List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5491454/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pathogen Prevalence Modulates Medication Behavior in Ant Formica fusca. Frontiers in Insect Science, 2022, 2, .	0.9	4
2	Structural equation modeling reveals decoupling of ecological and self-perceived outcomes in a garden box social-ecological system. Scientific Reports, 2022, 12, 6425.	1.6	3
3	Wholeâ€genome analysis of multiple wood ant population pairs supports similar speciation histories, but different degrees of gene flow, across their European ranges. Molecular Ecology, 2022, 31, 3416-3431.	2.0	7
4	Supercolonies of Ants. , 2021, , 911-913.		0
5	Pathways to parasitic strategies in ants. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2115607118.	3.3	0
6	An Ancient and Eroded Social Supergene Is Widespread across Formica Ants. Current Biology, 2020, 30, 304-311.e4.	1.8	57
7	Superorganismal anisogamy: queen–male dimorphism in eusocial insects. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20200635.	1.2	1
8	Multi-locus interactions and the build-up of reproductive isolation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190543.	1.8	34
9	Fifty years of the Price equation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190350.	1.8	14
10	Limited dispersal and an unexpected aggression pattern in a native supercolonial ant. Ecology and Evolution, 2020, 10, 3671-3685.	0.8	5
11	Different perspectives on non-genetic inheritance illustrate the versatile utility of the Price equation in evolutionary biology. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190366.	1.8	6
12	Supercolonies of Ants. , 2020, , 1-3.		1
13	Genetic relatedness and its causal role in the evolution of insect societies. Journal of Biosciences, 2019, 44, 1.	0.5	3
14	Worker Conflict and Worker Policing. , 2019, , 743-753.		1
15	Extended haplodiploidy hypothesis. Evolution Letters, 2019, 3, 263-270.	1.6	15
16	Comparative transcriptomics of social insect queen pheromones. Nature Communications, 2019, 10, 1593.	5.8	32
17	The possible role of ant larvae in the defence against social parasites. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182867.	1.2	9
18	Social evolution and the two elements of causation. Oikos, 2019, 128, 905-911.	1.2	2

#	Article	IF	CITATIONS
19	Changes in gene DNA methylation and expression networks accompany caste specialization and ageâ€related physiological changes in a social insect. Molecular Ecology, 2019, 28, 1975-1993.	2.0	30
20	Honesty of Larval Begging Signals Covaries With Colony Kin Structure in Formica Ants. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	7
21	Genetic relatedness and its causal role in the evolution of insect societies. Journal of Biosciences, 2019, 44, .	0.5	Ο
22	The evolutionary dynamics of adaptive virginity, sex-allocation, and altruistic helping in haplodiploid animals. Evolution; International Journal of Organic Evolution, 2018, 72, 30-38.	1.1	10
23	Weak population structure in the ant <i>Formica fusca</i> . PeerJ, 2018, 6, e5024.	0.9	11
24	Genetic analysis reveals Finnish Formica fennica populations do not form a separate genetic entity from F. exsecta. PeerJ, 2018, 6, e6013.	0.9	5
25	Accelerated evolution of developmentally biased genes in the tetraphenic ant <i>Cardiocondyla obscurior</i> . Molecular Biology and Evolution, 2017, 34, msw240.	3.5	26
26	The Role of Brood in Eusocial Hymenoptera. Quarterly Review of Biology, 2017, 92, 39-78.	0.0	58
27	Deconstructing Superorganisms and Societies to Address Big Questions in Biology. Trends in Ecology and Evolution, 2017, 32, 861-872.	4.2	45
28	Transcriptome sequencing reveals high isoform diversity in the ant <i>Formica exsecta</i> . PeerJ, 2017, 5, e3998.	0.9	7
29	An Organismal Perspective on the Evolution of Insect Societies. Frontiers in Ecology and Evolution, 2016, 4, .	1.1	21
