Yun-Jiao Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5490075/publications.pdf Version: 2024-02-01

Υμη-Ιμο Ζηλης

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
2	Inhibition of autophagy enhances the anticancer activity of silver nanoparticles. Autophagy, 2014, 10, 2006-2020.	4.3	224
3	Tuning the autophagy-inducing activity of lanthanide-based nanocrystals through specificÂsurface-coating peptides. Nature Materials, 2012, 11, 817-826.	13.3	158
4	Harnessing copper-palladium alloy tetrapod nanoparticle-induced pro-survival autophagy for optimized photothermal therapy of drug-resistant cancer. Nature Communications, 2018, 9, 4236.	5.8	139
5	Core/shell Fe ₃ O ₄ /Gd ₂ O ₃ nanocubes as T ₁ –T ₂ dual modal MRI contrast agents. Nanoscale, 2016, 8, 12826-12833.	2.8	108
6	Iron oxide nanoparticles promote macrophage autophagy and inflammatory response through activation of toll-like Receptor-4 signaling. Biomaterials, 2019, 203, 23-30.	5.7	102
7	Nanoparticle-facilitated autophagy inhibition promotes the efficacy of chemotherapeutics against breast cancer stem cells. Biomaterials, 2016, 103, 44-55.	5.7	90
8	Pro-Death or Pro-Survival: Contrasting Paradigms on Nanomaterial-Induced Autophagy and Exploitations for Cancer Therapy. Accounts of Chemical Research, 2019, 52, 3164-3176.	7.6	71
9	Enhancing tumor chemotherapy and overcoming drug resistance through autophagy-mediated intracellular dissolution of zinc oxide nanoparticles. Nanoscale, 2019, 11, 11789-11807.	2.8	67
10	The role of elevated autophagy on the synaptic plasticity impairment caused by CdSe/ZnS quantum dots. Biomaterials, 2013, 34, 10172-10181.	5.7	62
11	Accelerating the clearance of mutant huntingtin protein aggregates through autophagy induction by europium hydroxide nanorods. Biomaterials, 2014, 35, 899-907.	5.7	60
12	Dendritic Platinum–Copper Alloy Nanoparticles as Theranostic Agents for Multimodal Imaging and Combined Chemophotothermal Therapy. Advanced Functional Materials, 2016, 26, 5971-5978.	7.8	60
13	A transistor-like pH-sensitive nanodetergent for selective cancer therapy. Nature Nanotechnology, 2022, 17, 541-551.	15.6	53
14	Impact of Morphology on Iron Oxide Nanoparticles-Induced Inflammasome Activation in Macrophages. ACS Applied Materials & Interfaces, 2018, 10, 41197-41206.	4.0	50
15	Induction of cyto-protective autophagy by paramontroseite VO ₂ nanocrystals. Nanotechnology, 2013, 24, 165102.	1.3	49
16	Nanoparticle as Signaling Protein Mimic: Robust Structural and Functional Modulation of CaMKII upon Specific Binding to Fullerene C60 Nanocrystals. ACS Nano, 2014, 8, 6131-6144.	7.3	49
17	Autophagy-mediated clearance of ubiquitinated mutant huntingtin by graphene oxide. Nanoscale, 2016, 8, 18740-18750.	2.8	39
18	Key Role of TFEB Nucleus Translocation for Silver Nanoparticleâ€Induced Cytoprotective Autophagy. Small, 2018, 14, e1703711.	5.2	36

