Qiwei Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5491883/publications.pdf

Version: 2024-02-01

166	7,961 citations	46918	82
papers	citations	h-index	g-index
179	179	179	6774
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene. Science, 2016, 353, 141-144.	6.0	1,088
2	Ionic liquids and derived materials for lithium and sodium batteries. Chemical Society Reviews, 2018, 47, 2020-2064.	18.7	452
3	Molecular Sieving of Ethane from Ethylene through the Molecular Crossâ€Section Size Differentiation in Gallateâ€based Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2018, 57, 16020-16025.	7.2	202
4	Ultrahigh and Selective SO ₂ Uptake in Inorganic Anionâ€Pillared Hybrid Porous Materials. Advanced Materials, 2017, 29, 1606929.	11.1	183
5	Fine Tuning and Specific Binding Sites with a Porous Hydrogen-Bonded Metal-Complex Framework for Gas Selective Separations. Journal of the American Chemical Society, 2018, 140, 4596-4603.	6.6	181
6	A Robust Squarate-Based Metal–Organic Framework Demonstrates Record-High Affinity and Selectivity for Xenon over Krypton. Journal of the American Chemical Society, 2019, 141, 9358-9364.	6.6	162
7	Immobilization of Ag(<scp>i</scp>) into a metal–organic framework with –SO ₃ H sites for highly selective olefin–paraffin separation at room temperature. Chemical Communications, 2015, 51, 2859-2862.	2.2	160
8	Sorting of C ₄ Olefins with Interpenetrated Hybrid Ultramicroporous Materials by Combining Molecular Recognition and Sizeâ€Sieving. Angewandte Chemie - International Edition, 2017, 56, 16282-16287.	7.2	146
9	<i>In situ</i> hydrogenation and decarboxylation of oleic acid into heptadecane over a Cu–Ni alloy catalyst using methanol as a hydrogen carrier. Green Chemistry, 2018, 20, 197-205.	4.6	142
10	Inverse Adsorption Separation of CO ₂ /C ₂ H ₂ Mixture in Cyclodextrin-Based Metal–Organic Frameworks. ACS Applied Materials & Diterfaces, 2019, 11, 2543-2550.	4.0	134
11	A Singleâ€Molecule Propyne Trap: Highly Efficient Removal of Propyne from Propylene with Anionâ€Pillared Ultramicroporous Materials. Advanced Materials, 2018, 30, 1705374.	11.1	133
12	Efficient Synthesis of Cyclic Carbonates from Atmospheric CO ₂ Using a Positive Charge Delocalized Ionic Liquid Catalyst. ACS Sustainable Chemistry and Engineering, 2017, 5, 2841-2846.	3.2	116
13	Shaping of ultrahigh-loading MOF pellet with a strongly anti-tearing binder for gas separation and storage. Chemical Engineering Journal, 2018, 354, 1075-1082.	6.6	114
14	Deep Desulfurization with Record SO ₂ Adsorption on the Metal–Organic Frameworks. Journal of the American Chemical Society, 2021, 143, 9040-9047.	6.6	108
15	Catalytic dehydration of glucose to 5â€hydroxymethylfurfural with a bifunctional metalâ€organic framework. AICHE Journal, 2016, 62, 4403-4417.	1.8	104
16	Hybrid Deep Eutectic Solvents with Flexible Hydrogenâ€Bonded Supramolecular Networks for Highly Efficient Uptake of NH ₃ . ChemSusChem, 2017, 10, 3368-3377.	3.6	99
17	Efficient removal of both basic and non-basic nitrogen compounds from fuels by deep eutectic solvents. Green Chemistry, 2016, 18, 157-164.	4.6	96
18	Confining Noble Metal (Pd, Au, Pt) Nanoparticles in Surfactant Ionic Liquids: Active Non-Mercury Catalysts for Hydrochlorination of Acetylene. ACS Catalysis, 2015, 5, 6724-6731.	5.5	94

#	Article	IF	CITATIONS
19	Highly efficient separation of methane from nitrogen on a squarateâ€based metalâ€organic framework. AICHE Journal, 2018, 64, 3681-3689.	1.8	94
20	Discrimination of xylene isomers in a stacked coordination polymer. Science, 2022, 377, 335-339.	6.0	94
21	Improved separation efficiency using ionic liquid–cosolvent mixtures as the extractant in liquid–liquid extraction: A multiple adjustment and synergistic effect. Chemical Engineering Journal, 2012, 181-182, 334-342.	6.6	93
