nanoparticles Supported on Niobium-Doped Tin Dioxide: Impact of the Support Morphology on Pt Utilization and Electrocatalytic Activity. Electrocatalysis, 2017, 8, 51-58.	3.0	22
59	Benefits and limitations of Pt nanoparticles supported on highly porous antimony-doped tin dioxide aerogel as alternative cathode material for proton-exchange membrane fuel cells. Applied Catalysis B: Environmental, 2017, 201, 381-390.	20.2	70
60	Beyond Strain and Ligand Effects: Microstrain-Induced Enhancement of the Oxygen Reduction Reaction Kinetics on Various PtNi/C Nanostructures. ACS Catalysis, 2017, 7, 398-408.	11.2	140
61	Microstrained Ptni/C Nanostructures As Highly Active Electrocatalysts for Electrooxidation and Electroreduction Reactions. ECS Meeting Abstracts, 2017, , .	0.0	0
62	Formation and Growth of Hollow Ptni/C Nanocatalysts for the Oxygen Reduction Reaction. ECS Meeting Abstracts, 2017, , .	0.0	0
63	Implementing Structural Defects As a New Direction to Improve the Durability of Pt-Based/C Nanoparticles. ECS Meeting Abstracts, 2017, , .	0.0	0
64	(Invited) Porous Hollow PtNi/C Nanoparticles and Their Many Facets. ECS Meeting Abstracts, 2017, , .	0.0	0
65	Unveiling the crucial role of temperature on the stability of oxygen reduction reaction electrocatalysts. Electrochemistry Communications, 2016, 63, 65-69.	4.7	39
66	Structure–Activity Relationships for the Oxygen Reduction Reaction in Porous Hollow PtNi/C Nanoparticles. ChemElectroChem, 2016, 3, 1591-1600.	3.4	16
67	Highly active and selective nickel molybdenum catalysts for direct hydrazine fuel cell. Electrochimica Acta, 2016, 215, 420-426.	5.2	59
68	Defects do Catalysis: CO Monolayer Oxidation and Oxygen Reduction Reaction on Hollow PtNi/C Nanoparticles. ACS Catalysis, 2016, 6, 4673-4684.	11.2	107
69	Highly-active Pd–Cu electrocatalysts for oxidation of ubiquitous oxygenated fuels. Applied Catalysis B: Environmental, 2016, 191, 76-85.	20.2	61
70	Atomic-scale restructuring of hollow PtNi/C electrocatalysts during accelerated stress tests. Catalysis Today, 2016, 262, 146-154.	4.4	25
71	Ethanol oxidation reaction (EOR) investigation on Pt/C, Rh/C, and Pt-based bi- and tri-metallic electrocatalysts: A DEMS and in situ FTIR study. Applied Catalysis B: Environmental, 2016, 181, 672-680.	20.2	100
72	Structure and Surface Reactivity of Ultra-Thin Pt/W(111) Films. Electrocatalysis, 2015, 6, 398-404.	3.0	7

#	Article	IF	CITATIONS
73	Tuning the Performance and the Stability of Porous Hollow PtNi/C Nanostructures for the Oxygen Reduction Reaction. ACS Catalysis, 2015, 5, 5333-5341.	11.2	125
74	Carbon Corrosion in Proton-Exchange Membrane Fuel Cells: Effect of the Carbon Structure, the Degradation Protocol, and the Gas Atmosphere. ACS Catalysis, 2015, 5, 2184-2194.	11.2	318
75	Sn02 Aerogels: Towards Performant and Stable PEFC Catalyst Supports. ECS Transactions, 2015, 69, 1207-1220.	0.5	6
76	Palladium Supported on 3D Graphene as an Active Catalyst for Alcohols Electrooxidation. Journal of the Electrochemical Society, 2015, 162, F1305-F1309.	2.9	41
77	Carbon corrosion induced by membrane failure: The weak link of PEMFC long-term performance. International Journal of Hydrogen Energy, 2014, 39, 21902-21914.	7.1	75
78	Using the Multiple SEA Method to Synthesize Pt/Carbon Xerogel Electrocatalysts for PEMFC Applications. Fuel Cells, 2014, 14, 343-349.	2.4	8
79	Accelerated Stress Tests of Pt/HSAC Electrocatalysts: an Identical-Location Transmission Electron Microscopy Study on the Influence of Intermediate Characterizations. Electrocatalysis, 2014, 5, 125-135.	3.0	27
80	Atomic-scale structure and composition of Pt3Co/C nanocrystallites during real PEMFC operation: A STEM–EELS study. Applied Catalysis B: Environmental, 2014, 152-153, 300-308.	20.2	54
