Qingwu Xue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5492239/publications.pdf Version: 2024-02-01

230014 274796 2,506 96 27 44 h-index citations g-index papers 97 97 97 2958 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A new strategy for using historical imbalanced yield data to conduct genome-wide association studies and develop genomic prediction models for wheat breeding. Molecular Breeding, 2022, 42, 1.	1.0	0
2	Date palm waste compost promotes plant growth and nutrient transporter genes expression in barley (Hordeum vulgare L.). South African Journal of Botany, 2022, 149, 247-257.	1.2	10
3	Simulating the climate change impacts and evaluating potential adaptation strategies for irrigated corn production in Northern High Plains of Texas. Climate Risk Management, 2022, 37, 100446.	1.6	1
4	Genetic dissection of endâ€use quality traits in two widely adapted wheat cultivars †TAM 111' and †TAM 112'. Crop Science, 2021, 61, 1944-1959.	0.8	9
5	Annual forage impacts on dryland wheat farming in the Great Plains. Agronomy Journal, 2021, 113, 1-25.	0.9	27
6	Thermal imaging to evaluate wheat genotypes under dryland conditions. , 2021, 4, e20152.		7
7	RNA-seq analysis reveals different drought tolerance mechanisms in two broadly adapted wheat cultivars †TAM 111' and †TAM 112'. Scientific Reports, 2021, 11, 4301.	1.6	19
8	Assessing the Effect of Drought on Winter Wheat Growth Using Unmanned Aerial System (UAS)-Based Phenotyping. Remote Sensing, 2021, 13, 1144.	1.8	16
9	Cotton photosynthetic productivity enhancement through uniform rowâ€spacing with optimal plant density in Xinjiang, China. Crop Science, 2021, 61, 2745-2758.	0.8	8
10	Effect of nitrogen supply on stay-green sorghum in differing post-flowering water regimes. Planta, 2021, 254, 63.	1.6	7
11	Genome-wide QTL mapping of yield and agronomic traits in two widely adapted winter wheat cultivars from multiple mega-environments. PeerJ, 2021, 9, e12350.	0.9	6
12	Genetic Mapping of Quantitative Trait Loci for End-Use Quality and Grain Minerals in Hard Red Winter Wheat. Agronomy, 2021, 11, 2519.	1.3	8
13	Soil water extraction and use by winter wheat cultivars under limited irrigation in a semi-arid environment. Journal of Arid Environments, 2020, 174, 104046.	1.2	12
14	Introduction: Water, soil, crops, and people in a changing climate: the agronomic legacy of Dr. B.A. Stewart. Agronomy Journal, 2020, 112, 3223-3226.	0.9	1
15	Assessing winter wheat foliage disease severity using aerial imagery acquired from small Unmanned Aerial Vehicle (UAV). Computers and Electronics in Agriculture, 2020, 176, 105665.	3.7	39
16	Alternative planting geometries reduce production risk in corn and sorghum in waterâ€limited environments. Agronomy Journal, 2020, 112, 3322-3334.	0.9	5
17	Corn production under restricted irrigation in the Texas High Plains. Agronomy Journal, 2020, 112, 1190-1200.	0.9	4
18	Corn response to later than traditional planting dates in the Texas High Plains. Crop Science, 2020, 60, 1004-1020.	0.8	10

#	Article	IF	CITATIONS
19	Genome wide identification of QTL associated with yield and yield components in two popular wheat cultivars TAM 111 and TAM 112. PLoS ONE, 2020, 15, e0237293.	1.1	17
20	Yields, Fruit Quality, and Water Use in a Jalapeno Pepper and Tomatoes under Open Field and High-tunnel Production Systems in the Texas High Plains. Hortscience: A Publication of the American Society for Hortcultural Science, 2020, 55, 1632-1641.	0.5	3
21	Use of NDVI for characterizing winter wheat response to water stress in a semi-arid environment. Journal of Crop Improvement, 2019, 33, 633-648.	0.9	29
22	Root morphological traits of winter wheat under contrasting environments. Journal of Agronomy and Crop Science, 2019, 205, 571-585.	1.7	11
23	Potential climate change adaptation strategies for winter wheat production in the Texas High Plains. Agricultural Water Management, 2019, 225, 105764.	2.4	17
