Paulina Czaplewska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5491927/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Three Microbial Musketeers of the Seas: Shewanella baltica, Aliivibrio fischeri and Vibrio harveyi, and Their Adaptation to Different Salinity Probed by a Proteomic Approach. International Journal of Molecular Sciences, 2022, 23, 619.	4.1	2
2	Resistance of Dickeya solani strain IPO 2222 to lytic bacteriophage $\hat{I} D5$ results in fitness tradeoffs for the bacterium during infection. Scientific Reports, 2022, 12, .	3.3	12
3	Pectobacterium parmentieri SCC 3193 Mutants with Altered Synthesis of Cell Surface Polysaccharides Are Resistant to N4-Like Lytic Bacteriophage I•A38 (vB_Ppp_A38) but Express Decreased Virulence in Potato (Solanum tuberosum L.) Plants. International Journal of Molecular Sciences, 2021, 22, 7346.	4.1	7
4	Compatibility of Distinct Label-Free Proteomic Workflows in Absolute Quantification of Proteins Linked to the Oocyte Quality in Human Follicular Fluid. International Journal of Molecular Sciences, 2021, 22, 7415.	4.1	5
5	Metabolic, structural, and proteomic changes in Candida albicans cells induced by the protein-carbohydrate fraction of Dendrobaena veneta coelomic fluid. Scientific Reports, 2021, 11, 16711.	3.3	8
6	SWATH-MS for prospective identification of protein blood biomarkers of rtPA-associated intracranial hemorrhage in acute ischemic stroke: a pilot study. Scientific Reports, 2021, 11, 18765.	3.3	0
7	DMPC Phospholipid Bilayer as a Potential Interface for Human Cystatin C Oligomerization: Analysis of Protein-Liposome Interactions Using NMR Spectroscopy. Membranes, 2021, 11, 13.	3.0	8
8	The Influence of the Mixed DPC:SDS Micelle on the Structure and Oligomerization Process of the Human Cystatin C. Membranes, 2021, 11, 17.	3.0	4
9	Trial Proteomic Qualitative and Quantitative Analysis of the Protein Matrix of Submandibular Sialoliths. Molecules, 2021, 26, 6725.	3.8	5
10	Membrane Vesicles of Pectobacterium as an Effective Protein Secretion System. International Journal of Molecular Sciences, 2021, 22, 12574.	4.1	9
11	Candida albicans cell wall as a target of action for the protein–carbohydrate fraction from coelomic fluid of Dendrobaena veneta. Scientific Reports, 2020, 10, 16352.	3.3	14
12	Genome-Wide Identification of Dickeya solani Transcriptional Units Up-Regulated in Response to Plant Tissues From a Crop-Host Solanum tuberosum and a Weed-Host Solanum dulcamara. Frontiers in Plant Science, 2020, 11, 580330.	3.6	13
13	Copper binding by the cystatin C fragment. The role of histidine residues. Polyhedron, 2020, 192, 114824.	2.2	1
14	Lon Protease Is Important for Growth under Stressful Conditions and Pathogenicity of the Phytopathogen, Bacterium Dickeya solani. International Journal of Molecular Sciences, 2020, 21, 3687.	4.1	10
15	Sida hermaphrodita seeds as the source of anti - Candida albicans activity. Scientific Reports, 2019, 9, 12233.	3.3	9
16	Ochrobactrum quorumnocens sp. nov., a quorum quenching bacterium from the potato rhizosphere, and comparative genome analysis with related type strains. PLoS ONE, 2019, 14, e0210874.	2.5	31
17	Anti-Candida albicans effect of the protein-carbohydrate fraction obtained from the coelomic fluid of earthworm Dendrobaena veneta. PLoS ONE, 2019, 14, e0212869.	2.5	24
18	Human follicular fluid proteomic and peptidomic composition quantitative studies by SWATH-MS methodology. Applicability of high pH RP-HPLC fractionation. Journal of Proteomics, 2019, 191, 131-142.	2.4	18