81	The role of water in the degradation of Pt3Co/C nanoparticles: An Identical Location Transmission Electron Microscopy study in polymer electrolyte environment. Applied Catalysis B: Environmental, 2014, 156-157, 301-306.	20.2	36
82	A review of <scp>PEM</scp> fuel cell durability: materials degradation, local heterogeneities of aging and possible mitigation strategies. Wiley Interdisciplinary Reviews: Energy and Environment, 2014, 3, 540-560.	4.1	257
83	Beyond conventional electrocatalysts: hollow nanoparticles for improved and sustainable oxygen reduction reaction activity. Journal of Materials Chemistry A, 2014, 2, 18497-18507.	10.3	39
84	Highly dispersed Pt/C catalysts prepared by the Charge Enhanced Dry Impregnation method. Applied Catalysis B: Environmental, 2014, 150-151, 101-106.	20.2	18
85	Carbon Corrosion in Proton-Exchange Membrane Fuel Cells: From Model Experiments to Real-Life Operation in Membrane Electrode Assemblies. ACS Catalysis, 2014, 4, 2258-2267.	11.2	188
86	Reversibility of Pt-Skin and Pt-Skeleton Nanostructures in Acidic Media. Journal of Physical Chemistry Letters, 2014, 5, 434-439.	4.6	48
87	Anodic Reactions in Electrocatalysis - Oxidation of Carbon Monoxide. , 2014, , 93-100.		0
88	Degradation heterogeneities induced by repetitive start/stop events in proton exchange membrane fuel cell: Inlet vs. outlet and channel vs. land. Applied Catalysis B: Environmental, 2013, 138-139, 416-426.	20.2	124
89	A portable transfer chamber for electrochemical measurements on electrodes prepared in ultra-high vacuum. Review of Scientific Instruments, 2013, 84, 064101.	1.3	7
90	Basics of PEMFC Including the Use of Carbon-Supported Nanoparticles. , 2013, , 401-423.		2

#	Article	IF	CITATIONS
91	Approaches to Synthesize Carbon-Supported Platinum-Based Electrocatalysts for Proton-Exchange Membrane Fuel Cells. , 2013, , 407-428.		5
92	Probing the structure, the composition and the ORR activity of Pt3Co/C nanocrystallites during a 3422h PEMFC ageing test. Applied Catalysis B: Environmental, 2013, 142-143, 801-808.	20.2	109
93	Carbon corrosion and platinum nanoparticles ripening under open circuit potential conditions. Journal of Power Sources, 2013, 230, 236-243.	7.8	56
94	Efficient Pt/carbon electrocatalysts for proton exchange membrane fuel cells: Avoid chloride-based Pt salts!. Journal of Power Sources, 2013, 240, 294-305.	7.8	58
95	An identical-location transmission electron microscopy study on the degradation of Pt/C nanoparticles under oxidizing, reducing and neutral atmosphere. Electrochimica Acta, 2013, 110, 273-281.	5.2	95
96	H electro-insertion into Pd/Pt(111) nanofilms: an original method for isotherm measurement coupled to in situ surface X-ray diffraction structural study. Electrochimica Acta, 2013, 112, 905-912.	5.2	7
97	Pt3Co Nanoparticles and Carbon to the Test of PEMFC Operation. ECS Transactions, 2013, 58, 937-943.	0.5	0
98	Evidences of "Through-Plane" Heterogeneities of Aging in a Proton-Exchange Membrane Fuel Cell. ECS Electrochemistry Letters, 2012, 1, F13-F15.	1.9	12
99	Evidences of the migration of Pt crystallites on high surface area carbon supports in the presence of reducing molecules. Journal of Power Sources, 2012, 217, 449-458.	7.8	39
100	Local Degradations Resulting from Repeated Start-ups and Shut-downs in Proton Exchange Membrane Fuel Cell (PEMFC). Energy Procedia, 2012, 29, 318-324.	1.8	25
101	Impact of metal cations on the electrocatalytic properties of Pt/C nanoparticles at multiple phase interfaces. Physical Chemistry Chemical Physics, 2012, 14, 13000.	2.8	59
