
Jochen Markard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5492433/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sustainability transitions: An emerging field of research and its prospects. Research Policy, 2012, 41, 955-967.	3.3	2,210
2	An agenda for sustainability transitions research: State of the art and future directions. Environmental Innovation and Societal Transitions, 2019, 31, 1-32.	2.5	1,305
3	Technological innovation systems and the multi-level perspective: Towards an integrated framework. Research Policy, 2008, 37, 596-615.	3.3	885
4	Sustainability transitions in the making: A closer look at actors, strategies and resources. Technological Forecasting and Social Change, 2012, 79, 991-998.	6.2	487
5	Technological innovation systems in contexts: Conceptualizing contextual structures and interaction dynamics. Environmental Innovation and Societal Transitions, 2015, 16, 51-64.	2.5	367
6	The next phase of the energy transition and its implications for research and policy. Nature Energy, 2018, 3, 628-633.	19.8	353
7	Innovation processes in large technical systems: Market liberalization as a driver for radical change?. Research Policy, 2006, 35, 609-625.	3.3	205
8	Networks and network resources in technological innovation systems: Towards a conceptual framework for system building. Technological Forecasting and Social Change, 2012, 79, 1032-1048.	6.2	202
9	Institutional dynamics and technology legitimacy – A framework and a case study on biogas technology. Research Policy, 2016, 45, 330-344.	3.3	201
10	Socio-technical transitions and policy change – Advocacy coalitions in Swiss energy policy. Environmental Innovation and Societal Transitions, 2016, 18, 215-237.	2.5	201
11	The technological innovation systems framework: Response to six criticisms. Environmental Innovation and Societal Transitions, 2015, 16, 76-86.	2.5	156
12	Why carbon pricing is not sufficient to mitigate climate change—and how "sustainability transition policy―can help. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8664-8668.	3.3	149
13	A COVID-19 recovery for climate. Science, 2020, 368, 447-447.	6.0	139
14	Transformation of Infrastructures: Sector Characteristics and Implications for Fundamental Change. Journal of Infrastructure Systems, 2011, 17, 107-117.	1.0	132
15	Challenges in the acceleration of sustainability transitions. Environmental Research Letters, 2020, 15, 081001.	2.2	131
16	Policies, actors and sustainability transition pathways: A study of the EU's energy policy mix. Research Policy, 2019, 48, 103668.	3.3	124
17	Creating and shaping innovation systems: Formal networks in the innovation system for stationary fuel cells in Germany. Energy Policy, 2011, 39, 1909-1922.	4.2	122
18	What happens after a hype? How changing expectations affected innovation activities in the case of stationary fuel cells. Technology Analysis and Strategic Management, 2010, 22, 317-338.	2.0	118

Jochen Markard

#	Article	IF	CITATIONS
19	Eco-labeling of electricity—strategies and tradeoffs in the definition of environmental standards. Energy Policy, 2001, 29, 885-897.	4.2	116
20	The life cycle of technological innovation systems. Technological Forecasting and Social Change, 2020, 153, 119407.	6.2	116
21	Actor-oriented analysis of innovation systems: exploring micro–meso level linkages in the case of stationary fuel cells. Technology Analysis and Strategic Management, 2008, 20, 443-464.	2.0	107
22	Smart grids and the transformation of the electricity sector: ICT firms as potential catalysts for sectoral change. Energy Policy, 2012, 51, 895-906.	4.2	104
23	Analysis of complementarities: Framework and examples from the energy transition. Technological Forecasting and Social Change, 2016, 111, 63-75.	6.2	97
24	The offshore trend: Structural changes in the wind power sector. Energy Policy, 2009, 37, 3545-3556.	4.2	96
25	Informal institutions matter: Professional culture and the development of biogas technology. Environmental Innovation and Societal Transitions, 2013, 8, 20-41.	2.5	92
26	Strategic responses to fuel cell hype and disappointment. Technological Forecasting and Social Change, 2012, 79, 1084-1098.	6.2	91
27	Prospective analysis of technological innovation systems: Identifying technological and organizational development options for biogas in Switzerland. Research Policy, 2009, 38, 655-667.	3.3	86
28	Green hydropower: a new assessment procedure for river management. River Research and Applications, 2004, 20, 865-882.	0.7	81
29	Destined for decline? Examining nuclear energy from a technological innovation systems perspective. Energy Research and Social Science, 2020, 67, 101512.	3.0	61
30	Diffusion of green power products in Switzerland. Energy Policy, 2003, 31, 621-632.	4.2	59
31	Context matters: How existing sectors and competing technologies affect the prospects of the Swiss Bio-SNG innovation system. Technological Forecasting and Social Change, 2011, 78, 635-649.	6.2	59
32	Smart meter communication standards in Europe – a comparison. Renewable and Sustainable Energy Reviews, 2015, 43, 1249-1262.	8.2	59
33	Creating innovation systems: How resource constellations affect the strategies of system builders. Technological Forecasting and Social Change, 2020, 153, 119209.	6.2	57
34	Multi-technology interaction in socio-technical transitions: How recent dynamics in HVDC technology can inform transition theories. Technological Forecasting and Social Change, 2020, 151, 119802.	6.2	56
35	The promotional impacts of green power products on renewable energy sources: direct and indirect eco-effects. Energy Policy, 2006, 34, 306-321.	4.2	52
36	Closing the Capability Gap: Strategic Planning for the Infrastructure Sector. California Management Review, 2009, 51, 30-50.	3.4	46

