
WÂ Chris Funk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5490363/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genomic signatures of thermal adaptation are associated with clinal shifts of life history in a broadly distributed frog. Journal of Animal Ecology, 2022, 91, 1222-1238.	2.8	17
2	Parasites as conservation tools. Conservation Biology, 2022, 36, .	4.7	24
3	Adaptive divergence in bill morphology and other thermoregulatory traits is facilitated by restricted gene flow in song sparrows on the California Channel Islands. Molecular Ecology, 2022, 31, 603-619.	3.9	6
4	Reproductive benefits associated with dispersal in headwater populations of Trinidadian guppies (<i>Poecilia reticulata</i>). Ecology Letters, 2022, 25, 344-354.	6.4	1
5	Hunting alters viral transmission and evolution in a large carnivore. Nature Ecology and Evolution, 2022, 6, 174-182.	7.8	5
6	Habitatâ€linked genetic variation supports microgeographic adaptive divergence in an islandâ€endemic bird species. Molecular Ecology, 2022, 31, 2830-2846.	3.9	6
7	The Coalition for Conservation Genetics: Working across organizations to build capacity and achieve change in policy and practice. Conservation Science and Practice, 2022, 4, .	2.0	17
8	Global genetic diversity status and trends: towards a suite of Essential Biodiversity Variables (<scp>EBVs</scp>) for genetic composition. Biological Reviews, 2022, 97, 1511-1538.	10.4	73
9	Temperature dependence of metabolic rate in tropical and temperate aquatic insects: Support for the Climate Variability Hypothesis in mayflies but not stoneflies. Global Change Biology, 2021, 27, 297-311.	9.5	26
10	Population genomics for wildlife conservation and management. Molecular Ecology, 2021, 30, 62-82.	3.9	258
11	Host relatedness and landscape connectivity shape pathogen spread in the puma, a large secretive carnivore. Communications Biology, 2021, 4, 12.	4.4	20
12	A critical comparison of integral projection and matrix projection models for demographic analysis. Ecological Monographs, 2021, 91, e01447.	5.4	21
13	Authors' Reply to Letter to the Editor: Continued improvement to genetic diversity indicator for CBD. Conservation Genetics, 2021, 22, 533-536.	1.5	18
14	Conservation genetics of an island-endemic lizard: low Ne and the critical role of intermediate temperatures for genetic connectivity. Conservation Genetics, 2021, 22, 783-797.	1.5	6
15	Testing Demographic Methods Using Field Studies of Five Dissimilar Species. Bulletin of the Ecological Society of America, 2021, 102, e01870.	0.2	0
16	Big Data in Conservation Genomics: Boosting Skills, Hedging Bets, and Staying Current in the Field. Journal of Heredity, 2021, 112, 313-327.	2.4	10
17	Global Commitments to Conserving and Monitoring Genetic Diversity Are Now Necessary and Feasible. BioScience, 2021, 71, 964-976.	4.9	96
18	A unifying framework for analyzing temporal changes in functional and taxonomic diversity along disturbance gradients. Ecology, 2021, 102, e03503.	3.2	9