102	Heterogeneities of Aging within a PEMFC MEA. Fuel Cells, 2012, 12, 188-198.	2.4	39
103	Determination of Aging Markers and their Use as a Tool to Characterize Pt/C Nanoparticles Degradation Mechanism in Model PEMFC Cathode Environment. ECS Transactions, 2011, 41, 697-708.	0.5	17
104	An EC-FTIR study on the catalytic role of Pt in carbon corrosion. Electrochemistry Communications, 2011, 13, 1109-1111.	4.7	68
105	Further insights into the durability of Pt3Co/C electrocatalysts: Formation of "hollow―Pt nanoparticles induced by the Kirkendall effect. Electrochimica Acta, 2011, 56, 10658-10667.	5.2	118
106	Synthesis and characterization of electrocatalysts for the oxygen evolution in PEM water electrolysis. International Journal of Hydrogen Energy, 2011, 36, 10474-10481.	7.1	95
107	Synthesis and Properties of Platinum Nanocatalyst Supported on Cellulose-Based Carbon Aerogel for Applications in PEMFCs. Journal of the Electrochemical Society, 2011, 158, B779.	2.9	31
108	Heterogeneities of Aging Through-The-Plane of a Proton-Exchange Membrane Fuel Cell Cathode. ECS Transactions, 2011, 41, 827-836.	0.5	2

#	Article	IF	CITATIONS
109	Impact of ultra-low Pt loadings on the performance of anode/cathode in a proton-exchange membrane fuel cell. Journal of Power Sources, 2010, 195, 2737-2746.	7.8	50
110	Nanoscale compositional changes and modification of the surface reactivity of Pt3Co/C nanoparticles during proton-exchange membrane fuel cell operation. Electrochimica Acta, 2010, 56, 776-783.	5.2	100
111	Preparation of highly loaded Pt/carbon xerogel catalysts for Proton Exchange Membrane fuel cells by the Strong Electrostatic Adsorption method. Catalysis Today, 2010, 150, 119-127.	4.4	51
112	The (electro)catalyst membrane interface in the Proton Exchange Membrane Fuel Cell: Similarities and differences with non-electrochemical Catalytic Membrane Reactors. Catalysis Today, 2010, 156, 76-86.	4.4	31
113	Durability of Pt3Co/C nanoparticles in a proton-exchange membrane fuel cell: Direct evidence of bulk Co segregation to the surface. Electrochemistry Communications, 2010, 12, 1161-1164.	4.7	103
114	Influence of PEMFC Operating Conditions on the Durability of Pt3Co/C Electrocatalysts. ECS Transactions, 2010, 33, 399-405.	0.5	4
115	Synthesis and characterization of highly loaded Pt/carbon xerogel catalysts prepared by the Strong Electrostatic Adsorption method. Studies in Surface Science and Catalysis, 2010, 175, 169-176.	1.5	3
116	Durability of Pt3Co/C Cathodes in a 16 Cells PEMFC Stack: Degradation Mechanisms and Modification of the ORR Electrocatalytic Activity. ECS Transactions, 2010, 33, 407-417.	0.5	5
117	Durability of Pt[sub 3]Co/C Cathodes in a 16 Cell PEMFC Stack: Macro/Microstructural Changes and Degradation Mechanisms. Journal of the Electrochemical Society, 2010, 157, B1887.	2.9	79
118	Elaboration and Characterizations of Platinum Nanoparticles Supported on Cellulose-Based Carbon Aerogel. ECS Transactions, 2010, 33, 447-459.	0.5	5
119	In situ infrared (FTIR) study of the mechanism of the borohydride oxidation reaction. Physical Chemistry Chemical Physics, 2010, 12, 11507.	2.8	69
120	The role of the support in CO _{ads} monolayer electrooxidation on Ptnanoparticles: Pt/WO _x vs.Pt/C. Physical Chemistry Chemical Physics, 2010, 12, 1182-1193.	2.8	69
121	Electrochemical characterization of Pt/carbon xerogel and Pt/carbon aerogel catalysts: first insights into the influence of the carbon texture on the Pt nanoparticle morphology and catalytic activity. Journal of Materials Science, 2009, 44, 6591-6600.	3.7	29
122	Unique CO-tolerance of Pt–WOx materials. Electrochemistry Communications, 2009, 11, 651-654.	4.7	67
