Jiahai Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5491087/publications.pdf Version: 2024-02-01

Ιιλμλι Ομι

#	Article	IF	CITATIONS
1	Cas9-Based Local Enrichment and Genomics Sequence Revision of Megabase-Sized Shark IgNAR Loci. Journal of Immunology, 2022, 208, 181-189.	0.4	4
2	Surface-engineered extracellular vesicles for targeted delivery of therapeutic RNAs and peptides for cancer therapy. Theranostics, 2022, 12, 3288-3315.	4.6	22
3	Self-adaptive and efficient propulsion of Ray sperms at different viscosities enabled by heterogeneous dual helixes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	10
4	Plasmonic-doped melanin-mimic for CXCR4-targeted NIR-II photoacoustic computed tomography-guided photothermal ablation of orthotopic hepatocellular carcinoma. Acta Biomaterialia, 2021, 129, 245-257.	4.1	15
5	A multifunctional targeted nanoprobe with high NIR-II PAI/MRI performance for precise theranostics of orthotopic early-stage hepatocellular carcinoma. Journal of Materials Chemistry B, 2021, 9, 8779-8792.	2.9	15
6	Stimuli-controlled peptide self-assembly with secondary structure transitions and its application in drug release. Materials Chemistry Frontiers, 2021, 5, 4664-4671.	3.2	5
7	An erythrocyte-delivered photoactivatable oxaliplatin nanoprodrug for enhanced antitumor efficacy and immune response. Chemical Science, 2021, 12, 14353-14362.	3.7	15
8	Wdr26 regulates nuclear condensation in developing erythroblasts. Blood, 2020, 135, 208-219.	0.6	43
9	Structurally- and dynamically-driven allostery of the chymotrypsin-like proteases of SARS, Dengue and Zika viruses. Progress in Biophysics and Molecular Biology, 2019, 143, 52-66.	1.4	22
10	FAM210B is an erythropoietin target and regulates erythroid heme synthesis by controlling mitochondrial iron import and ferrochelatase activity. Journal of Biological Chemistry, 2018, 293, 19797-19811.	1.6	30
11	De novo variant in KIF26B is associated with pontocerebellar hypoplasia with infantile spinal muscular atrophy. American Journal of Medical Genetics, Part A, 2018, 176, 2623-2629.	0.7	19
12	De novo ATP1A3 and compound heterozygous NLRP3 mutations in a child with autism spectrum disorder, episodic fatigue and somnolence, and muckle-wells syndrome. Molecular Genetics and Metabolism Reports, 2018, 16, 23-29.	0.4	12
13	Efficient RNA drug delivery using red blood cell extracellular vesicles. Nature Communications, 2018, 9, 2359.	5.8	402
14	<i>AIFM1</i> mutation presenting with fatal encephalomyopathy and mitochondrial disease in an infant. Journal of Physical Education and Sports Management, 2017, 3, a001560.	0.5	34
15	The Epithelial Sodium Channel Is a Modifier of the Long-Term Nonprogressive Phenotype Associated with F508del CFTR Mutations. American Journal of Respiratory Cell and Molecular Biology, 2017, 57, 711-720.	1.4	27
16	Novel mutation in <i>CNTNAP1</i> results in congenital hypomyelinating neuropathy. Muscle and Nerve, 2017, 55, 761-765.	1.0	15
17	Homozygous EEF1A2 mutation causes dilated cardiomyopathy, failure to thrive, global developmental delay, epilepsy and early death. Human Molecular Genetics, 2017, 26, 3545-3552.	1.4	27
18	Hyperammonemia as a Presenting Feature in Two Siblings with FBXL4 Variants. JIMD Reports, 2016, 35, 7-15.	0.7	9