WÂCHRIS FUNK

#	Article	IF	CITATIONS
19	Bat signal (of selection) summons evolutionary hope in face of epidemic disease: An example of the power and promise of genetic monitoring. Molecular Ecology, 2021, 30, 5624-5627.	3.9	0
20	Genetic diversity is considered important but interpreted narrowly in country reports to the Convention on Biological Diversity: Current actions and indicators are insufficient. Biological Conservation, 2021, 261, 109233.	4.1	65
21	Contrasting environmental drivers of genetic and phenotypic divergence in an Andean poison frog (Epipedobates anthonyi). Heredity, 2021, , .	2.6	1
22	The crucial role of genome-wide genetic variation in conservation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	196
23	Genomic and Fitness Consequences of Genetic Rescue in Wild Populations. Current Biology, 2020, 30, 517-522.e5.	3.9	81
24	Genetic diversity targets and indicators in the CBD post-2020 Global Biodiversity Framework must be improved. Biological Conservation, 2020, 248, 108654.	4.1	285
25	Does the virus cross the road? Viral phylogeographic patterns among bobcat populations reflect a history of urban development. Evolutionary Applications, 2020, 13, 1806-1817.	3.1	7
26	A meeting framework for inclusive and sustainable science. Nature Ecology and Evolution, 2020, 4, 668-671.	7.8	8
27	Coalescent-based species delimitation is sensitive to geographic sampling and isolation by distance. Systematics and Biodiversity, 2020, 18, 269-280.	1.2	62
28	Improving conservation policy with genomics: a guide to integrating adaptive potential into U.S. Endangered Species Act decisions for conservation practitioners and geneticists. Conservation Genetics, 2019, 20, 115-134.	1.5	95
29	The Exciting Potential and Remaining Uncertainties of Genetic Rescue. Trends in Ecology and Evolution, 2019, 34, 1070-1079.	8.7	151
30	Urbanization reduces genetic connectivity in bobcats (<i>Lynx rufus</i>) at both intra– and interpopulation spatial scales. Molecular Ecology, 2019, 28, 5068-5085.	3.9	24
31	Urbanization impacts apex predator gene flow but not genetic diversity across an urbanâ€rural divide. Molecular Ecology, 2019, 28, 4926-4940.	3.9	23
32	The Expectations and Challenges of Wildlife Disease Research in the Era of Genomics: Forecasting with a Horizon Scan-like Exercise. Journal of Heredity, 2019, 110, 261-274.	2.4	9
33	A potential role for immigrant reproductive behavior in the outcome of population augmentations. Animal Conservation, 2019, 22, 463-471.	2.9	Ο
34	Validating anthropogenic threat maps as a tool for assessing river ecological integrity in Andean–Amazon basins. PeerJ, 2019, 7, e8060.	2.0	12
35	Extreme streams: species persistence and genomic change in montane insect populations across a flooding gradient. Ecology Letters, 2018, 21, 525-535.	6.4	35
36	An experimental test of alternative population augmentation scenarios. Conservation Biology, 2018, 32, 838-848.	4.7	24