22	Separation of Xe from Kr with Record Selectivity and Productivity in Anionâ€Pillared Ultramicroporous Materials by Inverse Sizeâ€Sieving. Angewandte Chemie - International Edition, 2020, 59, 3423-3428.	7.2	91
23	A thermostable anion-pillared metal-organic framework for C2H2/C2H4 and C2H2/CO2 separations. Chemical Engineering Journal, 2018, 352, 803-810.	6.6	85
24	An Asymmetric Anionâ€Pillared Metal–Organic Framework as a Multisite Adsorbent Enables Simultaneous Removal of Propyne and Propadiene from Propylene. Angewandte Chemie - International Edition, 2018, 57, 13145-13149.	7.2	85
25	Simultaneous interlayer and intralayer space control in two-dimensional metalâ^'organic frameworks for acetylene/ethylene separation. Nature Communications, 2020, 11, 6259.	5.8	85
26	Controlling Pore Shape and Size of Interpenetrated Anion-Pillared Ultramicroporous Materials Enables Molecular Sieving of CO ₂ Combined with Ultrahigh Uptake Capacity. ACS Applied Materials & Diteraces, 2018, 10, 16628-16635.	4.0	78
27	Design and screening of ionic liquids for C ₂ H ₂ /C ₂ H ₄ separation by COSMOâ€RS and experiments. AICHE Journal, 2015, 61, 2016-2027.	1.8	77
28	New Insights into CO ₂ Absorption Mechanisms with Aminoâ€Acid Ionic Liquids. ChemSusChem, 2016, 9, 806-812.	3.6	77
29	A calcium-based microporous metal-organic framework for efficient adsorption separation of light hydrocarbons. Chemical Engineering Journal, 2019, 358, 446-455.	6.6	75
30	Selective Separation of Tocopherol Homologues by Liquidâ^'Liquid Extraction Using Ionic Liquids. Industrial & Description of Tocopherol Homologues by Liquidâ^'Liquid Extraction Using Ionic Liquids.	1.8	74
31	Long-Chain Fatty Acid-Based Phosphonium Ionic Liquids with Strong Hydrogen-Bond Basicity and Good Lipophilicity: Synthesis, Characterization, and Application in Extraction. ACS Sustainable Chemistry and Engineering, 2015, 3, 309-316.	3.2	73
32	Molecular Sieving of Ethane from Ethylene through the Molecular Crossâ€Section Size Differentiation in Gallateâ€based Metal–Organic Frameworks. Angewandte Chemie, 2018, 130, 16252-16257.	1.6	72
33	Molecular Sieving of C ₂ ₃ Alkene from Alkyne with Tuned Threshold Pressure in Robust Layered Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2020, 59, 12725-12730.	7.2	72
34	Engineering the Pore Size of Pillared-Layer Coordination Polymers Enables Highly Efficient Adsorption Separation of Acetylene from Ethylene. ACS Applied Materials & Samp; Interfaces, 2019, 11, 28197-28204.	4.0	71
35	Hexafluorogermanate (GeFSIX) Anion-Functionalized Hybrid Ultramicroporous Materials for Efficiently Trapping Acetylene from Ethylene. Industrial & Engineering Chemistry Research, 2018, 57, 7266-7274.	1.8	70
36	M-Gallate (M = Ni, Co) Metal–Organic Framework-Derived Ni/C and Bimetallic Ni–Co/C Catalysts for Lignin Conversion into Monophenols. ACS Sustainable Chemistry and Engineering, 2019, 7, 12955-12963.	3.2	69

#	Article	IF	CITATIONS
37	Enhancing the Basicity of Ionic Liquids by Tuning the Cation–Anion Interaction Strength and via the Anion-Tethered Strategy. Journal of Physical Chemistry B, 2014, 118, 1071-1079.	1.2	68
38	A highly sensitive flexible metal–organic framework sets a new benchmark for separating propyne from propylene. Journal of Materials Chemistry A, 2018, 6, 24452-24458.	5.2	67
39	Separation of Xe from Kr with Record Selectivity and Productivity in Anionâ€Pillared Ultramicroporous Materials by Inverse Size‧ieving. Angewandte Chemie, 2020, 132, 3451-3456.	1.6	63
40	Ambient Lithium–SO ₂ Batteries with Ionic Liquids as Electrolytes. Angewandte Chemie - International Edition, 2014, 53, 2099-2103.	7.2	62
