
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5490720/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature, 2007, 447, 661-678.	27.8	8,895
2	Host–microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature, 2012, 491, 119-124.	27.8	4,038
3	Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease. Nature Genetics, 2008, 40, 955-962.	21.4	2,422
4	Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci. Nature Genetics, 2010, 42, 1118-1125.	21.4	2,284
5	Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy, 2008, 4, 151-175.	9.1	2,064
6	Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nature Genetics, 2015, 47, 979-986.	21.4	1,965
7	British Society of Gastroenterology consensus guidelines on the management of inflammatory bowel disease in adults. Gut, 2019, 68, s1-s106.	12.1	1,353
8	Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nature Genetics, 2007, 39, 1329-1337.	21.4	1,298
9	Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nature Genetics, 2011, 43, 246-252.	21.4	1,201
10	Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn's disease susceptibility. Nature Genetics, 2007, 39, 830-832.	21.4	1,063
11	Disease-Specific Alterations in the Enteric Virome in Inflammatory Bowel Disease. Cell, 2015, 160, 447-460.	28.9	1,036
12	Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease. Nature Genetics, 2017, 49, 256-261.	21.4	943
13	Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls. Nature, 2010, 464, 713-720.	27.8	737
14	Deep resequencing of GWAS loci identifies independent rare variants associated with inflammatory bowel disease. Nature Genetics, 2011, 43, 1066-1073.	21.4	698
15	Two stage genome–wide search in inflammatory bowel disease provides evidence for susceptibility loci on chromosomes 3, 7 and 12. Nature Genetics, 1996, 14, 199-202.	21.4	682
16	Analysis of five chronic inflammatory diseases identifies 27 new associations and highlights disease-specific patterns at shared loci. Nature Genetics, 2016, 48, 510-518.	21.4	617
17	Inherited determinants of Crohn's disease and ulcerative colitis phenotypes: a genetic association study. Lancet, The, 2016, 387, 156-167.	13.7	607
18	Meta-analysis and imputation refines the association of 15q25 with smoking quantity. Nature Genetics, 2010, 42, 436-440.	21.4	581

#	Article	IF	CITATIONS
19	New IBD genetics: common pathways with other diseases. Gut, 2011, 60, 1739-1753.	12.1	504
20	Genome-wide association study of ulcerative colitis identifies three new susceptibility loci, including the HNF4A region. Nature Genetics, 2009, 41, 1330-1334.	21.4	483
21	Fine-mapping inflammatory bowel disease loci to single-variant resolution. Nature, 2017, 547, 173-178.	27.8	473
22	Bayesian refinement of association signals for 14 loci in 3 common diseases. Nature Genetics, 2012, 44, 1294-1301.	21.4	469
23	Common variants at five new loci associated with early-onset inflammatory bowel disease. Nature Genetics, 2009, 41, 1335-1340.	21.4	459
24	Genetic insights into common pathways and complex relationships among immune-mediated diseases. Nature Reviews Genetics, 2013, 14, 661-673.	16.3	459
25	Proteins Encoded in Genomic Regions Associated with Immune-Mediated Disease Physically Interact and Suggest Underlying Biology. PLoS Genetics, 2011, 7, e1001273.	3.5	450
26	Predictors of anti-TNF treatment failure in anti-TNF-naive patients with active luminal Crohn's disease: a prospective, multicentre, cohort study. The Lancet Gastroenterology and Hepatology, 2019, 4, 341-353.	8.1	431
27	Genetic determinants of ulcerative colitis include the ECM1 locus and five loci implicated in Crohn's disease. Nature Genetics, 2008, 40, 710-712.	21.4	403