JOCHEN MARKARD

#	Article	IF	CITATIONS
37	A tale of two crises: COVID-19 and climate. Sustainability: Science, Practice, and Policy, 2020, 16, 53-60.	1.1	46
38	Renewable energy alternatives for developed countries. IEEE Transactions on Energy Conversion, 2000, 15, 481-493.	3.7	44
39	Green Hydropower: The contribution of aquatic science research to the promotion of sustainable electricity. Aquatic Sciences, 2003, 65, 99-110.	0.6	42
40	The Politics of Technology Decline: Discursive Struggles over Coal Phaseâ€Out in the UK. Review of Policy Research, 2020, 37, 342-368.	2.8	37
41	The exploratory analysis of trade-offs in strategic planning: Lessons from Regional Infrastructure Foresight. Technological Forecasting and Social Change, 2009, 76, 1150-1162.	6.2	36
42	Analyzing transitions through the lens of discourse networks: Coal phase-out in Germany. Environmental Innovation and Societal Transitions, 2021, 40, 315-331.	2.5	33
43	Green Electricity from Alpine Hydropower Plants. Mountain Research and Development, 2001, 21, 19-24.	0.4	31
44	From terminating to transforming: The role of phase-out in sustainability transitions. Environmental Innovation and Societal Transitions, 2021, 41, 27-31.	2.5	31
45	Disclosure of electricity products—lessons from consumer research as guidance for energy policy. Energy Policy, 2003, 31, 1459-1474.	4.2	30
46	Analysing Energy Transitions: Combining Insights from Transition Studies and International Political Economy. , 2016, , 291-318.		24
47	Political conflict and climate policy: the European emissions trading system as a Trojan Horse for the low-carbon transition?. Climate Policy, 2020, 20, 1092-1111.	2.6	24
48	How deployment policies affect innovation in complementary technologies—evidence from the German energy transition. Technological Forecasting and Social Change, 2020, 161, 120274.	6.2	22
49	The Impacts of Market Liberalization on Innovation Processes in the Electricity Sector. Energy and Environment, 2004, 15, 201-214.	2.7	21
50	Neglected developments undermining sustainability transitions. Environmental Innovation and Societal Transitions, 2021, 41, 39-41.	2.5	17
51	Technology users and standardization: Game changing strategies in the field of smart meter technology. Technological Forecasting and Social Change, 2017, 118, 226-235.	6.2	14
52	A capability perspective on performance deficiencies in utility firms. Utilities Policy, 2013, 25, 1-9.	2.1	13
53	Reply to van den Bergh and Botzen: A clash of paradigms over the role of carbon pricing. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23221-23222.	3.3	8
54	A Capability Perspective on Performance Deficiencies in Utility Firms. Proceedings - Academy of Management, 2013, 1, aomafr.2012.018.	0.0	1

JOCHEN MARKARD

#	Article	IF	CITATIONS
55	Green Pricing: Potentials And Limitations. IEEE Power Engineering Review, 1997, 17, 20-21.	0.1	Ο
56	The Context of Innovation: How Established Actors Affect the Prospects of Bio-SNG Technology in Switzerland. Sustainability and Innovation, 2012, , 151-173.	0.1	0
57	Socio-Technical Transitions and Policy Change - Advocacy Coalitions in Swiss Energy Policy. SSRN Electronic Journal, 0, , .	0.4	Ο
58	Why the Lights Went Out: A Capability Perspective on the Unintended Consequences of Sector Reform Processes. , 2019, , 33-68.		0