41	Efficient adsorption separation of acetylene and ethylene via supported ionic liquid on metalâ€organic framework. AICHE Journal, 2017, 63, 2165-2175.	1.8	62
42	Brönsted acidic ionic liquids as novel catalysts for the hydrolyzation of soybean isoflavone glycosides. Catalysis Communications, 2008, 9, 1307-1311.	1.6	61
43	The essential role of hydrogenâ€bonding interaction in the extractive separation of phenolic compounds by ionic liquid. AICHE Journal, 2013, 59, 1657-1667.	1.8	57
44	Aqueous Biphasic System Containing Long Chain Anion-Functionalized Ionic Liquids for High-Performance Extraction. ACS Sustainable Chemistry and Engineering, 2015, 3, 3365-3372.	3.2	56
45	Tunable Confined Aliphatic Pore Environment in Robust Metal–Organic Frameworks for Efficient Separation of Gases with a Similar Structure. Journal of the American Chemical Society, 2022, 144, 14322-14329.	6.6	56
46	Synthesis of anion-functionalized mesoporous poly(ionic liquid)s via a microphase separation-hypercrosslinking strategy: highly efficient adsorbents for bioactive molecules. Journal of Materials Chemistry A, 2017, 5, 14114-14123.	5.2	54
47	CoNi Alloy Nanoparticles Embedded in Metal–Organic Frameworkâ€Derived Carbon for the Highly Efficient Separation of Xenon and Krypton via a Chargeâ€Transfer Effect. Angewandte Chemie - International Edition, 2021, 60, 2431-2438.	7.2	53
48	Efficient, Selective, and Reversible SO ₂ Capture with Highly Crosslinked Ionic Microgels via a Selective Swelling Mechanism. Advanced Functional Materials, 2018, 28, 1704292.	7.8	51
49	Recent Advances in Separation of Bioactive Natural Products. Chinese Journal of Chemical Engineering, 2013, 21, 937-952.	1.7	48
50	Highly efficient treatment of textile dyeing sludge by CO2 thermal plasma gasification. Waste Management, 2019, 90, 29-36.	3.7	47
51	Performance Comparison of Metal–Organic Framework Extrudates and Commercial Zeolite for Ethylene/Ethane Separation. Industrial & Engineering Chemistry Research, 2018, 57, 1645-1654.	1.8	45
52	Differential Solubility of Ethylene and Acetylene in Room-Temperature Ionic Liquids: A Theoretical Study. Journal of Physical Chemistry B, 2012, 116, 3944-3953.	1.2	42
53	Supramolecular Metal–Organic Framework for CO ₂ /CH ₄ and CO ₂ /N ₂ Separation. Industrial & Engineering Chemistry Research, 2020, 59, 7866-7874.	1.8	42
54	Selective Liquid–Liquid Extraction of Natural Phenolic Compounds Using Amino Acid Ionic Liquids: A Case of α-Tocopherol and Methyl Linoleate Separation. Industrial & Digineering Chemistry Research, 2012, 51, 6480-6488.	1.8	41

#	Article	IF	Citations
55	Sorting of C ₄ Olefins with Interpenetrated Hybrid Ultramicroporous Materials by Combining Molecular Recognition and Sizeâ€Sieving. Angewandte Chemie, 2017, 129, 16500-16505.	1.6	41
56	Enhanced solubilization and extraction of hydrophobic bioactive compounds using water/ionic liquid mixtures. Green Chemistry, 2016, 18, 3549-3557.	4.6	40
57	The effect of molecular solvents on the viscosity, conductivity and ionicity of mixtures containing chloride anion-based ionic liquid. Journal of Industrial and Engineering Chemistry, 2013, 19, 1708-1714.	2.9	38
58	Liquid-liquid extraction of lithium from aqueous solution using novel ionic liquid extractants via COSMO-RS and experiments. Fluid Phase Equilibria, 2018, 459, 129-137.	1.4	38
59	Adsorptive Separation of Geometric Isomers of 2-Butene on Gallate-Based Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2020, 12, 9609-9616.	4.0	38
60	Molecular Dynamics Simulation Study on the Absorption of Ethylene and Acetylene in Ionic Liquids. Industrial & Engineering Chemistry Research, 2013, 52, 9308-9316.	1.8	37
61	Self-assembly induced solubilization of drug-like molecules in nanostructured ionic liquids. Chemical Communications, 2015, 51, 13170-13173.	2.2	37