24	Yield determination of maize hybrids under limited irrigation. Journal of Crop Improvement, 2019, 33, 410-427.	0.9	8
25	Assessing Soil and Water Assessment Tool Plant Stress Algorithms Using Full and Deficit Irrigation Treatments. Agronomy Journal, 2019, 111, 1266-1280.	0.9	7
26	Evaluating Leaf Wax and Bulk Leaf Carbon Isotope Surrogates for Water Use Efficiency and Grain Yield in Winter Wheat. Crop Science, 2019, 59, 718-732.	0.8	6
27	Using aerial imagery and digital photography to monitor growth and yield in winter wheat. International Journal of Remote Sensing, 2019, 40, 6905-6929.	1.3	5
28	†TAM 204' Wheat, Adapted to Grazing, Grain, and Grazeâ€out Production Systems in the Southern High Plains. Journal of Plant Registrations, 2019, 13, 377-382.	0.4	5
29	Yield determination in winter wheat under different water regimes. Field Crops Research, 2019, 233, 80-87.	2.3	35
30	Developing KASP Markers on a Major Stripe Rust Resistance QTL in a Popular Wheat TAM 111 Using 90K Array and Genotypingâ€byâ€Sequencing SNPs. Crop Science, 2019, 59, 165-175.	0.8	14
31	Grain yield, evapotranspiration, and water-use efficiency of maize hybrids differing in drought tolerance. Irrigation Science, 2019, 37, 25-34.	1.3	14
32	Ground penetrating radar (GPR) detects fine roots of agricultural crops in the field. Plant and Soil, 2018, 423, 517-531.	1.8	67
33	Canopy temperature depression at grain filling correlates to winter wheat yield in the U.S. Southern High Plains. Field Crops Research, 2018, 217, 11-19.	2.3	66
34	Yield and water use of drought-tolerant maize hybrids in a semiarid environment. Field Crops Research, 2018, 216, 1-9.	2.3	53
35	†TAM 114' Wheat, Excellent Breadâ€Making Quality Hard Red Winter Wheat Cultivar Adapted to the Southern High Plains. Journal of Plant Registrations, 2018, 12, 367-372.	0.4	7
36	Mapping and KASP marker development for wheat curl mite resistance in "TAM 112―wheat using linkage and association analysis. Molecular Breeding, 2018, 38, 1.	1.0	30

#	Article	IF	CITATIONS
37	Shoot and root traits in drought tolerant maize (Zea mays L.) hybrids. Journal of Integrative Agriculture, 2018, 17, 1093-1105.	1.7	19
38	Canopy temperature, yield, and harvest index of corn as affected by planting geometry in a semi-arid environment. Field Crops Research, 2018, 227, 110-118.	2.3	16
39	Saturated Genetic Mapping of <i>Wheat Streak Mosaic Virus</i> Resistance Gene <i>Wsm2</i> in Wheat. Crop Science, 2017, 57, 332-339.	0.8	13
40	Experimental study of leaf wax n-alkane response in winter wheat cultivars to drought conditions. Organic Geochemistry, 2017, 113, 210-223.	0.9	18
41	Irrigated Corn Production and Management in the Texas High Plains. Journal of Contemporary Water Research and Education, 2017, 162, 31-41.	0.7	18
42	Grain sorghum transpiration efficiency at different growth stages. Plant, Soil and Environment, 2017, 63, 70-75.	1.0	8
43	More Recent Wheat Cultivars Extract More Water from Greater Soil Profile Depths to Increase Yield in the Texas High Plains. Agronomy Journal, 2017, 109, 2771-2780.	0.9	17
44	Manipulating plant geometry to improve microclimate, grain yield, and harvest index in grain sorghum. PLoS ONE, 2017, 12, e0173511.	1.1	7
45	Wheat Curl Mite Resistance in Hard Winter Wheat in the US Great Plains. Crop Science, 2017, 57, 53-61.	0.8	18
46	Development and Validation of KASP Markers for Wheat Streak Mosaic Virus Resistance Gene <i>Wsm2</i> . Crop Science, 2017, 57, 340-349.	0.8	25
47	Microsatellite Markers Reveal a Predominant Sugarcane Aphid (Homoptera: Aphididae) Clone is Found on Sorghum in Seven States and One Territory of the USA. Crop Science, 2017, 57, 2064-2072.	0.8	41
48	Simulating Evapotranspiration and Yield Response of Selected Corn Varieties under Full and Limited Irrigation in the Texas High Plains Using DSSAT-CERES-Maize. Transactions of the ASABE, 2017, 60, 837-846.	1.1	20
