
Grace Jopaul Loubota Panzou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5490266/publications.pdf

Version: 2024-02-01

GRACE JOPAUL LOUBOTA

#	Article	IF	CITATIONS
1	Increasing carbon storage in intact African tropical forests. Nature, 2009, 457, 1003-1006.	27.8	816
2	Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature, 2020, 579, 80-87.	27.8	439
3	Above-ground biomass and structure of 260 African tropical forests. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120295.	4.0	264
4	Markedly divergent estimates of <scp>A</scp> mazon forest carbon density from ground plots and satellites. Global Ecology and Biogeography, 2014, 23, 935-946.	5.8	248
5	Size and frequency of natural forest disturbances and the Amazon forest carbon balance. Nature Communications, 2014, 5, 3434.	12.8	169
6	Estimating the global conservation status of more than 15,000 Amazonian tree species. Science Advances, 2015, 1, e1500936.	10.3	122
7	Variation in soil carbon stocks and their determinants across a precipitation gradient in <scp>W</scp> est <scp>A</scp> frica. Global Change Biology, 2012, 18, 1670-1683.	9.5	114
8	Species Distribution Modelling: Contrasting presence-only models with plot abundance data. Scientific Reports, 2018, 8, 1003.	3.3	113
9	On the delineation of tropical vegetation types with an emphasis on forest/savanna transitions. Plant Ecology and Diversity, 2013, 6, 101-137.	2.4	105
10	Disequilibrium and hyperdynamic tree turnover at the forest–cerrado transition zone in southern Amazonia. Plant Ecology and Diversity, 2014, 7, 281-292.	2.4	97
11	Field methods for sampling tree height for tropical forest biomass estimation. Methods in Ecology and Evolution, 2018, 9, 1179-1189.	5.2	78
12	Panâ€ŧropical prediction of forest structure from the largest trees. Global Ecology and Biogeography, 2018, 27, 1366-1383.	5.8	78
13	Drier tropical forests are susceptible to functional changes in response to a longâ€ŧerm drought. Ecology Letters, 2019, 22, 855-865.	6.4	75
14	Secondary forest growth deviation from chronosequence predictions in central Amazonia. Global Change Biology, 2007, 13, 967-979.	9.5	74
15	Evidence for arrested succession in a lianaâ€infested Amazonian forest. Journal of Ecology, 2016, 104, 149-159.	4.0	71
16	Competition influences tree growth, but not mortality, across environmental gradients in Amazonia and tropical Africa. Ecology, 2020, 101, e03052.	3.2	57
17	Biased-corrected richness estimates for the Amazonian tree flora. Scientific Reports, 2020, 10, 10130.	3.3	53
18	Relationships between soil hydrology and forest structure and composition in the southern Brazilian Amazon. Journal of Vegetation Science, 2007, 18, 183-194.	2.2	51

GRACE JOPAUL LOUBOTA

#	Article	IF	CITATIONS
19	Taller trees, denser stands and greater biomass in semi-deciduous than in evergreen lowland central African forests. Forest Ecology and Management, 2016, 374, 42-50.	3.2	48
20	Soil physical conditions limit palm and tree basal area in Amazonian forests. Plant Ecology and Diversity, 2014, 7, 215-229.	2.4	45
21	Basin-wide variations in Amazon forest nitrogen-cycling characteristics as inferred from plant and soil ¹⁵ N: ¹⁴ N measurements. Plant Ecology and Diversity, 2014, 7, 173-187.	2.4	43
22	Evolutionary diversity is associated with wood productivity in Amazonian forests. Nature Ecology and Evolution, 2019, 3, 1754-1761.	7.8	32
23	Rarity of monodominance in hyperdiverse Amazonian forests. Scientific Reports, 2019, 9, 13822.	3.3	28
24	Legacy of Amazonian Dark Earth soils on forest structure and species composition. Global Ecology and Biogeography, 2020, 29, 1458-1473.	5.8	28
25	Pantropical variability in tree crown allometry. Global Ecology and Biogeography, 2021, 30, 459-475.	5.8	27
26	Amazon tree dominance across forest strata. Nature Ecology and Evolution, 2021, 5, 757-767.	7.8	27
27	Foliar trait contrasts between African forest and savanna trees: genetic versus environmental effects. Functional Plant Biology, 2015, 42, 63.	2.1	23
28	Architectural differences associated with functional traits among 45 coexisting tree species in Central Africa. Functional Ecology, 2018, 32, 2583-2593.	3.6	15
29	What controls local-scale aboveground biomass variation in central Africa? Testing structural, composition and architectural attributes. Forest Ecology and Management, 2018, 429, 570-578.	3.2	14
30	Tropical tree allometry and crown allocation, and their relationship with species traits in central Africa. Forest Ecology and Management, 2021, 493, 119262.	3.2	11
31	Diversity, abundance and distribution of lianas of the Cerrado–Amazonian forest transition, Brazil. Plant Ecology and Diversity, 2014, 7, 231-240.	2.4	9
32	Height-diameter allometric equations of an emergent tree species from the Congo Basin. Forest Ecology and Management, 2022, 504, 119822.	3.2	9
33	Height–diameter allometry in African monodominant forest close to mixed forest. Journal of Tropical Ecology, 2021, 37, 98-107.	1.1	5
34	Variation in soil carbon stocks and their determinants across a precipitation gradient in West Africa. Global Change Biology, 2012, 18, 2676-2676.	9.5	2
35	Biomasse et stocks de carbone en Afrique centrale : importance de l'allométrie des arbres. Bois Et Forets Des Tropiques, 0, 343, 85-86.	0.2	2
36	Fine-scale altitudinal gradients influence the relationships between structural attributes and aboveground biomass in Central Africa. Canadian Journal of Forest Research, 2021, 51, 1368-1376.	1.7	1