Maria Isabel Osendi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5490201/publications.pdf

Version: 2024-02-01

94433 123424 4,742 157 37 61 citations h-index g-index papers 161 161 161 3952 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Towards durable thermal barrier coatings with novelmicrostructures deposited by solution-precursor plasma spray. Acta Materialia, 2001, 49, 2251-2257.	7.9	230
2	Metastability of Tetragonal Zirconia Powders. Journal of the American Ceramic Society, 1985, 68, 135-139.	3.8	187
3	Graphene nanoplatelet/silicon nitride composites with high electrical conductivity. Carbon, 2012, 50, 3607-3615.	10.3	151
4	The beneficial effect of graphene nanofillers on the tribological performance of ceramics. Carbon, 2013, 61, 431-435.	10.3	146
5	Thermal conductivity of highly porous mullite material. Acta Materialia, 2005, 53, 3313-3318.	7.9	145
6	From bulk to cellular structures: A review on ceramic/graphene filler composites. Journal of the European Ceramic Society, 2017, 37, 3649-3672.	5 . 7	128
7	Extraordinary toughening enhancement and flexural strength in Si3N4 composites using graphene sheets. Journal of the European Ceramic Society, 2014, 34, 161-169.	5 . 7	122
8	Spark plasma sintering: A powerful tool to develop new silicon nitride-based materials. Journal of the European Ceramic Society, 2010, 30, 2937-2946.	5 . 7	115
9	In situ processing of electrically conducting graphene/SiC nanocomposites. Journal of the European Ceramic Society, 2013, 33, 1665-1674.	5.7	105
10	Geometrically Complex Silicon Carbide Structures Fabricated by Robocasting. Journal of the American Ceramic Society, 2012, 95, 2660-2666.	3.8	103
11	Thermal conductivity of ceramics in the ZrO ₂ -GdO _{1.5} system. Journal of Materials Research, 2002, 17, 3193-3200.	2.6	100
12	Mechanical properties of mullite materials. Journal of the European Ceramic Society, 1996, 16, 217-224.	5.7	99
13	Electrically functional 3D-architectured graphene/SiC composites. Carbon, 2016, 100, 318-328.	10.3	89
14	Toughened and strengthened silicon carbide ceramics by adding graphene-based fillers. Scripta Materialia, 2016, 113, 127-130.	5 . 2	84
15	Fabrication of Highly Porous Mullite Materials. Journal of the American Ceramic Society, 2005, 88, 777-779.	3.8	83
16	Synthesis of conducting graphene/Si3N4 composites by spark plasma sintering. Carbon, 2013, 57, 425-432.	10.3	80
17	Electrical conductivity maps in graphene nanoplatelet/silicon nitride composites using conducting scanning force microscopy. Carbon, 2011, 49, 3873-3880.	10.3	79
18	Anisotropic thermal conductivity of silicon nitride ceramics containing carbon nanostructures. Journal of the European Ceramic Society, 2012, 32, 1847-1854.	5 . 7	76

#	Article	IF	CITATIONS
19	Microstructure and mechanical properties of mullite/ZrO2 composites. Journal of Materials Science, 1984, 19, 2909-2914.	3.7	74
20	Single crystal ß-Si3N4 fibers obtained by self-propagating high temperature synthesis. Advanced Materials, 1995, 7, 745-747.	21.0	67
21	Thermal conductivity of silicon carbide composites with highly oriented graphene nanoplatelets. Journal of the European Ceramic Society, 2016, 36, 3987-3993.	5.7	64
22	3D-Printed Fe-doped silicon carbide monolithic catalysts for wet peroxide oxidation processes. Applied Catalysis B: Environmental, 2018, 235, 246-255.	20.2	64