28	High-density mapping of the MHC identifies a shared role for HLA-DRB1*01:03 in inflammatory bowel diseases and heterozygous advantage in ulcerative colitis. Nature Genetics, 2015, 47, 172-179.	21.4	280
29	Gene expression profiling of CD8+ T cells predicts prognosis in patients with Crohn disease and ulcerative colitis. Journal of Clinical Investigation, 2011, 121, 4170-4179.	8.2	268
30	Genome-wide association study identifies distinct genetic contributions to prognosis and susceptibility in Crohn's disease. Nature Genetics, 2017, 49, 262-268.	21.4	250
31	Prevalence of CARD15/NOD2 Mutations in Caucasian Healthy People. American Journal of Gastroenterology, 2007, 102, 1259-1267.	0.4	249
32	HLA-DQA1*05 Carriage Associated With Development of Anti-Drug Antibodies to Infliximab and Adalimumab in Patients With Crohn's Disease. Gastroenterology, 2020, 158, 189-199.	1.3	249
33	British Society of Gastroenterology guidance for management of inflammatory bowel disease during the COVID-19 pandemic. Gut, 2020, 69, 984-990.	12.1	232
34	Human SNP Links Differential Outcomes in Inflammatory and Infectious Disease to a FOXO3-Regulated Pathway. Cell, 2013, 155, 57-69.	28.9	200
35	Investigation of Crohn's Disease Risk Loci in Ulcerative Colitis Further Defines Their Molecular Relationship. Gastroenterology, 2009, 136, 523-529.e3.	1.3	198
36	Deep Resequencing of GWAS Loci Identifies Rare Variants in CARD9, IL23R and RNF186 That Are Associated with Ulcerative Colitis. PLoS Genetics, 2013, 9, e1003723.	3.5	185

#	Article	IF	CITATIONS
37	Negligible impact of rare autoimmune-locus coding-region variants on missing heritability. Nature, 2013, 498, 232-235.	27.8	184
38	IL23R Variation Determines Susceptibility But Not Disease Phenotype in Inflammatory Bowel Disease. Gastroenterology, 2007, 132, 1657-1664.	1.3	170
39	HLA-DQA1–HLA-DRB1 variants confer susceptibility to pancreatitis induced by thiopurine immunosuppressants. Nature Genetics, 2014, 46, 1131-1134.	21.4	165
40	Exploring the genetic architecture of inflammatory bowel disease by whole-genome sequencing identifies association at ADCY7. Nature Genetics, 2017, 49, 186-192.	21.4	153
41	Association Between Variants of PRDM1 and NDP52 and Crohn's Disease, Based on Exome Sequencing and Functional Studies. Gastroenterology, 2013, 145, 339-347.	1.3	149
42	Defective ATG16L1-mediated removal of IRE1α drives Crohn's disease–like ileitis. Journal of Experimental Medicine, 2017, 214, 401-422.	8.5	141
43	Anti-commensal IgG Drives Intestinal Inflammation and Type 17 Immunity in Ulcerative Colitis. Immunity, 2019, 50, 1099-1114.e10.	14.3	139
44	Mucosal genome-wide methylation changes in inflammatory bowel disease. Inflammatory Bowel Diseases, 2012, 18, 2128-2137.	1.9	135
45	Genome-wide Association Scanning Highlights Two Autophagy Genes, <i>ATG16L1</i> and <i>IRGM</i> , as Being Significantly Associated with Crohn's Disease. Autophagy, 2007, 3, 649-651.	9.1	132
46	A blood-based prognostic biomarker in IBD. Gut, 2019, 68, 1386-1395.	12.1	132
47	Mobilisation of enterocyte fat stores by oral glucose in humans. Gut, 2003, 52, 834-839.	12.1	131
48	Association of Genetic Variants in <i>NUDT15</i> With Thiopurine-Induced Myelosuppression in Patients With Inflammatory Bowel Disease. JAMA - Journal of the American Medical Association, 2019, 321, 773.	7.4	129
49	Somatic Evolution in Non-neoplastic IBD-Affected Colon. Cell, 2020, 182, 672-684.e11.	28.9	122
50	Use of sirolimus (rapamycin) to treat refractory Crohn's disease. Gut, 2008, 57, 1294-1296.	12.1	118
51	Cytokine gene polymorphisms in inflammatory bowel disease Gut, 1996, 39, 705-710.	12.1	112
52	SARS-CoV-2 vaccination for patients with inflammatory bowel disease: a British Society of Gastroenterology Inflammatory Bowel Disease section and IBD Clinical Research Group position statement. The Lancet Gastroenterology and Hepatology, 2021, 6, 218-224.	8.1	111