30	Sex allocation conflict between queens and workers in <i>Formica pratensis</i> wood ants predicts seasonal sex ratio variation. Evolution; International Journal of Organic Evolution, 2016, 70, 2387-2394.	1.1	2
31	Genetic structure of native ant supercolonies varies in space and time. Molecular Ecology, 2016, 25, 6196-6213.	2.0	18
32	Queen pheromones modulate DNA methyltransferase activity in bee and ant workers. Biology Letters, 2016, 12, 20151038.	1.0	21
33	Comparative transcriptomics reveals the conserved building blocks involved in parallel evolution of diverse phenotypic traits in ants. Genome Biology, 2016, 17, 43.	3.8	70
34	A comparative study of egg recognition signature mixtures in <i>Formica</i> ants. Evolution; International Journal of Organic Evolution, 2015, 69, 520-529.	1.1	25
35	Casteâ€biases in gene expression are specific to developmental stage in the ant <i><scp>F</scp>ormica exsecta</i> . Journal of Evolutionary Biology, 2015, 28, 1705-1718.	0.8	28
36	Neutral and adaptive explanations for an association between caste-biased gene expression and rate of sequence evolution. Frontiers in Genetics, 2014, 5, 297.	1.1	23

#	Article	IF	CITATIONS
37	Ant Larvae as Players in Social Conflict: Relatedness and Individual Identity Mediate Cannibalism Intensity. American Naturalist, 2014, 184, E161-E174.	1.0	29
38	Unmatedness Promotes the Evolution of Helping More in Diplodiploids than in Haplodiploids. American Naturalist, 2014, 184, 318-325.	1.0	12
39	Not Only for Egg Yolk—Functional and Evolutionary Insights from Expression, Selection, and Structural Analyses of Formica Ant Vitellogenins. Molecular Biology and Evolution, 2014, 31, 2181-2193.	3.5	78
40	Are ant supercolonies crucibles of a new major transition in evolution?. Journal of Evolutionary Biology, 2014, 27, 1784-1796.	0.8	20
41	Recognition of nestmate eggs in the ant Formica fusca is based on queen derived cues. Environmental Epigenetics, 2014, 60, 131-136.	0.9	11
42	Social conflict in ant larvae: egg cannibalism occurs mainly in males and larvae prefer alien eggs. Behavioral Ecology, 2013, 24, 1306-1311.	1.0	36
43	Colony take-over and brood survival in temporary social parasites of the ant genus Formica. Behavioral Ecology and Sociobiology, 2013, 67, 727-735.	0.6	10
44	Family-based guilds in the ant <i>Pachycondyla inversa</i> . Biology Letters, 2013, 9, 20130125.	1.0	18
45	The value of oviposition timing, queen presence and kinship in a social insect. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20131231.	1.2	10
46	Towards greater realism in inclusive fitness models: the case of worker reproduction in insect societies. Biology Letters, 2013, 9, 20130334.	1.0	22
47	A Metatranscriptomic Approach to the Identification of Microbiota Associated with the Ant Formica exsecta. PLoS ONE, 2013, 8, e79777.	1.1	52
48	Cuticular Chemistry of Males and Females in the Ant Formica fusca. Journal of Chemical Ecology, 2012, 38, 1474-1482.	0.9	12
49	When are genes †leaders' or †followers' in evolution?. Trends in Ecology and Evolution, 2011, 26, 435-436.	4.2	11
50	Acceptance by Honey Bee Guards of Non-Nestmates is not Increased by Treatment with Nestmate Odours. Ethology, 2011, 117, 655-663.	0.5	6
51	Egg Recognition and Social Parasitism in Formica Ants. Ethology, 2011, 117, 1081-1092.	0.5	16
52	Inclusive fitness theory and eusociality. Nature, 2011, 471, E1-E4.	13.7	339
53	From the Origin of Sex-Determining Factors to the Evolution of Sex-Determining Systems. Quarterly Review of Biology, 2011, 86, 163-180.	0.0	66
54	ls parasite pressure a driver of chemical cue diversity in ants?. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 496-503.	1.2	55