23	Toughening in ceramics containing graphene fillers. Ceramics International, 2014, 40, 11187-11192.	4.8	62
24	Printing of Graphene Nanoplatelets into Highly Electrically Conductive Three-Dimensional Porous Macrostructures. Chemistry of Materials, 2016, 28, 6321-6328.	6.7	53
25	Continuous in situ functionally graded silicon nitride materials. Acta Materialia, 2009, 57, 2607-2612.	7.9	50
26	Effect of ZrO2 (ss) in mullite on the sintering and mechanical properties of mullite/ZrO2 composites. Journal of Materials Science Letters, 1983, 2, 599-601.	0.5	49
27	Thermal conductivity of Al2O3/SiC platelet composites. Journal of the European Ceramic Society, 2003, 23, 1773-1778.	5.7	49
28	Influence of the SiC grain size on the wear behaviour of Al2O3/SiC composites. Journal of the European Ceramic Society, 2006, 26, 1273-1279.	5.7	45
29	Effect of the type of flame on the microstructure of CaZrO3 combustion flame sprayed coatings. Surface and Coatings Technology, 2006, 201, 3307-3313.	4.8	43
30	Characterization of graphene nanoplatelets-Si3N4 composites by Raman spectroscopy. Journal of the European Ceramic Society, 2013, 33, 471-477.	5.7	43
31	Enhanced particle rearrangement during liquid phase spark plasma sintering of silicon nitride-based ceramics. Ceramics International, 2011, 37, 159-166.	4.8	41
32	Electrical Discharge Machining of Ceramic/Carbon Nanostructure Composites. Procedia CIRP, 2013, 6, 95-100.	1.9	41
33	Highly-porous hierarchical SiC structures obtained by filament printing and partial sintering. Journal of the European Ceramic Society, 2019, 39, 688-695.	5.7	41
34	Enhanced Tribological Performance of Silicon Nitride-Based Materials by Adding Carbon Nanotubes. Journal of the American Ceramic Society, 2011, 94, 2542-2548.	3.8	40
35	Anisotropic elastic moduli and internal friction of graphene nanoplatelets/silicon nitride composites. Composites Science and Technology, 2013, 75, 93-97.	7.8	40
36	Finite Element Simulation of Thermal Residual Stresses in Joining Ceramics with Thin Metal Interlayers. Journal of the American Ceramic Society, 1998, 81, 2342-2348.	3.8	39

#	Article	IF	CITATIONS
37	Effect of α- β Si3N4-phase ratio and microstructure on the tribological behaviour up to 700°C. Wear, 2000, 239, 59-68.	3.1	38
38	Elastic properties of silicon nitride ceramics reinforced with graphene nanofillers. Materials and Design, 2015, 87, 675-680.	7.0	37
39	Thermal diffusivity of porous cordierite ceramic burners. Journal of Applied Physics, 2002, 92, 2346-2349.	2.5	36
40	Effect of Microstructure on the Thermal Conductivity of Hotâ€Pressed Silicon Nitride Materials. Journal of the American Ceramic Society, 2002, 85, 200-206.	3.8	36
41	Metal–ceramic interfaces: joining silicon nitride–stainless steel. Applied Surface Science, 2004, 238, 506-512.	6.1	34
42	Tribological characteristics of self-mated couples of Si3N4–SiC composites in the range 22–700°C. Wear, 1999, 233-235, 222-228.	3.1	33
43	Direct in situ observation of toughening mechanisms in nanocomposites of silicon nitride and reduced graphene-oxide. Scripta Materialia, 2018, 149, 40-43.	5.2	33
44	Fluorescence of Mn2+ in CaCO3. Journal of Luminescence, 1982, 27, 365-375.	3.1	32
45	Microstructure and mechanical strength of Si3N4/Ni solid state bonded interfaces. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 308, 53-59.	5.6	32
46	Joining mechanism in Si3N4 bonded with a Ni–Cr–B interlayer. Journal of the European Ceramic Society, 2003, 23, 547-553.	5.7	32