49	Development and validation of KASP markers for the greenbug resistance gene Gb7 and the Hessian fly resistance gene H32 in wheat. Theoretical and Applied Genetics, 2017, 130, 1867-1884.	1.8	60
50	Mapping of quantitative trait loci for grain yield and its components in a US popular winter wheat TAM 111 using 90K SNPs. PLoS ONE, 2017, 12, e0189669.	1.1	55
51	Dry matter and nitrogen accumulation and remobilization in wheat as affected by genotype and irrigation. Journal of Plant Nutrition, 2017, 40, 2279-2289.	0.9	5
52	Palmer Amaranth (Amaranthus palmeri) Control and Grain Sorghum (Sorghum bicolor) Injury with Pyrasulfotole plus Bromoxynil and Tank Mixtures. Crop, Forage and Turfgrass Management, 2016, 2, 1-9.	0.2	0
53	Radiationâ€Use Efficiency, Biomass Production, and Grain Yield in Two Maize Hybrids Differing in Drought Tolerance. Journal of Agronomy and Crop Science, 2016, 202, 269-280.	1.7	37
54	Validation of Chromosomal Locations of 90K Array Single Nucleotide Polymorphisms in US Wheat. Crop Science, 2016, 56, 364-373.	0.8	26

#	Article	IF	CITATIONS
55	Modeling Cotton Lint Yield and Water Use Efficiency Responses to Irrigation Scheduling Using Cotton2K. Agronomy Journal, 2016, 108, 1614-1623.	0.9	17
56	Spectral Reflectance Models for Characterizing Winter Wheat Genotypes. Journal of Crop Improvement, 2016, 30, 176-195.	0.9	6
57	Growing Corn in Clumps Reduces Canopy Temperature and Improves Microclimate. Journal of Crop Improvement, 2016, 30, 614-631.	0.9	9
58	Application of DSSAT-CERES-Wheat model to simulate winter wheat response to irrigation management in the Texas High Plains. Agricultural Water Management, 2016, 165, 50-60.	2.4	89
59	Spring maize yield, soil water use and water use efficiency under plastic film and straw mulches in the Loess Plateau. Scientific Reports, 2016, 6, 38995.	1.6	29
60	Grain Yield and Water Use Efficiency in Extremely-Late Sown Winter Wheat Cultivars under Two Irrigation Regimes in the North China Plain. PLoS ONE, 2016, 11, e0153695.	1.1	26
61	Physiological Responses of Hard Red Winter Wheat to Infection by <i>Wheat streak mosaic virus</i> . Phytopathology, 2015, 105, 621-627.	1.1	9
62	Water Use and Grain Yield in Droughtâ€īolerant Corn in the Texas High Plains. Agronomy Journal, 2015, 107, 1922-1930.	0.9	44
63	Yield, Quality, and Spectral Reflectance Responses of Cotton under Subsurface Drip Irrigation. Agronomy Journal, 2015, 107, 1355-1364.	0.9	17
64	Soil water extraction, water use, and grain yield by drought-tolerant maize on the Texas High Plains. Agricultural Water Management, 2015, 155, 11-21.	2.4	75
65	Adaptation to a warming-drying trend through cropping system adjustment over three decades: A case study in the northern agro-pastural ecotone of China. Journal of Meteorological Research, 2015, 29, 496-514.	0.9	10
66	Cooler Canopy Contributes to Higher Yield and Drought Tolerance in New Wheat Cultivars. Crop Science, 2014, 54, 2275-2284.	0.8	22
67	Yield Determination and Waterâ€Use Efficiency of Wheat under Waterâ€Limited Conditions in the U.S. Southern High Plains. Crop Science, 2014, 54, 34-47.	0.8	74
68	Interactive effects of elevated CO ₂ and drought on photosynthetic capacity and PSII performance in maize. Photosynthetica, 2014, 52, 63-70.	0.9	13
69	Biomass production, water and nitrogen use efficiency in photoperiod-sensitive sorghum in the Texas High Plains. Biomass and Bioenergy, 2014, 62, 108-116.	2.9	58
70	Effect of Source-Sink Manipulation on Photosynthetic Characteristics of Flag Leaf and the Remobilization of Dry Mass and Nitrogen in Vegetative Organs of Wheat. Journal of Integrative Agriculture, 2014, 13, 1680-1690.	1.7	19
71	Physiology and transcriptomics of water-deficit stress responses in wheat cultivars TAM 111 and TAM 112. Journal of Plant Physiology, 2014, 171, 1289-1298.	1.6	52