62	Functionalized Metal–Organic Framework as a Biomimetic Heterogeneous Catalyst for Transfer Hydrogenation of Imines. ACS Applied Materials & Samp; Interfaces, 2017, 9, 9772-9777.	4.0	37
63	Hydrogenâ€Bonded Metal–Nucleobase Frameworks for Efficient Separation of Xenon and Krypton. Angewandte Chemie - International Edition, 2022, 61, .	7.2	36
64	Volumetric Properties of Binary Mixtures of 1-Butyl-3-methylimidazolium Chloride + Water or Hydrophilic Solvents at Different Temperatures. Journal of Chemical & Engineering Data, 2010, 55, 1750-1754.	1.0	34
65	An Asymmetric Anionâ€Pillared Metal–Organic Framework as a Multisite Adsorbent Enables Simultaneous Removal of Propyne and Propadiene from Propylene. Angewandte Chemie, 2018, 130, 13329-13333.	1.6	34
66	Calcium-Based Metal–Organic Framework for Simultaneous Capture of Trace Propyne and Propadiene from Propylene. ACS Applied Materials & Samp; Interfaces, 2020, 12, 17147-17154.	4.0	34
67	Shellâ€like Xenon Nanoâ€Traps within Angular Anionâ€Pillared Layered Porous Materials for Boosting Xe/Kr Separation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	34
68	Selective Extraction of 1-Hexene Against <i>n</i> -Hexane in Ionic Liquids with or without Silver Salt. Industrial & Engineering Chemistry Research, 2012, 51, 8588-8597.	1.8	33
69	Separation of Soybean Isoflavone Aglycone Homologues by Ionic Liquid-Based Extraction. Journal of Agricultural and Food Chemistry, 2012, 60, 3432-3440.	2.4	32
70	Role of Hydrogen Bonds in Ionic-Liquid-Mediated Extraction of Natural Bioactive Homologues. Industrial & Engineering Chemistry Research, 2012, 51, 5299-5308.	1.8	29
71	Improved Efficiency of Ethylene/Ethane Separation Using a Symmetrical Dual Nitrile-Functionalized lonic Liquid. ACS Sustainable Chemistry and Engineering, 2013, 1, 1357-1363.	3.2	29
72	Nonaqueous Lyotropic Ionic Liquid Crystals: Preparation, Characterization, and Application in Extraction. Chemistry - A European Journal, 2015, 21, 9150-9156.	1.7	29

#	Article	IF	Citations
73	Preparation of ordered N-doped mesoporous carbon materials via a polymer–ionic liquid assembly. Chemical Communications, 2017, 53, 4915-4918.	2.2	29
74	Deciphering a Reaction Network for the Switchable Production of Tetrahydroquinoline or Quinoline with MOF-Supported Pd Tandem Catalysts. ACS Catalysis, 2020, 10, 5707-5714.	5.5	29
75	Adsorptive Separation of Acetylene from Ethylene in Isostructural Gallateâ€Based Metal–Organic Frameworks. Chemistry - A European Journal, 2019, 25, 15516-15524.	1.7	27
76	Facile Fabrication of Hierarchical MOF–Metal Nanoparticle Tandem Catalysts for the Synthesis of Bioactive Molecules. ACS Applied Materials & Diagrams (2020, 12, 23002-23009).	4.0	27
77	High performance separation of sparingly aqua-/lipo-soluble bioactive compounds with an ionic liquid-based biphasic system. Green Chemistry, 2012, 14, 2617.	4.6	26
78	Long-Chain Carboxylate Ionic Liquids Combining High Solubility and Low Viscosity for Light Hydrocarbon Separations. Industrial & Engineering Chemistry Research, 2017, 56, 7336-7344.	1.8	25
79	A spherical N-methyl-d-glucamine-based hybrid adsorbent for highly efficient adsorption of boric acid from water. Separation and Purification Technology, 2017, 172, 43-50.	3.9	25
80	Separation of perfluorinated electron specialty gases on microporous carbon adsorbents with record selectivity. Separation and Purification Technology, 2022, 292, 121059.	3.9	25
81	Turnâ€On Photocatalysis: Creating Loneâ€Pair Donor–Acceptor Bonds in Organic Photosensitizer to Enhance Intersystem Crossing. Advanced Science, 2021, 8, e2100631.	5.6	24