47	Multi-scale electrical response of silicon nitride/multi-walled carbon nanotubes composites. Composites Science and Technology, 2011, 71, 60-66.	7.8	32
48	Protein adsorption and in vitro behavior of additively manufactured 3D-silicon nitride scaffolds intended for bone tissue engineering. Materials Science and Engineering C, 2020, 115, 110734.	7.3	32
49	Polymer-derived ceramic/graphene oxide architected composite with high electrical conductivity and enhanced thermal resistance. Journal of the European Ceramic Society, 2018, 38, 2265-2271.	5.7	31
50	Mulliteâ€"YSZ multilayered environmental barrier coatings tested in cycling conditions under water vapor atmosphere. Surface and Coatings Technology, 2012, 209, 103-109.	4.8	30
51	The effect of graphene nanoplatelets on the thermal and electrical properties of aluminum nitride ceramics. Journal of the European Ceramic Society, 2017, 37, 3721-3729.	5.7	29
52	Low percolation threshold in highly conducting graphene nanoplatelets/glass composite coatings. Carbon, 2018, 139, 556-563.	10.3	29
53	Mullite/ZrO2 coatings produced by flame spraying. Journal of the European Ceramic Society, 2008, 28, 2191-2197.	5.7	28
54	Graphene nanoribbon ceramic composites. Carbon, 2015, 90, 207-214.	10.3	28

#	Article	IF	Citations
55	Microstructure and Mechanical Properties of Mullite-Silicon Carbide Composites. Journal of the American Ceramic Society, 1989, 72, 1049-1054.	3.8	26
56	Filament printing of graphene-based inks into self-supported 3D architectures. Carbon, 2019, 151, 94-102.	10.3	26
57	Applications of Ceramic/Graphene Composites and Hybrids. Materials, 2021, 14, 2071.	2.9	26
58	Thermal conductivity enhancement in cutting tools by chemical vapor deposition diamond coating. Diamond and Related Materials, 2002, 11, 703-707.	3.9	25
59	Wear of aligned silicon nitride under dry sliding conditions. Wear, 2009, 266, 6-12.	3.1	25
60	Contact-mechanical properties at pre-creep temperatures of fine-grained graphene/SiC composites prepared in situ by spark-plasma sintering. Journal of the European Ceramic Society, 2014, 34, 1433-1438.	5.7	25
61	Sintering behaviour and properties of YAlSiO and YAlSiON glass-ceramics. Ceramics International, 2011, 37, 1485-1492.	4.8	23
62	Single crystal \hat{l}^2 -SiAlON fibers obtained by self-propagating high-temperature synthesisa^ $-$ a^ $-$. Scripta Materialia, 1997, 37, 405-410.	5.2	22
63	Fabrication and microstructure of a ZrO2–Ni functionally graded bonding interlayer using the airbrush spraying method. Acta Materialia, 2006, 54, 2215-2222.	7.9	22
64	Mullite and Mullite/ZrO2-7wt.%Y2O3 Powders for Thermal Spraying of Environmental Barrier Coatings. Journal of Thermal Spray Technology, 2010, 19, 286-293.	3.1	22
65	The Prospect of Y2SiO5-Based Materials as Protective Layer in Environmental Barrier Coatings. Journal of Thermal Spray Technology, 2013, 22, 680-689.	3.1	22
66	Oxidation behaviour of mullite-SiC composites. Journal of Materials Science, 1990, 25, 3561-3565.	3.7	21
67	Characterization of Si3N4 thin films prepared by r.f. magnetron sputtering. Surface and Coatings Technology, 2002, 151-152, 67-71.	4.8	21
68	Correlation between microstructure and toughness of hot pressed Si3N4 ceramics seeded with \hat{l}^2 -Si3N4 particles. Ceramics International, 2003, 29, 757-764.	4.8	21