53	Systematic review: the use of mesalazine in inflammatory bowel disease. Alimentary Pharmacology and Therapeutics, 2006, 23, 841-855.	3.7	106
54	COVID-19 vaccine-induced antibody responses in immunosuppressed patients with inflammatory bowel disease (VIP): a multicentre, prospective, case-control study. The Lancet Gastroenterology and Hepatology, 2022, 7, 342-352.	8.1	100

#	Article	IF	CITATIONS
55	Genome-wide analysis of 53,400 people with irritable bowel syndrome highlights shared genetic pathways with mood and anxiety disorders. Nature Genetics, 2021, 53, 1543-1552.	21.4	96
56	Crohn disease: A current perspective on genetics, autophagy and immunity. Autophagy, 2011, 7, 355-374.	9.1	94
57	Evidence for association of OCTN genes and IBD5 with ulcerative colitis. Gut, 2006, 55, 809-814.	12.1	90
58	Relapse after withdrawal from antiâ€ <scp>TNF</scp> therapy for inflammatory bowel disease: an observational study, plus systematic review and metaâ€analysis. Alimentary Pharmacology and Therapeutics, 2016, 43, 910-923.	3.7	87
59	The IBD2 Locus Shows Linkage Heterogeneity between Ulcerative Colitis and Crohn Disease. American Journal of Human Genetics, 2000, 67, 1605-1610.	6.2	85
60	Clinical Features and HLA Association of 5-Aminosalicylate (5-ASA)-induced Nephrotoxicity in Inflammatory Bowel Disease. Journal of Crohn's and Colitis, 2016, 10, 149-158.	1.3	85
61	Human keratin 8 mutations that disturb filament assembly observed in inflammatory bowel disease patients. Journal of Cell Science, 2004, 117, 1989-1999.	2.0	84
62	Association of ulcerative colitis with rare VNTR alleles of the human intestinal mucin gene, MUC3. Human Molecular Genetics, 1999, 8, 307-311.	2.9	74
63	Contribution of TNFSF15 gene variants to Crohn's disease susceptibility confirmed in UK population. Inflammatory Bowel Diseases, 2008, 14, 733-737.	1.9	74
64	Susceptibility loci in inflammatory bowel disease. Lancet, The, 1996, 348, 1588.	13.7	72
65	NOX1 loss-of-function genetic variants in patients with inflammatory bowel disease. Mucosal Immunology, 2018, 11, 562-574.	6.0	71
66	Analysis of Germline GLI1 Variation Implicates Hedgehog Signalling in the Regulation of Intestinal Inflammatory Pathways. PLoS Medicine, 2008, 5, e239.	8.4	63
67	Two microbiota subtypes identified in irritable bowel syndrome with distinct responses to the low FODMAP diet. Gut, 2022, 71, 1821-1830.	12.1	63
68	Pooled Sequencing of 531 Genes in Inflammatory Bowel Disease Identifies an Associated Rare Variant in BTNL2 and Implicates Other Immune Related Genes. PLoS Genetics, 2015, 11, e1004955.	3.5	59
69	Genetic association between NLRP3 variants and Crohn's disease does not replicate in a large UK panel. Inflammatory Bowel Diseases, 2011, 17, 1387-1391.	1.9	56
70	Thiopurine withdrawal during sustained clinical remission in inflammatory bowel disease: relapse and recapture rates, with predictive factors in 237 patients. Alimentary Pharmacology and Therapeutics, 2014, 40, 1313-1323.	3.7	55
71	PRedicting Outcomes For Crohn's dIsease using a moLecular biomarkEr (PROFILE): protocol for a multicentre, randomised, biomarker-stratified trial. BMJ Open, 2018, 8, e026767.	1.9	55
72	Personalised medicine in Crohn's disease. The Lancet Gastroenterology and Hepatology, 2020, 5, 80-92.	8.1	55

#	Article	IF	CITATIONS
73	Contribution of the IL-2 and IL-10 genes to inflammatory bowel disease (IBD) susceptibility. Clinical and Experimental Immunology, 1998, 113, 28-32.	2.6	54
74	Infliximab and adalimumab drug levels in Crohn's disease: contrasting associations with disease activity and influencing factors. Alimentary Pharmacology and Therapeutics, 2017, 46, 150-161.	3.7	53