82	Synthesis and characterization of cellulose 3,5-dimethylphenylcarbamate silica hybrid spheres for enantioseparation of chiral \hat{l}^2 -blockers. Journal of Chromatography A, 2013, 1321, 38-47.	1.8	23
83	Polyethylenimine-Assisted Extraction of α-Tocopherol from Tocopherol Homologues and CO ₂ -Triggered Fast Recovery of the Extractant. Industrial & Engineering Chemistry Research, 2014, 53, 16025-16032.	1.8	23
84	Adsorption separation of acetylene and ethylene in a highly thermostable microporous metal-organic framework. Separation and Purification Technology, 2018, 195, 238-243.	3.9	23
85	Nanostructured Branched-Chain Carboxylate Ionic Liquids: Synthesis, Characterization, and Extraordinary Solubility for Bioactive Molecules. ACS Sustainable Chemistry and Engineering, 2018, 6, 8983-8991.	3.2	23
86	Microporous Carbon Adsorbents Prepared by Activating Reagent-Free Pyrolysis for Upgrading Low-Quality Natural Gas. ACS Sustainable Chemistry and Engineering, 2020, 8, 977-985.	3.2	23
87	A pore-engineered metal-organic framework with mixed ligands enabling highly efficient separation of hexane isomers for gasoline upgrading. Separation and Purification Technology, 2021, 268, 118646.	3.9	23
88	Carbon dioxide capture in gallate-based metal-organic frameworks. Separation and Purification Technology, 2022, 292, 121031.	3.9	23
89	Accurate Measurements of Infinite Dilution Activity Coefficients Using Gas Chromatography with Static-Wall-Coated Open-Tubular Columns. Analytical Chemistry, 2012, 84, 9109-9115.	3.2	22
90	Separation of long chain fatty acids with different number of unsaturated bonds by fractional extraction: Experimental and COSMO-RS study. Food Chemistry, 2014, 143, 411-417.	4.2	22

#	Article	IF	CITATIONS
91	One of the Distinctive Properties of Ionic Liquids over Molecular Solvents and Inorganic Salts: Enhanced Basicity Stemming from the Electrostatic Environment and "Free―Microstructure. Journal of Physical Chemistry B, 2014, 118, 3682-3688.	1.2	22
92	Carboxylate Ionic Liquids Combining Low Cytotoxicity toward HepG2 Cell and High Separation Efficiency for Bioactive Molecules. ACS Sustainable Chemistry and Engineering, 2017, 5, 1974-1981.	3.2	22
93	Porous Hydrogen-Bonded Frameworks Assembled from Metal-Nucleobase Entities for Xe/Kr Separation. CCS Chemistry, 2022, 4, 381-388.	4.6	22
94	Effect of Tethering Strategies on the Surface Structure of Amine-Functionalized Ionic Liquids: Inspiration on the CO ₂ Capture. Journal of Physical Chemistry C, 2013, 117, 16012-16021.	1.5	19
95	Feasibility of Ionic Liquids as Extractants for Selective Separation of Vitamin D3and Tachysterol3by Solvent Extraction. Journal of Agricultural and Food Chemistry, 2013, 61, 3479-3487.	2.4	19
96	Preparation of porous cellulose 3,5-dimethylphenylcarbamate hybrid organosilica particles for chromatographic applications. Journal of Materials Chemistry B, 2015, 3, 620-628.	2.9	19
97	A strongly hydrophobic ethane-selective metal-organic framework for efficient ethane/ethylene separation. Chemical Engineering Journal, 2022, 442, 136152.	6.6	19
98	Thioureaâ€Catalyzed Crossâ€Dehydrogenative Coupling of C(sp ³)â€"H with Diethyl Phosphite. European Journal of Organic Chemistry, 2016, 2016, 3939-3942.	1.2	18
99	Metal nanoparticles in ionic liquidâ€cosolvent biphasic systems as active catalysts for acetylene hydrochlorination. AICHE Journal, 2018, 64, 2536-2544.	1.8	18
100	MIL-101(Cr) as a synergistic catalyst for the reduction of imines with trichlorosilane. Molecular Catalysis, 2018, 445, 163-169.	1.0	18
101	Hybridization of metal–organic framework and monodisperse spherical silica for chromatographic separation of xylene isomers. Chinese Journal of Chemical Engineering, 2019, 27, 818-826.	1.7	18