69	Protective Si–Al–O–Y glass coatings on stainless steel in situ prepared by combustion flame spraying. Surface and Coatings Technology, 2008, 202, 1712-1717.	4.8	21
70	Dense and Homogenous Silicon Nitride Composites Containing Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2009, 9, 6188-6194.	0.9	21
71	Thermal conductivity studies on ceramic floor tiles. Ceramics International, 2011, 37, 369-375.	4.8	21
72	Silicon Nitride Joining Using Silica and Yttria Ceramic Interlayers. Journal of the American Ceramic Society, 2002, 85, 941-946.	3.8	20

#	Article	IF	CITATIONS
73	Solid solution of TiO2 in mullite. Journal of Materials Science Letters, 1983, 2, 185-187.	0.5	19
74	Effects of seeding and amounts of Y2O3:Al2O3 additives on grain growth in Si3N4 ceramics. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 475, 185-189.	5.6	19
75	Porous mullite and mullite–ZrO2 granules for thermal spraying applications. Surface and Coatings Technology, 2011, 205, 4304-4311.	4.8	19
76	Improved crack resistance and thermal conductivity of cubic zirconia containing graphene nanoplatelets. Journal of the European Ceramic Society, 2020, 40, 1557-1565.	5.7	18
77	Flame spraying of adherent silicon coatings on SiC substrates. Surface and Coatings Technology, 2015, 270, 8-15.	4.8	17
78	Modeling the effect of pulsing on the spark plasma sintering of silicon nitride materials. Scripta Materialia, 2011, 65, 273-276.	5.2	16
79	Microstructural designs of spark-plasma sintered silicon carbide ceramic scaffolds. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2014, 53, 93-100.	1.9	16
80	3D-Printed Fe/ \hat{I}^3 -Al ₂ O ₃ Monoliths from MOF-Based Boehmite Inks for the Catalytic Hydroxylation of Phenol. ACS Applied Materials & amp; Interfaces, 2022, 14, 920-932.	8.0	16
81	Nitrogen-doped-CNTs/Si3N4 nanocomposites with high electrical conductivity. Journal of the European Ceramic Society, 2014, 34, 1097-1104.	5.7	15
82	Highly Electrically Conducting Glass-Graphene Nanoplatelets Hybrid Coatings. ACS Applied Materials & Long Representation (2015), 7, 17656-17662.	8.0	15
83	Enhanced microstructural and mechanical gradients on silicon nitride ceramics. Ceramics International, 2015, 41, 2594-2598.	4.8	15
84	Role of titania on the sintering, microstructure and fracture toughness of Al2O3/ZrO2 composites. Journal of Materials Science Letters, 1988, 7, 15-18.	0.5	14
85	Study of AlN and Si3N4 powders synthesized by SHS reactions. Ceramics International, 1999, 25, 607-612.	4.8	14
86	Oxygen distribution in AlN and Si3N4 powders as revealed by chemical and spectroscopy techniques. Ceramics International, 2000, 26, 141-146.	4.8	14
87	Effect of aging on the onset of cracks due to redistribution of residual stresses in functionally graded environmental barrier coatings of mullite/ZrO2. Composites Part B: Engineering, 2014, 61, 199-205.	12.0	14
88	Contact damage resistant SiC/graphene nanofiller composites. Journal of the European Ceramic Society, 2018, 38, 41-45.	5.7	14
89	Iron-based metal-organic frameworks integrated into 3D printed ceramic architectures. Open Ceramics, 2021, 5, 100047.	2.0	14
90	Investigation of ZrO2/mullite solid solution by energy dispersive X-ray spectroscopy and electron diffraction. Acta Metallurgica, 1984, 32, 1601-1607.	2.1	13

#	Article	IF	CITATIONS
91	Mechanical Properties and Contact Damage Behavior in Aligned Silicon Nitride Materials. Journal of the American Ceramic Society, 2007, 90, 1157-1163.	3.8	13