75	Genetics of inflammatory bowel disease: clues to pathogenesis. British Medical Bulletin, 2008, 87, 17-30.	6.9	51
76	Genetics of Inflammatory Bowel Disease. Clinical Science, 1998, 94, 473-478.	4.3	50
77	Gender-stratified analysis of DLG5 R30Q in 4707 patients with Crohn disease and 4973 controls from 12 Caucasian cohorts. Journal of Medical Genetics, 2007, 45, 36-42.	3.2	47
78	Evidence for inflammatory bowel disease of a susceptibility locus on the X chromosome. Gastroenterology, 2001, 120, 834-840.	1.3	46
79	Rare and functional SIAE variants are not associated with autoimmune disease risk in up to 66,924 individuals of European ancestry. Nature Genetics, 2012, 44, 3-5.	21.4	44
80	Dynamic immunoglobulin responses to gut bacteria during inflammatory bowel disease. Gut Microbes, 2020, 11, 405-420.	9.8	44
81	Evidence from Genetics for a Role of Autophagy and Innate Immunity in IBD Pathogenesis. Digestive Diseases, 2012, 30, 330-333.	1.9	42
82	Genome-wide association studies and Crohn's disease. Briefings in Functional Genomics, 2011, 10, 71-76.	2.7	41
83	Thiopurine monotherapy is effective in ulcerative colitis but significantly less so in Crohn's disease: long-term outcomes for 11 928 patients in the UK inflammatory bowel disease bioresource. Gut, 2021, 70, 677-686.	12.1	41
84	The Impact of NOD2 Variants on Fecal Microbiota in Crohn's Disease and Controls Without Gastrointestinal Disease. Inflammatory Bowel Diseases, 2018, 24, 583-592.	1.9	40
85	Genetic variants in TNF-α but not DLG5 are associated with inflammatory bowel disease in a large United Kingdom cohort. Inflammatory Bowel Diseases, 2006, 12, 178-184.	1.9	39
86	Somatic mosaicism and common genetic variation contribute to the risk of very-early-onset inflammatory bowel disease. Nature Communications, 2020, 11, 995.	12.8	37
87	How Do We Predict a Patient's Disease Course and Whether They Will Respond to Specific Treatments?. Gastroenterology, 2022, 162, 1383-1395.	1.3	31
88	Analysis of the BTNL2 truncating splice site mutation in tuberculosis, leprosy and Crohn's disease. Tissue Antigens, 2007, 69, 236-241.	1.0	30
89	A randomized, doubleâ€blind, placeboâ€controlled trial of lenalidomide in the treatment of moderately severe active Crohn's disease. Alimentary Pharmacology and Therapeutics, 2007, 26, 421-430.	3.7	30
90	Generation of primary human intestinal T cell transcriptomes reveals differential expression at genetic risk loci for immune-mediated disease. Gut, 2015, 64, 250-259.	12.1	30

#	Article	IF	CITATIONS
91	Intestinal APCs of the endogenous nanomineral pathway fail to express PD-L1 in Crohn's disease. Scientific Reports, 2016, 6, 26747.	3.3	30
92	Complex insertion/deletion polymorphism in NOD1 (CARD4) is not associated with inflammatory bowel disease susceptibility in East Anglia panel. Inflammatory Bowel Diseases, 2006, 12, 967-971.	1.9	27
93	Immuno-inhibitory PD-L1 can be induced by a Peptidoglycan/NOD2 mediated pathway in primary monocytic cells and is deficient in Crohn's patients with homozygous NOD2 mutations Clinical Immunology, 2012, 143, 162-169.	3.2	27
94	The Genetics Universe of Crohn's Disease and Ulcerative Colitis. Digestive Diseases, 2012, 30, 78-81.	1.9	25
95	IBD BioResource: an open-access platform of 25 000 patients to accelerate research in Crohn's and Colitis. Gut, 2019, 68, 1537-1540.	12.1	25
96	Trial summary and protocol for a phase II randomised placebo-controlled double-blinded trial of Interleukin 1 blockade in Acute Severe Colitis: the IASO trial. BMJ Open, 2019, 9, e023765.	1.9	25
97	Exclusion of Linkage of Crohn's Disease to Previously Reported Regions on Chromosomes 12, 7, and 3 in the Belgian Population Indicates Genetic Heterogeneity. Inflammatory Bowel Diseases, 2000, 6, 165-170.	1.9	24