#	Article	IF	CITATIONS
55	Flower constancy in honey bee workers (<i>Apis mellifera</i>) depends on ecologically realistic rewards. Journal of Experimental Biology, 2011, 214, 1397-1402.	0.8	72
56	Genetic diversity, colony chemical phenotype, and nest mate recognition in the ant Formica fusca. Behavioral Ecology, 2011, 22, 710-716.	1.0	39
57	Alarm Pheromones Do Not Mediate Rapid Shifts in Honey Bee Guard Acceptance Threshold. Journal of Chemical Ecology, 2010, 36, 1306-1308.	0.9	11
58	The evolution of extreme altruism and inequality in insect societies. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 3169-3179.	1.8	69
59	Sex allocation conflict in insect societies: who wins?. Biology Letters, 2009, 5, 700-704.	1.0	23
60	Polygyny reduces rather than increases nestmate discrimination cue diversity in Formica exsecta ants. Insectes Sociaux, 2009, 56, 375-383.	0.7	52
61	Two independent mechanisms of egg recognition in worker Formica fusca ants. Behavioral Ecology and Sociobiology, 2009, 63, 573-580.	0.6	20
62	Do unicolonial wood ants favor kin?. Journal of Biology, 2009, 8, 56.	2.7	18
63	Unicolonial ants: where do they come from, what are they and where are they going?. Trends in Ecology and Evolution, 2009, 24, 341-349.	4.2	183
64	Colony-specific Hydrocarbons Identify Nest Mates in Two Species of Formica Ant. Journal of Chemical Ecology, 2008, 34, 1072-1080.	0.9	79
65	Preemptive Defensive Selfâ€Sacrifice by Ant Workers. American Naturalist, 2008, 172, E239-E243.	1.0	26
66	Chemical basis of nest-mate discrimination in the ant <i>Formica exsecta</i> . Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 1271-1278.	1.2	149
67	Geometry explains the benefits of division of labour in a leafcutter ant. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 1255-1260.	1.2	19
68	Worker Reproduction in Formica Ants. American Naturalist, 2007, 170, E14-E25.	1.0	39
69	Are mistakes inevitable? Sex allocation specialization by workers can reduce the genetic information needed to assess queen mating frequency. Journal of Theoretical Biology, 2007, 244, 470-477.	0.8	13
70	Pedigree relatedness, not greenbeard genes, explains eusociality. Oikos, 2007, 116, 217-220.	1.2	30
71	How to test an inclusive fitness hypothesis – worker reproduction and policing as an example. Oikos, 2007, 116, 1782-1788.	1.2	2
72	Genetic population structure, queen supersedure and social polymorphism in a social Hymenoptera. Journal of Evolutionary Biology, 2007, 20, 1351-1360.	0.8	29

#	Article	IF	CITATIONS
73	Worker policing and nest mate recognition in the ant Formica fusca. Behavioral Ecology and Sociobiology, 2007, 61, 1143-1149.	0.6	37
74	Prior experience with eggs laid by non-nestmate queens induces egg acceptance errors in ant workers. Behavioral Ecology and Sociobiology, 2007, 62, 223-228.	0.6	20
75	Pedigree relatedness, not greenbeard genes, explains eusociality. , 2007, 116, 217.		3
76	The unity that does not exist ? a review of A. Burt & R. Trivers 2006: Genes in Conflict. Journal of Evolutionary Biology, 2006, 19, 2067-2070.	0.8	3
77	Worker policing in the common wasp Vespula vulgaris is not aimed at improving colony hygiene. Insectes Sociaux, 2006, 53, 399-402.	0.7	14
78	Worker reproduction in the ant Formica fusca. Journal of Evolutionary Biology, 2005, 18, 162-171.	0.8	38
79	Worker reproduction and policing in insect societies: an ESS analysis. Journal of Evolutionary Biology, 2004, 17, 1035-1047.	0.8	174
80	Habitat age, breeding system and kinship in the ant Formica fusca. Molecular Ecology, 2004, 13, 1579-1588.	2.0	42
81	Evolution of species-specific cuticular hydrocarbon patterns in Formica ants. Biological Journal of the Linnean Society, 0, 95, 131-140.	0.7	119
82	Population genetics of the black ant Formica lemani (Hymenoptera: Formicidae). Biological Journal of the Linnean Society, 0, 97, 247-258.	0.7	10
83	Population genetics of wood ants. , 0, , 51-80.		10