102	Shaping of gallate-based metal-organic frameworks for adsorption separation of ethylene from acetylene and ethane. Journal of Colloid and Interface Science, 2021, 581, 177-184.	5.0	18
103	Molecular Sieving of Propylene from Propane in Metal–Organic Framework-Derived Ultramicroporous Carbon Adsorbents. ACS Applied Materials & Interfaces, 2022, 14, 30443-30453.	4.0	18
104	Thiourea as an efficient organocatalyst for the transfer hydrogenation of 2-substituted quinoline derivatives. RSC Advances, 2014, 4, 42566-42568.	1.7	17
105	Incorporation of <i>N</i> â€Methylâ€ <scp>d</scp> â€glucamine Functionalized Oligomer into MILâ€101(Cr) for Highly Efficient Removal of Boric Acid from Water. Chemistry - A European Journal, 2016, 22, 15290-15297.	1.7	17
106	Mechanistic studies of thiourea-catalyzed cross-dehydrogenative C-P and C-C coupling reactions and their further applications. Tetrahedron, 2017, 73, 3118-3124.	1.0	17
107	Hydropyrolysis of n-Hexane and Toluene to Acetylene in Rotating-Arc Plasma. Energies, 2017, 10, 899.	1.6	17
108	De novo synthesis of microspheical cellulose 3,5-dichlorophenylcarbamates: An organic-inorganic hybrid chiral stationary phase for enantiospearation. Separation and Purification Technology, 2020, 238, 116480.	3.9	17

#	Article	IF	Citations
109	1-Ethyl-3-methylimidazolium acetate as a highly efficient organocatalyst for cyanosilylation of carbonyl compounds with trimethylsilyl cyanide. Scientific Reports, 2017, 7, 42699.	1.6	16
110	A robust ethane-trapping metal-organic framework for efficient purification of ethylene. Science China Chemistry, 2021, 64, 666-672.	4.2	16
111	Hydrogen-bonded metal-nucleobase frameworks for highly selective capture of ethane/propane from methane and methane/nitrogen separation. Nano Research, 2022, 15, 7695-7702.	5.8	15
112	Pyrolysis of pulverized coal to acetylene in magnetically rotating hydrogen plasma reactor. Fuel Processing Technology, 2017, 167, 721-729.	3.7	14
113	Carboxylate Ionic Liquids with Large Free Volume and Strong Hydrogen Bonding Basicity for Efficient Separation of Butadiene and <i>n</i> -Butene. Industrial & Engineering Chemistry Research, 2018, 57, 13519-13527.	1.8	14
114	Cooperative Interplay of BrÃ,nsted Acid and Lewis Acid Sites in MIL-101(Cr) for Cross-Dehydrogenative Coupling of C–H Bonds. ACS Applied Materials & Diterfaces, 2021, 13, 10845-10854.	4.0	14
115	Molecular Sieving of C ₂ â€C ₃ Alkene from Alkyne with Tuned Threshold Pressure in Robust Layered Metal–Organic Frameworks. Angewandte Chemie, 2020, 132, 12825-12830.	1.6	13
116	Gallate-Based Metal–Organic Frameworks for Highly Efficient Removal of Trace Propyne from Propylene. Industrial & Engineering Chemistry Research, 2020, 59, 13716-13723.	1.8	13
117	Proton Microenvironment and Interfacial Structure of Sulfonic-Acid-Functionalized Ionic Liquids. Journal of Physical Chemistry C, 2015, 119, 20379-20388.	1.5	12
118	Double-Accessible Open Metal Sites in Metal–Organic Frameworks with Suitable Pore Size for Efficient Xe/Kr Separation. Industrial & Engineering Chemistry Research, 2022, 61, 7361-7369.	1.8	12
119	Kinetic modeling and experimental validation of the pyrolysis of propane in hydrogen plasma. International Journal of Hydrogen Energy, 2016, 41, 22689-22697.	3.8	11
120	Numerical simulation of the entrained flow hydropyrolysis of coal in magnetically rotating plasma reactor. Energy Conversion and Management, 2017, 148, 431-439.	4.4	11
121	CoNi Alloy Nanoparticles Embedded in Metal–Organic Frameworkâ€Derived Carbon for the Highly Efficient Separation of Xenon and Krypton via a Chargeâ€Transfer Effect. Angewandte Chemie, 2021, 133, 2461-2468.	1.6	11
122	é¶…å¾®å"碳帀™"å‰,实现å®ç"¶æ°"ä¸ä¸™çf·å'Œä¹™çf·çš"é«~选择性æå⊷. Science China Material	s, 202 3, 6	6, 31 9-326.