72	Molecular Markers Linked to Important Genes in Hard Winter Wheat. Crop Science, 2014, 54, 1304-1321.	0.8	55

#	Article	IF	CITATIONS
73	Using the DNDC model to compare soil organic carbon dynamics under different crop rotation and fertilizer strategies. Spanish Journal of Agricultural Research, 2014, 12, 265.	0.3	10
74	Morphological and Physiological Responses of St. Augustine Grass Cultivars to Different Levels of Soil Moisture. Journal of Crop Improvement, 2013, 27, 291-308.	0.9	2
75	Evaluation of the AquaCrop model for simulating yield response of winter wheat to water on the southern Loess Plateau of China. Water Science and Technology, 2013, 68, 821-828.	1.2	30
76	Biomass Production in Northern Great Plains of USA $\hat{a} {\in} `` Agronomic Perspective. , 2013, , .$		1
77	Genotypic Variation of Osmotic Adjustment, Water-use and Transpiration Efficiency among Closely Related Wheat Lines. Journal of Crop Improvement, 2012, 26, 258-281.	0.9	8
78	Effect of source-sink manipulation on accumulation of micronutrients and protein in wheat grains. Journal of Plant Nutrition and Soil Science, 2012, 175, 622-629.	1.1	23
79	Biomass composition of perennial grasses for biofuel production in North Dakota, USA. Biofuels, 2011, 2, 515-528.	1.4	16
80	Identification of a quantitative trait locus for resistance to <i>Sitodiplosis mosellana</i> (Géhin), the orange wheat blossom midge, in spring wheat. Plant Breeding, 2011, 130, 25-30.	1.0	16
81	Physiological mechanisms contributing to the increased water-use efficiency in winter wheat under deficit irrigation. Journal of Plant Physiology, 2006, 163, 154-164.	1.6	162
82	Compensatory Mechanisms Associated with the Effect of Spring Wheat Seed Size on Wild Oat Competition. Crop Science, 2006, 46, 935-945.	0.8	17
83	Effects of Spring Wheat Seed Size and Reduced Rates of Tralkoxydim on Wild Oat Control, Wheat Yield, and Economic Returns. Weed Technology, 2006, 20, 472-477.	0.4	3
84	The δ13C changes in four plant species of the Loess Plateau over the last 70 years. Acta Physiologiae Plantarum, 2006, 28, 257-262.	1.0	2
85	Quality versus quantity: spring wheat seed size and seeding rate effects on Avena fatua interference, economic returns and economic thresholds. Weed Research, 2005, 45, 351-360.	0.8	17
86	Predicting leaf appearance in field-grown winter wheat: evaluating linear and non-linear models. Ecological Modelling, 2004, 175, 261-270.	1.2	95
87	Influence of soil water status and atmospheric vapor pressure deficit on leaf gas exchange in field-grown winter wheat. Environmental and Experimental Botany, 2004, 51, 167-179.	2.0	41
88	Spring wheat seed size and seeding rate effects on yield loss due to wild oat (Avena fatua) interference. Weed Science, 2004, 52, 133-141.	0.8	53
89	Root growth and water uptake in winter wheat under deficit irrigation. Plant and Soil, 2003, 257, 151-161.	1.8	156
90	Improving predictions of developmental stages in winter wheat: a modified Wang and Engel model. Agricultural and Forest Meteorology, 2003, 115, 139-150.	1.9	113

#	Article	IF	CITATIONS
91	Incorporating a Chronology Response into the Prediction of Leaf Appearance Rate in Winter Wheat. Annals of Botany, 2003, 92, 181-190.	1.4	58
92	Spring wheat seed size and seeding rate affect wild oat demographics. Weed Science, 2002, 50, 312-320.	0.8	31
93	Genotypic variation of gas exchange parameters and carbon isotope discrimination in winter wheat. Journal of Plant Physiology, 2002, 159, 891-898.	1.6	31
94	Middle portion of the wheat culm remobilizes more carbon reserve to grains under drought. Journal of Agronomy and Crop Science, 0, , .	1.7	6
95	Transpiration efficiency of corn hybrids at different growth stages. Journal of Crop Improvement, 0, , 1-11.	0.9	0
96	Deficit irrigation maintains maize yield through improved soil water extraction and stable canopy radiation interception. Journal of Agronomy and Crop Science, 0, , .	1.7	3