Jiahai Shi

#	Article	IF	CITATIONS
19	SLC6A1 Mutation and Ketogenic Diet in Epilepsy With Myoclonic-Atonic Seizures. Pediatric Neurology, 2016, 64, 77-79.	1.0	44
20	A novel de novo mutation in <i>ATP1A3</i> and childhood-onset schizophrenia. Journal of Physical Education and Sports Management, 2016, 2, a001008.	0.5	46
21	JAK2 V617F stimulates proliferation of erythropoietin-dependent erythroid progenitors and delays their differentiation by activating Stat1 and other nonerythroid signaling pathways. Experimental Hematology, 2016, 44, 1044-1058.e5.	0.2	15
22	Clinical heterogeneity associated with KCNA1 mutations include cataplexy and nonataxic presentations. Neurogenetics, 2016, 17, 11-16.	0.7	26
23	Efficient CRISPR-Cas9 mediated gene disruption in primary erythroid progenitor cells. Haematologica, 2016, 101, e216-e219.	1.7	9
24	Mutations in the substrate binding glycine-rich loop of the mitochondrial processing peptidase-α protein (PMPCA) cause a severe mitochondrial disease. Journal of Physical Education and Sports Management, 2016, 2, a000786.	0.5	33
25	A respiratory chain controlled signal transduction cascade in the mitochondrial intermembrane space mediates hydrogen peroxide signaling. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5679-88.	3.3	58
26	X-linked macrocytic dyserythropoietic anemia in females with an ALAS2 mutation. Journal of Clinical Investigation, 2015, 125, 1665-1669.	3.9	43
27	Dynamically-Driven Enhancement of the Catalytic Machinery of the SARS 3C-Like Protease by the S284-T285-I286/A Mutations on the Extra Domain. PLoS ONE, 2014, 9, e101941.	1.1	71
28	Global discovery of erythroid long noncoding RNAs reveals novel regulators of red cell maturation. Blood, 2014, 123, 570-581.	0.6	181
29	Transcriptional divergence and conservation of human and mouse erythropoiesis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4103-4108.	3.3	76
30	Engineered red blood cells as carriers for systemic delivery of a wide array of functional probes. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10131-10136.	3.3	168
31	Histones to the cytosol: exportin 7 is essential for normal terminal erythroid nuclear maturation. Blood, 2014, 124, 1931-1940.	0.6	51
32	Muscleblind-like 1 (Mbnl1) regulates pre-mRNA alternative splicing during terminal erythropoiesis. Blood, 2014, 124, 598-610.	0.6	46
33	Unique Structure and Dynamics of the EphA5 Ligand Binding Domain Mediate Its Binding Specificity as Revealed by X-ray Crystallography, NMR and MD Simulations. PLoS ONE, 2013, 8, e74040.	1.1	14
34	Structural, Stability, Dynamic and Binding Properties of the ALS-Causing T46I Mutant of the hVAPB MSP Domain as Revealed by NMR and MD Simulations. PLoS ONE, 2011, 6, e27072.	1.1	28
35	Dynamically-Driven Inactivation of the Catalytic Machinery of the SARS 3C-Like Protease by the N214A Mutation on the Extra Domain. PLoS Computational Biology, 2011, 7, e1001084.	1.5	49
36	Structural Characterization of the EphA4-Ephrin-B2 Complex Reveals New Features Enabling Eph-Ephrin Binding Promiscuity. Journal of Biological Chemistry, 2010, 285, 644-654.	1.6	84

Jiahai Shi

#	Article	IF	CITATIONS
37	Elimination of the Native Structure and Solubility of the hVAPB MSP Domain by the Pro56Ser Mutation That Causes Amyotrophic Lateral Sclerosis. Biochemistry, 2010, 49, 3887-3897.	1.2	43
38	Structural characterization reveals that viperin is a radical S-adenosyl-l-methionine (SAM) enzyme. Biochemical and Biophysical Research Communications, 2010, 391, 1390-1395.	1.0	79
39	NMR structure and dynamics of human ephrinâ€B2 ectodomain: The functionally critical Câ€D and Gâ€H loops are highly dynamic in solution. Proteins: Structure, Function and Bioinformatics, 2008, 72, 1019-1029.	1.5	20
40	Identification, recombinant production and structural characterization of four silk proteins from the Asiatic honeybee Apis cerana. Biomaterials, 2008, 29, 2820-2828.	5.7	44
41	Crystal Structure and NMR Binding Reveal That Two Small Molecule Antagonists Target the High Affinity Ephrin-binding Channel of the EphA4 Receptor. Journal of Biological Chemistry, 2008, 283, 29473-29484.	1.6	66
42	Mechanism for Controlling the Dimer-Monomer Switch and Coupling Dimerization to Catalysis of the Severe Acute Respiratory Syndrome Coronavirus 3C-Like Protease. Journal of Virology, 2008, 82, 4620-4629.	1.5	137
43	Resurrecting Abandoned Proteins with Pure Water: CD and NMR Studies of Protein Fragments Solubilized in Salt-Free Water. Biophysical Journal, 2006, 91, 4201-4209.	0.2	47
44	The catalysis of the SARS 3C-like protease is under extensive regulation by its extra domain. FEBS Journal, 2006, 273, 1035-1045.	2.2	133
45	Dissection Study on the Severe Acute Respiratory Syndrome 3C-like Protease Reveals the Critical Role of the Extra Domain in Dimerization of the Enzyme. Journal of Biological Chemistry, 2004, 279, 24765-24773.	1.6	166
46	Structural characterization of the human Nogo-A functional domains. FEBS Journal, 2004, 271, 3512-3522.	0.2	19