Yun-Jiao Zhang

#	Article	lF	CITATIONS
19	Inhibition of Kupffer Cell Autophagy Abrogates Nanoparticleâ€Induced Liver Injury. Advanced Healthcare Materials, 2017, 6, 1601252.	3.9	35
20	Graphene oxide improves postoperative cognitive dysfunction by maximally alleviating amyloid beta burden in mice. Theranostics, 2020, 10, 11908-11920.	4.6	33
21	Quercetin attenuates myocardial ischemia-reperfusion injury via downregulation of the HMGB1-TLR4-NF-ήB signaling pathway. American Journal of Translational Research (discontinued), 2018, 10, 1273-1283.	0.0	33
22	Autophagic lysosomal reformation depends on mTOR reactivation in H2O2-induced autophagy. International Journal of Biochemistry and Cell Biology, 2016, 70, 76-81.	1.2	32
23	Autophagy regulation as a promising approach for improving cancer immunotherapy. Cancer Letters, 2020, 475, 34-42.	3.2	32
24	Differential ERK activation during autophagy induced by europium hydroxide nanorods and trehalose: Maximum clearance of huntingtin aggregates through combined treatment. Biomaterials, 2015, 73, 160-174.	5.7	31
25	Blood Circulation-Prolonging Peptides for Engineered Nanoparticles Identified via Phage Display. Nano Letters, 2019, 19, 1467-1478.	4.5	31
26	Inhibition of lanthanide nanocrystal-induced inflammasome activation in macrophages by a surface coating peptide through abrogation of ROS production and TRPM2-mediated Ca2+ influx. Biomaterials, 2016, 108, 143-156.	5.7	30
27	Persistency of Enlarged Autolysosomes Underscores Nanoparticleâ€Induced Autophagy in Hepatocytes. Small, 2017, 13, 1602876.	5.2	29
28	Giant Cellular Vacuoles Induced by Rare Earth Oxide Nanoparticles are Abnormally Enlarged Endo/Lysosomes and Promote mTOR-Dependent TFEB Nucleus Translocation. Small, 2016, 12, 5759-5768.	5.2	28
29	Increased TRPM6 expression in atrial fibrillation patients contribute to atrial fibrosis. Experimental and Molecular Pathology, 2015, 98, 486-490.	0.9	23
30	Macrophage-Mediated Porous Magnetic Nanoparticles for Multimodal Imaging and Postoperative Photothermal Therapy of Gliomas. ACS Applied Materials & Interfaces, 2021, 13, 56825-56837.	4.0	23
31	Transdermal delivery of human epidermal growth factor facilitated by a peptide chaperon. European Journal of Medicinal Chemistry, 2013, 62, 405-409.	2.6	22
32	Enhancing Chemotherapy of p53â€Mutated Cancer through Ubiquitinationâ€Dependent Proteasomal Degradation of Mutant p53 Proteins by Engineered ZnFeâ€4 Nanoparticles. Advanced Functional Materials, 2020, 30, 2001994.	7.8	18
33	Inhibition of inhaled halloysite nanotube toxicity by trehalose through enhanced autophagic clearance of p62. Nanotoxicology, 2019, 13, 354-368.	1.6	16
34	Photoresponsive PAMAMâ€Assembled Nanocarrier Loaded with Autophagy Inhibitor for Synergistic Cancer Therapy. Small, 2021, 17, e2102295.	5.2	15
35	Copper–Palladium Tetrapods with Sharp Tips as a Superior Catalyst for the Oxygen Reduction Reaction. ChemCatChem, 2018, 10, 925-930.	1.8	14
36	A blood circulation-prolonging peptide anchored biomimetic phage-platelet hybrid nanoparticle system for prolonged blood circulation and optimized anti-bacterial performance. Theranostics, 2021, 11, 2278-2296.	4.6	14

Yun-Jiao Zhang

#	Article	IF	CITATIONS
37	Glutathionylation-dependent proteasomal degradation of wide-spectrum mutant p53 proteins by engineered zeolitic imidazolate framework-8. Biomaterials, 2021, 271, 120720.	5.7	14
38	mTORC1-dependent TFEB nucleus translocation and pro-survival autophagy induced by zeolitic imidazolate framework-8. Biomaterials Science, 2020, 8, 4358-4369.	2.6	13
39	Autophagy Impairment through Lysosome Dysfunction by Brucine Induces Immunogenic Cell Death (ICD). The American Journal of Chinese Medicine, 2020, 48, 1915-1940.	1.5	13
40	Effects of iron oxide nanoparticles as T2-MRI contrast agents on reproductive system in male mice. Journal of Nanobiotechnology, 2022, 20, 98.	4.2	13
41	Role of the Na+/K+-ATPase Beta-Subunit in Peptide-Mediated Transdermal Drug Delivery. Molecular Pharmaceutics, 2015, 12, 1259-1267.	2.3	7
42	Photosensitizer-loaded cell membrane biomimetic nanoparticles for enhanced tumor synergetic targeted therapy. RSC Advances, 2020, 10, 9378-9386.	1.7	7
43	Caspase mediated beclinâ€1 dependent autophagy tuning activity and apoptosis promotion by surface modified hausmannite nanoparticle. Journal of Biomedical Materials Research - Part A, 2017, 105, 1299-1310.	2.1	5
44	Cancer Therapy: Dendritic Platinum-Copper Alloy Nanoparticles as Theranostic Agents for Multimodal Imaging and Combined Chemophotothermal Therapy (Adv. Funct. Mater. 33/2016). Advanced Functional Materials, 2016, 26, 5950-5950.	7.8	2