#	Article	IF	CITATIONS
37	Advancing Understanding of Amphibian Evolution, Ecology, Behavior, and Conservation with Massively Parallel Sequencing. Population Genomics, 2018, , 211-254.	0.5	22
38	Narrow thermal tolerance and low dispersal drive higher speciation in tropical mountains. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12471-12476.	7.1	161
39	Pathogens in space: Advancing understanding of pathogen dynamics and disease ecology through landscape genetics. Evolutionary Applications, 2018, 11, 1763-1778.	3.1	37
40	Regional variation in drivers of connectivity for two frog species (<i>Rana pretiosa</i> and) Tj ETQq0 0 0 rgBT /C)verlock 10	0 Tf 50 622 To
41	Equipping Tomorrow's Historical Ecologist: Priorities for Documenting Conditions of the Terrestrial Fauna of Santa Cruz Island, California. Western North American Naturalist, 2018, 78, 879.	0.4	3
42	A Model to Inform Management Actions as a Response to Chytridiomycosis-Associated Decline. EcoHealth, 2017, 14, 144-155.	2.0	17
43	Equipping the 22nd-Century Historical Ecologist. Trends in Ecology and Evolution, 2017, 32, 578-588.	8.7	30
44	Climate variability predicts thermal limits of aquatic insects across elevation and latitude. Functional Ecology, 2017, 31, 2118-2127.	3.6	104
45	Unbroken: RADseq remains a powerful tool for understanding the genetics of adaptation in natural populations. Molecular Ecology Resources, 2017, 17, 362-365.	4.8	156
46	Urban landscapes can change virus gene flow and evolution in a fragmentationâ€sensitive carnivore. Molecular Ecology, 2017, 26, 6487-6498.	3.9	40
47	Thermal Acclimation Ability Varies in Temperate and Tropical Aquatic Insects from Different Elevations. Integrative and Comparative Biology, 2017, 57, 977-987.	2.0	53
48	Diversification of the rainfrog Pristimantis ornatissimus in the lowlands and Andean foothills of Ecuador. PLoS ONE, 2017, 12, e0172615.	2.5	29
49	Adaptive divergence despite strong genetic drift: genomic analysis of the evolutionary mechanisms causing genetic differentiation in the island fox (Urocyon littoralis). Molecular Ecology, 2016, 25, 2176-2194.	3.9	114
50	Phenotypic plasticity in developmental rate is insufficient to offset high tadpole mortality in rapidly drying ponds. Ecosphere, 2016, 7, e01386.	2.2	18
51	Freshwater vertebrate and invertebrate diversity patterns in an Andean-Amazon basin: implications for conservation efforts. Neotropical Biodiversity, 2016, 2, 99-114.	0.5	22
52	Gene flow from an adaptively divergent source causes rescue through genetic and demographic factors in two wild populations of <scp>T</scp> rinidadian guppies. Evolutionary Applications, 2016, 9, 879-891.	3.1	62
53	Sex, Mitochondria, and Genetic Rescue. Trends in Ecology and Evolution, 2016, 31, 96-99.	8.7	13
54	Effects of changing climate on aquatic habitat and connectivity for remnant populations of a wideâ€ranging frog species in an arid landscape. Ecology and Evolution, 2015, 5, 3979-3994.	1.9	31

#	Article	IF	CITATIONS
55	How spatio-temporal habitat connectivity affects amphibian genetic structure. Frontiers in Genetics, 2015, 6, 275.	2.3	60

56 Mitochondrial Genomes Suggest Rapid Evolution of Dwarf California Channel Islands Foxes (Urocyon) Tj ETQq0 0 0.rgBT /Overlock 10 Tf

57	Genetic rescue to the rescue. Trends in Ecology and Evolution, 2015, 30, 42-49.	8.7	591
58	Islands within an island: Repeated adaptive divergence in a single population. Evolution; International Journal of Organic Evolution, 2015, 69, 653-665.	2.3	45
59	Morphological taxonomy, DNA barcoding, and species diversity in southern Rocky Mountain headwater streams. Freshwater Science, 2014, 33, 288-301.	1.8	32
60	Ecological Change on California's Channel Islands from the Pleistocene to the Anthropocene. BioScience, 2014, 64, 680-692.	4.9	50
61	Parallelism Isn't Perfect: Could Disease and Flooding Drive a Life-History Anomaly in Trinidadian Guppies?. American Naturalist, 2014, 183, 290-300.	2.1	36
62	High levels of cryptic species diversity uncovered in Amazonian frogs. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 1806-1814.	2.6	227
63	Harnessing genomics for delineating conservation units. Trends in Ecology and Evolution, 2012, 27, 489-496.	8.7	767
64	Population genetics of introduced bullfrogs, Rana (Lithobates) catesbeianus, in the Willamette Valley, Oregon, USA. Biological Invasions, 2011, 13, 651-658.	2.4	13
65	Testing evolutionary hypotheses for phenotypic divergence using landscape genetics. Molecular Ecology, 2010, 19, 427-430.	3.9	11
66	Population structure of Columbia spotted frogs (Rana luteiventris) is strongly affected by the landscape. Molecular Ecology, 2005, 14, 483-496.	3.9	305
67	What Is Missing in Amphibian Decline Research: Insights from Ecological Sensitivity Analysis. Conservation Biology, 2002, 16, 728-734.	4.7	313
68	Body size is associated with yearling breeding and extra-pair mating in the Island Scrub-Jay. Auk, 0, , .	1.4	3