PAULINA CZAPLEWSKA

#	Article	IF	CITATIONS
19	The identification of discontinuous epitope in the human cystatin C – Monoclonal antibody HCC3 complex. Journal of Proteomics, 2019, 191, 58-67.	2.4	3
20	Identification and characterization of antibodies elicited by human cystatin C fragment. Journal of Molecular Recognition, 2018, 31, e2689.	2.1	0
21	Oxygen Availability Influences Expression of Dickeya solani Genes Associated With Virulence in Potato (Solanum tuberosum L.) and Chicory (Cichorium intybus L.). Frontiers in Plant Science, 2018, 9, 374.	3.6	30
22	Synthesis, Chemical Characterization and Multiscale Biological Evaluation of a Dimeric-cRGD Peptide for Targeted Imaging of α V β 3 Integrin Activity. Scientific Reports, 2017, 7, 3185.	3.3	18
23	Qualitative and Quantitative Analysis of Proteome and Peptidome of Human Follicular Fluid Using Multiple Samples from Single Donor with LC–MS and SWATH Methodology. Journal of Proteome Research, 2017, 16, 3053-3067.	3.7	26
24	Characteristics of Câ€ŧerminal, βâ€amyloid peptide binding fragment of neuroprotective protease inhibitor, cystatin C. Journal of Molecular Recognition, 2017, 30, e2581.	2.1	8
25	Epitope location for two monoclonal antibodies against human cystatin C, representing opposite aggregation inhibitory properties. Amino Acids, 2016, 48, 1717-1729.	2.7	6
26	Application of amide hydrogen/deuterium exchange mass spectrometry for epitope mapping in human cystatin C. Amino Acids, 2016, 48, 2809-2820.	2.7	17
27	Isolation and characterization of autoantibodies against human cystatin C. Amino Acids, 2016, 48, 2501-2518.	2.7	3
28	Structural studies of the C-terminal 19-peptide of serum amyloid A and its Pro→Ala variants interacting with human cystatin C. Journal of Molecular Recognition, 2015, 28, 413-426.	2.1	7
29	Epitope structure and binding affinity of single chain llama antiâ€Î²â€amyloid antibodies revealed by proteolytic excision affinityâ€mass spectrometry. Journal of Molecular Recognition, 2013, 26, 1-9.	2.1	22
30	Interaction of serum amyloid A with human cystatin C—assessment of amino acid residues crucial for hCC–SAA formation (part II). Journal of Molecular Recognition, 2013, 26, 415-425.	2.1	16
31	Interaction of serum amyloid A with human cystatin C—identification of binding sites. Journal of Molecular Recognition, 2012, 25, 513-524.	2.1	15
32	Influence of point mutations on the stability, dimerization, and oligomerization of human cystatin C and its L68Q variant. Frontiers in Molecular Neuroscience, 2012, 5, 82.	2.9	24
33	Identification of the epitope for antiâ€cystatin C antibody. Journal of Molecular Recognition, 2011, 24, 687-699.	2.1	14
34	The role of the Val57 aminoâ€acid residue in the hinge loop of the human cystatin C. Conformational studies of the beta2â€L1â€beta3 segments of wildâ€type human cystatin C and its mutants. Biopolymers, 2009, 91, 373-383.	2.4	24
35	Governing the monomer-dimer ratio of human cystatin c by single amino acid substitution in the hinge region Acta Biochimica Polonica, 2009, 56, .	0.5	30
36	Governing the monomer-dimer ratio of human cystatin c by single amino acid substitution in the hinge region. Acta Biochimica Polonica, 2009, 56, 455-63.	0.5	13

#	Article	IF	CITATIONS
37	The Arctic mutation alters helix length and type in the 11–28 β-amyloid peptide monomer—CD, NMR and MD studies in an SDS micelle. Journal of Structural Biology, 2008, 164, 199-209.	2.8	9