92	Carbon nanotubes functionalization process for developing ceramic matrix nanocomposites. Journal of Materials Chemistry, 2011, 21, 6063.	6.7	13
93	Mechanical Behavior of Air Plasma-Sprayed YSZ Functionally Graded Mullite Coatings Investigated via Instrumented Indentation. Journal of Thermal Spray Technology, 2011, 20, 100-107.	3.1	13
94	Effects of Current Confinement on the Spark Plasma Sintering of Silicon Carbide Ceramics. Journal of the American Ceramic Society, 2015, 98, 2745-2753.	3.8	13
95	The decisive role played by graphene nanoplatelets on improving the tribological performance of Y 2 O 3 -Al 2 O 3 -SiO 2 glass coatings. Materials and Design, 2016, 112, 449-455.	7.0	13
96	Strong and light cellular silicon carbonitride $\hat{a} \in \mathbb{C}$ Reduced graphene oxide material with enhanced electrical conductivity and capacitive response. Additive Manufacturing, 2019, 30, 100849.	3.0	13
97	Heat dissipation in 3D printed cellular aluminum nitride structures. Journal of the European Ceramic Society, 2021, 41, 2407-2414.	5.7	13
98	Thermal conductivity in mullite/ZrO2 composite coatings. Ceramics International, 2010, 36, 1609-1614.	4.8	12
99	Porous mullite templated from hard mullite beads. Journal of the European Ceramic Society, 2011, 31, 1397-1403.	5.7	12
100	Microstructure of Mullite/ZrO2 and Mullite/Al2O3/ZrO2 tough ceramic composites. Acta Metallurgica, 1987, 35, 1175-1179.	2.1	11
101	Effect of oxygen content on the corrosion of AlN powder in diluted acid solution. Journal of the European Ceramic Society, 1994, 13, 335-338.	5.7	11
102	Phase Composition and Microstructural Responses of Graded Mullite/YSZ Coatings Under Water Vapor Environments. Journal of Thermal Spray Technology, 2011, 20, 83-91.	3.1	11
103	Graphene-based nanostructures as catalysts for wet peroxide oxidation treatments: From nanopowders to 3D printed porous monoliths. Catalysis Today, 2020, 356, 197-204.	4.4	11
104	Reinforced 3D Composite Structures of \hat{I}^3 -, \hat{I} -Al2O3 with Carbon Nanotubes and Reduced GO Ribbons Printed from Boehmite Gels. Materials, 2021, 14, 2111.	2.9	11
105	Thermal conductivity of a ZrO2–Ni functionally graded coatings. Scripta Materialia, 2008, 58, 973-976.	5.2	10
106	Crystallization studies in mullite and mullite–YSZ beads. Journal of the European Ceramic Society, 2010, 30, 2003-2008.	5. 7	10
107	Directional Electrical Transport in Tough Multifunctional Layered Ceramic/Graphene Composites. Advanced Electronic Materials, 2015, 1, 1500132.	5.1	10
108	Prominent local transport in silicon carbide composites containing in-situ synthesized three-dimensional graphene networks. Journal of the European Ceramic Society, 2016, 36, 3073-3081.	5.7	10

#	Article	IF	CITATIONS
109	Multifunctional 3Dâ€Printed Cellular MAXâ€Phase Architectures. Advanced Materials Technologies, 2019, 4, 1900375.	5.8	10
110	Robust and conductive mesoporous reduced graphene oxide-silica hybrids achieved by printing and the sol gel route. Journal of the European Ceramic Society, 2021, 41, 2908-2917.	5.7	10
111	Processing and sintering of a 3:2 alumina silica gel. Ceramics International, 1992, 18, 365-372.	4.8	9
112	Fracture Resistance of Mullite Under Static and Cyclic Loads. Scripta Materialia, 1997, 38, 39-44.	5.2	9
113	Cyclic fatigue behaviour of silicon nitride materials. Journal of the European Ceramic Society, 1997, 17, 1855-1860.	5.7	9