98	DNA Methylation Analysis in the Intestinal Epithelium—Effect of Cell Separation on Gene Expression and Methylation Profile. PLoS ONE, 2013, 8, e55636.	2.5	24
99	Common pathways in Crohn's disease and other inflammatory diseases revealed by genomics. Gut, 2007, 56, 1489-1492.	12.1	22
100	The Impact of <i>NOD2</i> Genetic Variants on the Gut Mycobiota in Crohn's Disease Patients in Remission and in Individuals Without Gastrointestinal Inflammation. Journal of Crohn's and Colitis, 2021, 15, 800-812.	1.3	22
101	The use of Cyclosporin A in acute steroid-refractory ulcerative colitis: Long term outcomes. Journal of Crohn's and Colitis, 2011, 5, 91-94.	1.3	21
102	A Method to Exploit the Structure of Genetic Ancestry Space to Enhance Case-Control Studies. American Journal of Human Genetics, 2016, 98, 857-868.	6.2	21
103	Ulcerative colitis and Crohn's disease: molecular genetics and clinical implications. Expert Reviews in Molecular Medicine, 2001, 3, 1-18.	3.9	20
104	Predicting the Individual Risk of Acute Severe Colitis at Diagnosis. Journal of Crohn's and Colitis, 2017, 11, jjw159.	1.3	19
105	Autologous stem cell transplantation in refractory Crohn's disease – low intensity therapy evaluation (ASTIClite): study protocols for a multicentre, randomised controlled trial and observational follow up study. BMC Gastroenterology, 2019, 19, 82.	2.0	17
106	GWAS of stool frequency provides insights into gastrointestinal motility and irritable bowel syndrome. Cell Genomics, 2021, 1, 100069.	6.5	15
107	Genome-wide association scans identify multiple confirmed susceptibility loci for Crohn's disease: Lessons for study design. Inflammatory Bowel Diseases, 2007, 13, 1554-1560.	1.9	14
108	Genome-wide rare copy number variation screening in ulcerative colitis identifies potential susceptibility loci. BMC Medical Genetics, 2016, 17, 26.	2.1	14

#	Article	IF	CITATIONS
109	The management of severe Crohn's disease. Alimentary Pharmacology and Therapeutics, 2001, 15, 563-573.	3.7	13
110	Clinical Trials [and Tribulations]: The Immediate Effects of COVID-19 on IBD Clinical Research Activity in the UK. Journal of Crohn's and Colitis, 2020, 14, 1769-1776.	1.3	13
111	Effectiveness and safety of vedolizumab in inflammatory bowel disease patients aged 60 and over: an observational multicenter UK experience. Annals of Gastroenterology, 2020, 33, 170-177.	0.6	13
112	Patients with perianal Crohn's fistulas experience delays in accessing antiâ€ <scp>TNF</scp> therapy due to slow recognition, diagnosis and integration of specialist services: lessons learned from three referral centres. Colorectal Disease, 2018, 20, 797-803.	1.4	11
113	Mitochondrial neurogastrointestinal encephalopathy: a clinicopathological mimic of Crohn's disease. BMC Gastroenterology, 2019, 19, 11.	2.0	10
114	Randomized Trial of Ciprofloxacin Doxycycline and Hydroxychloroquine Versus Budesonide in Active Crohn's Disease. Digestive Diseases and Sciences, 2021, 66, 2700-2711.	2.3	10
115	Genetics of Inflammatory Bowel Disease. A Personal View on Progress and Prospects. Digestive Diseases, 1998, 16, 370-374.	1.9	9
116	A Comparison of Outcomes for Adults and Children Undergoing Resection for Inflammatory Bowel Disease: Is There a Difference?. ISRN Gastroenterology, 2014, 2014, 1-4.	1.5	9
117	A systems genomics approach to uncover patient-specific pathogenic pathways and proteins in ulcerative colitis. Nature Communications, 2022, 13, 2299.	12.8	9
118	Symptom classification in irritable bowel syndrome as a guide to treatment. Scandinavian Journal of Gastroenterology, 2009, 44, 796-803.	1.5	8
119	Acetarsol Suppositories: Effective Treatment for Refractory Proctitis in a Cohort of Patients with Inflammatory Bowel Disease. Digestive Diseases and Sciences, 2018, 63, 1011-1015.	2.3	8