123	Biphasic Systems That Consist of Hydrophilic Ionic Liquid, Water, and Ethyl Acetate: The Effects of Interactions on the Phase Behavior. Industrial & Engineering Chemistry Research, 2014, 53, 10784-10790.	1.8	10
124	Simulated moving bed chromatography for the separation of ethyl esters of eicosapentaenoic acid and docosahexaenoic acid under nonlinear conditions. Journal of Chromatography A, 2015, 1425, 189-197.	1.8	10
125	Pyrolysis of Polyolefins Using Rotating Arc Plasma Technology for Production of Acetylene. Energies, 2017, 10, 513.	1.6	10
126	Aqueous Biphasic Systems Containing Customizable Poly(Ionic Liquid)s for Highly Efficient Extractions. ChemSusChem, 2020, 13, 1906-1914.	3.6	10

#	Article	IF	CITATIONS
127	Crystal Structure Transformation in Hydrogenâ€bonded Organic Frameworks via Ion Exchange. Chemistry - an Asian Journal, 2021, 16, 3978-3984.	1.7	10
128	Ionic liquid bmimCl/formamide mixture as the polar phase of nonaqueous microemulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 414, 82-87.	2.3	9
129	Gas production from polyethylene terephthalate using rotating arc plasma. Chemical Engineering and Processing: Process Intensification, 2018, 128, 257-262.	1.8	9
130	Progress in the Enantioseparation of \hat{l}^2 -Blockers by Chromatographic Methods. Molecules, 2021, 26, 468.	1.7	9
131	Solvatochromic Parameters of the Binary Mixtures of Imidazolium Chloride Ionic Liquid Plus Molecular Solvent. Journal of Applied Solution Chemistry and Modeling, 2014, 3, 223-230.	0.4	9
132	Determination and Correlation of Solubility of Nonivamide in Different Solvents. Chinese Journal of Chemical Engineering, 2014, 22, 1141-1144.	1.7	8
133	A general method for the separation of amphiphilic surface-active poly(ethylene glycol) mono- and di-esters with long-chain ionic liquid-based biphasic systems. Green Chemistry, 2014, 16, 102-107.	4.6	8
134	Selective separation of zwitterionic phospholipid homologues with functional ionic liquids as extractants. RSC Advances, 2015, 5, 77581-77588.	1.7	8
135	Enhanced self-assembly for the solubilization of cholesterol in molecular solvent/ionic liquid mixtures. Physical Chemistry Chemical Physics, 2017, 19, 10835-10842.	1.3	8
136	New catalytic effect of thiourea on the oxidative cyanation of N-aryltetrahydroisoquinolines. Tetrahedron Letters, 2019, 60, 348-351.	0.7	8
137	Separation of highly unsaturated fatty acid methyl esters from model bio-oils with ionic liquid-cosolvent as extractants. RSC Advances, 2016, 6, 60709-60716.	1.7	7
138	Organocatalyzed cross-dehydrogenative coupling for C(sp3)–O bonds formation: a rapid access to α-aminoxyl isochromans. Catalysis Letters, 2019, 149, 574-579.	1.4	7
139	Highly efficient and anti-poisoning single-atom cobalt catalyst for selective hydrogenation of nitroarenes. Nano Research, 2022, 15, 10006-10013.	5.8	7
140	Visible-Light-Mediated Dealkylative Coupling of Trialkylamines with Dialkyl Acetylenedicarboxylates. Synlett, 2017, 28, 1116-1120.	1.0	6
141	Separation of Hydrophobic Compounds Differing in a Monounsaturated Double Bond Using Hydrophilic Ionic Liquid/Water Mixtures as Extractants. ACS Sustainable Chemistry and Engineering, 2018, 6, 2379-2385.	3.2	6
142	Highly efficient separation of strongly hydrophilic structurally related compounds by hydrophobic ionic solutions. AICHE Journal, 2018, 64, 1373-1382.	1.8	6
143	lonic Liquid-Mediated Liquid-Liquid Extraction. , 2011, , .		4
144	Effect of Nitrogen/Oxygen Substances on the Pyrolysis of Alkane-Rich Gases to Acetylene by Thermal Plasma. Energies, 2018, 11, 351.	1.6	4

#	Article	IF	CITATIONS
145	Amphiphilic Super-Wetting Ionic-Liquid-Based Lower Critical Solution Temperature System: Preparation, Characterization, and Excellent Dispersion Performance for Nanostructured Materials. ACS Sustainable Chemistry and Engineering, 2020, 8, 3253-3260.	3.2	4