114	Compositional characterization of silicon nitride thin films prepared by RF-sputtering. Vacuum, 2002, 67, 513-518.	3. 5	9
115	Measurements and Finite-Element Simulations of Residual Stresses Developed in Si3N4/Ni Diffusion Bonds. Journal of the American Ceramic Society, 2005, 88, 2515-2520.	3.8	9
116	Thermally Sprayed CaZrO3 Coatings. Journal of Thermal Spray Technology, 2008, 17, 865-871.	3.1	9
117	Enhanced Thermal and Mechanical Properties of 3D Printed Highly Porous Structures Based on γâ€Al ₂ O ₃ Âby Adding Graphene Nanoplatelets. Advanced Materials Technologies, 2022, 7, .	5.8	9
118	Solid-solution effects on the fracture toughness of mullite-ZrO2 composites. Journal of Materials Science Letters, 1985, 4, 1026-1028.	0.5	8
119	Microstructure and Mechanical Properties of Silicon Nitride Materials Fabricated from SHS Powders. Journal of the American Ceramic Society, 2001, 84, 1033-1036.	3.8	8
120	Residual stresses in ceramic-to-metal joints: diffraction measurements and finite element method analysis. Philosophical Magazine, 2007, 87, 5551-5563.	1.6	8
121	Carbon nanotubes/silicon nitride nanocomposites for gasoline lubricated high pressure pumps. Composites Part B: Engineering, 2014, 64, 168-174.	12.0	8
122	Tribological Performance of Aligned Silicon Nitride Ceramics under Isooctane‣ubricated Oscillating Sliding Conditions. Journal of the American Ceramic Society, 2016, 99, 241-248.	3.8	8
123	Thermal conduction in three-dimensional printed porous samples by high resolution infrared thermography. Open Ceramics, 2020, 4, 100028.	2.0	8
124	Influence of additives on the microstructural development of mullite-ZrO2 and alumina-ZrO2. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1989, 109, 139-145.	5.6	7
125	Remarkable Effects of an Electrodeposited Copper Skin on the Strength and the Electrical and Thermal Conductivities of Reduced Graphene Oxide-Printed Scaffolds. ACS Applied Materials & Interfaces, 2020, 12, 24209-24217.	8.0	7
126	Thermopower and hall effect in silicon nitride composites containing thermally reduced graphene and pure graphene nanosheets. Ceramics International, 2016, 42, 11341-11347.	4.8	6

#	Article	IF	CITATIONS
127	The effect of rod orientation on the strength of highly porous filament printed 3D SiC ceramic architectures. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2021, 60, 119-127.	1.9	6
128	The influence of the catalyst on the CO formation during catalytic wet peroxide oxidation process. Catalysis Today, 2021, 361, 30-36.	4.4	6
129	Influence of TiO2on the Mechanical Properties at High Temperature of Zirconia-Toughened Alumina. Advanced Ceramic Materials, 1988, 3, 563-568.	2.2	6
130	YBaCuO and thick films on Ce-TZP, Y-TZP and spinel substrates. Journal of the Less Common Metals, 1990, 164-165, 458-463.	0.8	5
131	Mullite materials from a 3:2 alumina-silica gel part II: Microstructural evolution. Journal of the European Ceramic Society, 1992, 10, 399-403.	5.7	5
132	Experimental determination of residual stress in silicon nitride diffusion bonds obtained by high-energy X-ray diffraction. Powder Technology, 2004, 148, 60-63.	4.2	5
133	Mullite materials from a 3:2 alumina-silica gel part I: Green processing and porosity. Journal of the European Ceramic Society, 1992, 10, 393-398.	5.7	4