120	Moving towards more patient-centred clinical trials in IBD. Nature Reviews Gastroenterology and Hepatology, 2021, 18, 673-674.	17.8	8
121	Mapping susceptibility loci in inflammatory bowel disease: why and how?. Trends in Molecular Medicine, 1997, 3, 546-553.	2.6	7
122	Ulcerative colitis is more strongly linked to chromosome 12 than Crohn's disease Reply. Gut, 2001, 49, 311-312.	12.1	5
123	A Crohn's Disease-associated IL2RA Enhancer Variant Determines the Balance of T Cell Immunity by Regulating Responsiveness to IL-2 Signalling. Journal of Crohn's and Colitis, 2021, 15, 2054-2065.	1.3	5
124	Single-cell genomics for resolution of conserved bacterial genes and mobile genetic elements of the human intestinal microbiota using flow cytometry. Gut Microbes, 2022, 14, 2029673.	9.8	5
125	Molecular genetics of Crohn's disease: recent advances. The European Journal of Surgery, 2003, 164, 887-891.	0.9	3
126	The genetics of inflammatory bowel disease. British Journal of Hospital Medicine, 2003, 64, 599-602.	0.2	3

#	Article	IF	CITATIONS
127	Diverticular disease: picking pockets and population biobanks. Gut, 2019, 68, 769-770.	12.1	3
128	Rectovaginal Fistula in Crohn's Disease: When and How to Operate?. Clinics in Colon and Rectal Surgery, 2022, 35, 010-020.	1.1	3
129	Establishment of a validated central reading system for ileocolonoscopy in an academic setting. Gut, 2022, 71, 661-664.	12.1	3
130	A rare cause of duodenal stricture. BMJ Case Reports, 2011, 2011, bcr1020103379-bcr1020103379.	0.5	2
131	Microscopic colitis. Medicine, 2007, 35, 290-291.	0.4	1
132	Microscopic colitis. Medicine, 2011, 39, 237-238.	0.4	1
133	Personalised medicine and genetic prediction – are we there yet?. Clinical Medicine, 2013, 13, s62-s64.	1.9	1
134	â€~High definition': not all it appears: TableÂ1. Gut, 2014, 63, 863.1-864.	12.1	1
135	Microscopic colitis. Medicine, 2019, 47, 388-390.	0.4	1
136	Two-Stage Genome-Wide Search in Inflammatory Bowel Disease: Strong Evidence for Susceptibility LOCI on Chromosomes 3, 7 and 12. Clinical Science, 1997, 93, 18P-19P.	0.0	0
137	Genetics— Clinical and Therapeutic Applications. , 0, , 85-88.		Ο
138	Microscopic colitis. Medicine, 2015, 43, 291-292.	0.4	0
139	PWE-044â€The IBD bioresource: progressing from genetics to function and clinical translation in CD & UC. , 2018, , .		Ο
140	On the threshold of personalized medicine in inflammatory bowel disease: Next generation genetic predictors. Journal of Gastroenterology and Hepatology (Australia), 2018, 33, 5-6.	2.8	0
141	Debate session: So what causes inflammatory bowel disease? It's all in the genes. Journal of Gastroenterology and Hepatology (Australia), 2018, 33, 23-23.	2.8	Ο
142	Selectively targeting the gut in inflammatory bowel disease: Targeting integrins. Journal of Gastroenterology and Hepatology (Australia), 2018, 33, 26-26.	2.8	0
143	Genetic and Genomic Markers for Prognostication. , 2019, , 323-331.		0
144	The Inflammatory Bowel Disease (IBD) BioResource: an open-access platform of over 25,000 patients to accelerate research in Crohn's and Colitis. Proceedings of the Nutrition Society, 2020, 79, .	1.0	0

#	Article	IF	CITATIONS
145	P100â€Outcomes of a clinical psychology intervention in a UK IBD service. , 2021, , .		0
146	P156â \in The inflammatory bowel disease (IBD) bioresource: focus on the inception cohort. , 2021, , .		0
147	Enhanced neoplasia detection in chronic ulcerative colitis: the ENDCaP-C diagnostic accuracy study. Efficacy and Mechanism Evaluation, 2021, 8, 1-88.	0.7	0
148	The Genetics of Crohn's Disease. , 2013, , 99-118.		0
149	IBD Genomic Risk Loci and Overlap with Other Inflammatory Diseases. , 2019, , 91-115.		0
150	IDDF2020-ABS-0183â€PROFILE trial: predicting outcomes for Crohn's disease using a molecular biomarker. , 2020, , .		0