146	MIL-101(Cr)-SO ₃ H Catalyzed Transfer Hydrogenation of 2-Substituted Quinoline Derivatives. Chinese Journal of Organic Chemistry, 2019, 39, 1681.	0.6	4
147	Hydrogenâ€Bonded Metalâ€Nucleobase Frameworks for Efficient Separation of Xenon and Krypton. Angewandte Chemie, 0, , .	1.6	4
148	Gas Purification: Ultrahigh and Selective SO ₂ Uptake in Inorganic Anionâ€Pillared Hybrid Porous Materials (Adv. Mater. 28/2017). Advanced Materials, 2017, 29, .	11.1	3
149	Gas Separation: A Singleâ€Molecule Propyne Trap: Highly Efficient Removal of Propyne from Propylene with Anionâ€Pillared Ultramicroporous Materials (Adv. Mater. 10/2018). Advanced Materials, 2018, 30, 1870068.	11.1	3
150	Determination and correlation of the solubility of L-arabinose and D-galactose in binary solvent mixtures from 278.15 to 333.15 K. Korean Journal of Chemical Engineering, 2018, 35, 2043-2051.	1.2	3
151	Microgeometry-independent equation for measuring infinite dilution activity coefficients using gas-liquid chromatography with static-wall-coated open-tubular columns. Journal of Chromatography A, 2020, 1624, 461264.	1.8	3
152	Extraction of various metal ions by open-chain crown ether bridged diphosphates in supercritical carbon dioxide. Pure and Applied Chemistry, 2020, 92, 1683-1694.	0.9	3
153	Shellâ€like Xenon Nanoâ€Traps within Angular Anionâ€Pillared Layered Porous Materials for Boosting Xe/Kr Separation. Angewandte Chemie, 2022, 134, .	1.6	3
154	CO ₂ -Assisted Back-Extraction Method for Ionic Liquid Biphasic Systems. ACS Sustainable Chemistry and Engineering, 2016, 4, 4403-4410.	3.2	2
155	Adsorption separation of raffinose from sucrose by activated carbon: Equilibrium, kinetics and dynamic breakthrough. Separation Science and Technology, 2016, 51, 1636-1644.	1.3	2
156	Titelbild: Hydrogenâ€Bonded Metal–Nucleobase Frameworks for Efficient Separation of Xenon and Krypton (Angew. Chem. 11/2022). Angewandte Chemie, 2022, 134, .	1.6	2
157	Cooperative control of intralayer and interlayer space in MOFs enables selective capture of intermediate-sized molecules. Cell Reports Physical Science, 2022, 3, 100903.	2.8	2
158	Adsorption behavior of î±-tocopheryl succinate and î±-tocopheryl polyethylene glycol succinate onto weakly basic anion exchange resins. Korean Journal of Chemical Engineering, 2015, 32, 511-520.	1.2	1
159	Innentitelbild: Sorting of C ₄ Olefins with Interpenetrated Hybrid Ultramicroporous Materials by Combining Molecular Recognition and Sizeâ€Sieving (Angew. Chem. 51/2017). Angewandte Chemie, 2017, 129, 16310-16310.	1.6	1
160	Heterogeneous synthesis of tetrahydroquinoline derivatives via cascade Povarov reaction catalyzed by sulfonic acid functionalized metalâ€organic frameworks. Nano Select, 2021, 2, 1968.	1.9	1
161	Tandem synthesis of tetrahydroquinolines and identification of the reaction network by <i>operando</i> NMR. Catalysis Science and Technology, 2021, 11, 4332-4341.	2.1	1
162	Hybrid Deep Eutectic Solvents with Flexible Hydrogen-Bonded Supramolecular Networks for Highly Efficient Uptake of NH3. ChemSusChem, 2017, 10, 3283-3283.	3.6	1

#	Article	IF	CITATIONS
163	Separation of structurally-related compounds with ionic liquids. Scientia Sinica Chimica, 2016, 46, 1251-1263.	0.2	1
164	Shapeâ€size sieving of <i>trans</i> ―and <scp><i>cis</i>â€piperylene</scp> isomers with <scp>gallateâ€based metalâ€organic</scp> frameworks. AICHE Journal, 2022, 68, .	1.8	1
165	New Insights into CO2 Absorption Mechanisms with Amino-Acid Ionic Liquids. ChemSusChem, 2016, 9, 765-765.	3.6	O
166	Titelbild: Separation of Xe from Kr with Record Selectivity and Productivity in Anionâ€Pillared Ultramicroporous Materials by Inverse Sizeâ€Sieving (Angew. Chem. 9/2020). Angewandte Chemie, 2020, 132, 3365-3365.	1.6	0