134	Thermal Evolution and Sintering Behavior of a 2:1 Mullite Gel. Journal of the American Ceramic Society, 1997, 80, 1573-1578.	3.8	4
135	Transmission electron microscopy study on silicon nitride/stainless steel bonded interfaces. Thin Solid Films, 2008, 517, 779-781.	1.8	4
136	Alterations in cordierite based burners subjected to radiant mode ageing conditions. Journal of the European Ceramic Society, 2003, 23, 3097-3103.	5.7	3
137	Mechanical properties of the Ni filler metal layer in Si3N4 joints measured by nanoindentation. Surface and Interface Analysis, 2004, 36, 649-653.	1.8	3
138	A method for disentangling β-Si3N4 seeds obtained by SHS. Powder Technology, 2008, 182, 364-367.	4.2	3
139	Processing Route to Disentangle Multi-Walled Carbon Nanotube Towards Ceramic Composite. Journal of Nanoscience and Nanotechnology, 2009, 9, 6164-6170.	0.9	3
140	Thermally Sprayed Y2O3-Al2O3-SiO2 Coatings for High-Temperature Protection of SiC Ceramics. Journal of Thermal Spray Technology, 2015, 24, 185.	3.1	3
141	Superior Performance of Ablative Glass Coatings Containing Graphene Nanosheets. Journal of the American Ceramic Society, 2016, 99, 4066-4072.	3.8	3
142	Face dependent footprints of carpet-like graphene films grown on polycrystalline silicon carbide. Carbon, 2019, 153, 417-427.	10.3	3
143	Thermal Diffusivity Measurements of Porous Ceramics. Key Engineering Materials, 2004, 264-268, 2179-2182.	0.4	2
144	In Situ Graded Ceramic/Reduced Graphene Oxide Composites Manufactured by Spark Plasma Sintering. Ceramics, 2021, 4, 12-19.	2.6	2

#	Article	IF	Citations
145	Effect of Bonding Pressure on Silicon Nitride Joining Using a Nickelâ€Chromiumâ€Boron Metal Filler. Journal of the American Ceramic Society, 2003, 86, 1226-1229.	3.8	1
146	Joining of Silicon Nitride by Interposing Metal Foils: Effects of Temperature and Bonding Pressure. Materials Science Forum, 2003, 426-432, 4075-4080.	0.3	1
147	High energy X-ray diffraction analysis of strain and residual stress in silicon nitride ceramic diffusion bonds. Nuclear Instruments & Methods in Physics Research B, 2005, 238, 119-123.	1.4	1
148	ZrO ₂ â€Ni Functionally Graded Joining Interlayers: Microstructure and Properties. Advanced Engineering Materials, 2007, 9, 1005-1008.	3.5	1
149	Modelling thermal conductivity of biphasic ceramic materials by the finite element method. Journal of Composite Materials, 2015, 49, 2159-2166.	2.4	1
150	YBaCuO and YBaCuO/Ag superconducting thick films. processing, properties and degradation. Phase Transitions, 1993, 41, 109-121.	1.3	0
151	Densification of Si ₃ N ₄ /Si ₃ N ₄ -Fibre Composites. Key Engineering Materials, 1996, 127-131, 247-254.	0.4	0
152	The Use of Cordierite Based Materials as Radiant Burners. Key Engineering Materials, 2004, 264-268, 2191-2194.	0.4	0
153	ZrO ₂ -Ni Functional Gradient Bonding Interlayer. Key Engineering Materials, 2007, 336-338, 2579-2582.	0.4	0
154	Processing and Properties of Highly Textured Si ₃ N ₄ Materials. Key Engineering Materials, 2007, 336-338, 1175-1178.	0.4	0
155	Mechanical Properties of Filler Metal in Si ₃ N ₄ /Austenitic Stainless Steel/Si ₃ N ₄ Joints as Measured by Nanoindentation and its Relationship to the Interfacial Strength. Key Engineering Materials, 2007, 336-338, 2391-2393.	0.4	O
156	Joining Methods for Hard Ceramics. , 2014, , 231-261.		0
157	The Effective Role Played by Graphene Fillers for Improving the Tribological Properties of Ceramics. , 2015,		O