123	Evidence of the Substrate Effect in Hydrogen Electroinsertion into Palladium Atomic Layers by Means of in Situ Surface X-ray Diffraction. Langmuir, 2009, 25, 4251-4255.	3.5	21
124	In situ synchrotron far infrared micro-spectroelectrochemistry with a grazing angle objective. Infrared Physics and Technology, 2008, 51, 446-449.	2.9	2
125	Membrane and Active Layer Degradation upon PEMFC Steady-State Operation. Journal of the Electrochemical Society, 2007, 154, B1106.	2.9	164
126	Membrane and Active Layer Degradation Following PEMFC Steady-State Operation. Journal of the Electrochemical Society, 2007, 154, B1115.	2.9	51

Frédéric M Maillard

#	Article	IF	CITATIONS
127	Pt Redistribution within PEMFC MEAs and its Consequence on their Performances. ECS Transactions, 2007, 11, 1203-1214.	0.5	11
128	Detection of Pt[sup z+] Ions and Pt Nanoparticles Inside the Membrane of a Used PEMFC. Journal of the Electrochemical Society, 2007, 154, B96.	2.9	217
129	Is carbon-supported Pt-WOx composite a CO-tolerant material?. Electrochimica Acta, 2007, 52, 1958-1967.	5.2	74
130	CO monolayer oxidation on Pt nanoparticles: Further insights into the particle size effects. Journal of Electroanalytical Chemistry, 2007, 599, 221-232.	3.8	218
131	<i>In situ</i> synchrotron far-infrared spectromicroscopy of a copper electrode at grazing incidence angle. Journal of Synchrotron Radiation, 2007, 14, 446-448.	2.4	7
132	Effect of the structure of Pt–Ru/C particles on COad monolayer vibrational properties and electrooxidation kinetics. Electrochimica Acta, 2007, 53, 811-822.	5.2	84
133	Comparing the thin-film rotating disk electrode and the ultramicroelectrode with cavity techniques to study carbon-supported platinum for proton exchange membrane fuel cell applications. Journal of Electroanalytical Chemistry, 2007, 599, 111-120.	3.8	54
134	Kinetic Modeling of COadMonolayer Oxidation on Carbon-Supported Platinum Nanoparticles. Journal of Physical Chemistry B, 2006, 110, 21028-21040.	2.6	70
135	Ru-Decorated Pt Surfaces as Model Fuel Cell Electrocatalysts for CO Eletrooxidation. ChemInform, 2005, 36, no.	0.0	0
136	Ru-Decorated Pt Surfaces as Model Fuel Cell Electrocatalysts for CO Electrooxidation. Journal of Physical Chemistry B, 2005, 109, 16230-16243.	2.6	239
137	Influence of particle agglomeration on the catalytic activity of carbon-supported Pt nanoparticles in CO monolayer oxidation. Physical Chemistry Chemical Physics, 2005, 7, 385-393.	2.8	386
138	Size effects on reactivity of Pt nanoparticles in CO monolayer oxidation: The role of surface mobility. Faraday Discussions, 2004, 125, 357.	3.2	394
139	Infrared Spectroscopic Study of CO Adsorption and Electro-oxidation on Carbon-Supported Pt Nanoparticles:Â Interparticle versus Intraparticle Heterogeneity. Journal of Physical Chemistry B, 2004, 108, 17893-17904.	2.6	141
140	Title is missing!. Journal of Applied Electrochemistry, 2003, 33, 1-8.	2.9	50
141	Electrooxidation of Carbon Monoxide at Ruthenium–Modified Platinum Nano-particles: Evidence for CO Surface Mobility. Fuel Cells, 2002, 2, 143-152.	2.4	44
142	Oxygen electroreduction on carbon-supported platinum catalysts. Particle-size effect on the tolerance to methanol competition. Electrochimica Acta, 2002, 47, 3431-3440.	5.2	196
143	Complexation and electrochemical sensing of anions by amide-substituted ferrocenyl ligands. Journal of Organometallic Chemistry, 2001, 637-639, 356-363.	1.8	54
144	Size Effects in Electrocatalysis of Fuel Cell Reactions on Supported Metal Nanoparticles. , 0, , 507-566.		19

#	Article	IF	CITATIONS
145	Oxygen-Induced Formation of Nanopyramids on W(111). Advanced Materials Research, 0, 324, 109-112.	0.3	0