
Pierre-Antoine Defossez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5489196/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Large-Scale Chromatin Rearrangements in Cancer. Cancers, 2022, 14, 2384.	1.7	3
2	Staying true to yourself: mechanisms of DNA methylation maintenance in mammals. Nucleic Acids Research, 2021, 49, 3020-3032.	6.5	62
3	Structure-based screening combined with computational and biochemical analyses identified the inhibitor targeting the binding of DNA Ligase 1 to UHRF1. Bioorganic and Medicinal Chemistry, 2021, 52, 116500.	1.4	8
4	Reading DNA Modifications. Journal of Molecular Biology, 2020, 432, 1599-1601.	2.0	9
5	Lysine Methylation Regulators Moonlighting outside the Epigenome. Molecular Cell, 2019, 75, 1092-1101.	4.5	73
6	Genetic screens reveal mechanisms for the transcriptional regulation of tissue-specific genes in normal cells and tumors. Nucleic Acids Research, 2019, 47, 3407-3421.	6.5	10
7	Structure of the UHRF1 Tandem Tudor Domain Bound to a Methylated Non-histone Protein, LIG1, Reveals Rules for Binding and Regulation. Structure, 2019, 27, 485-496.e7.	1.6	41
8	Stabilization of the methyl-CpG binding protein ZBTB38 by the deubiquitinase USP9X limits the occurrence and toxicity of oxidative stress in human cells. Nucleic Acids Research, 2018, 46, 4392-4404.	6.5	22
9	Mechanisms of DNA Methyltransferase Recruitment in Mammals. Genes, 2018, 9, 617.	1.0	37
10	Depletion of ZBTB38 potentiates the effects of DNA demethylating agents in cancer cells via CDKN1C mRNA up-regulation. Oncogenesis, 2018, 7, 82.	2.1	14
11	The nuclear receptor RXRA controls cellular senescence by regulating calcium signaling. Aging Cell, 2018, 17, e12831.	3.0	45
12	Methylation of DNA Ligase 1 by G9a/GLP Recruits UHRF1 to Replicating DNA and Regulates DNA Methylation. Molecular Cell, 2017, 67, 550-565.e5.	4.5	151
13	Loss of the Methyl-CpG–Binding Protein ZBTB4 Alters Mitotic Checkpoint, Increases Aneuploidy, and Promotes Tumorigenesis. Cancer Research, 2017, 77, 62-73.	0.4	55
14	MyoD reprogramming requires Six1 and Six4 homeoproteins: genome-wide <i>cis</i> -regulatory module analysis. Nucleic Acids Research, 2016, 44, 8621-8640.	6.5	27
15	Screening of a kinase library reveals novel pro-senescence kinases and their common NF-κB-dependent transcriptional program. Aging, 2015, 7, 986-999.	1.4	36
16	MBD4 cooperates with DNMT1 to mediate methyl-DNA repression and protects mammalian cells from oxidative stress. Epigenetics, 2014, 9, 546-556.	1.3	44
17	MBD5 and MBD6 interact with the human PRâ€DUB complex through their methyl pGâ€binding domain. Proteomics, 2014, 14, 2179-2189.	1.3	90
18	The RBBP6/ZBTB38/MCM10 Axis Regulates DNA Replication and Common Fragile Site Stability. Cell Reports, 2014, 7, 575-587.	2.9	66

#	Article	IF	CITATIONS
19	Ceci n'est pas une <scp>DNMT</scp> : Recently discovered functions of <scp>DNMT</scp> 2 and their relation to methyltransferase activity (<scp>C</scp> omment on) Tj ETQq1 1 0.784314 rgBT /Overlock	10 Tf 50 737.27d	(<scpာdoi< sc<="" td=""></scpာdoi<>
20	On how mammalian transcription factors recognize methylated DNA. Epigenetics, 2013, 8, 131-137.	1.3	85
21	The role of methyl-binding proteins in chromatin organization and epigenome maintenance. Briefings in Functional Genomics, 2012, 11, 251-264.	1.3	92
22	Biological Functions of Methyl-CpG-Binding Proteins. Progress in Molecular Biology and Translational Science, 2011, 101, 377-398.	0.9	80
23	Mammalian methylâ€binding proteins: What might they do?. BioEssays, 2010, 32, 1025-1032.	1.2	19
24	Sequence-specific recognition of methylated DNA by human zinc-finger proteins. Nucleic Acids Research, 2010, 38, 5015-5022.	6.5	92
25	The Human Proteins MBD5 and MBD6 Associate with Heterochromatin but They Do Not Bind Methylated DNA. PLoS ONE, 2010, 5, e11982.	1.1	97
26	Many paths to one goal? The proteins that recognize methylated DNA in eukaryotes. International Journal of Developmental Biology, 2009, 53, 323-334.	0.3	76
27	Zbtb4 represses transcription of P21CIP1 and controls the cellular response to p53 activation. EMBO Journal, 2008, 27, 1563-1574.	3.5	91
28	The cell biology of DNA methylation in mammals. Biochimica Et Biophysica Acta - Molecular Cell Research, 2008, 1783, 2167-2173.	1.9	81
29	Assessment of sera for chromatin-immunoprecipitation. BioTechniques, 2008, 44, 66-68.	0.8	5
30	Using reverse electrophoretic mobility shift assay to measure and compare protein–DNA binding affinities. Analytical Biochemistry, 2006, 357, 156-158.	1.1	7
31	Born to bind: the BTB protein–protein interaction domain. BioEssays, 2006, 28, 1194-1202.	1.2	223
32	Histone H1 of Saccharomyces cerevisiae Inhibits Transcriptional Silencing. Genetics, 2006, 173, 579-58	7. 1.2	20
33	A Family of Human Zinc Finger Proteins That Bind Methylated DNA and Repress Transcription. Molecular and Cellular Biology, 2006, 26, 169-181.	1.1	278
34	The Human Enhancer Blocker CTC-binding Factor Interacts with the Transcription Factor Kaiso. Journal of Biological Chemistry, 2005, 280, 43017-43023.	1.6	76
35	General Regulatory Factors (GRFs) as Genome Partitioners. Journal of Biological Chemistry, 2002, 277, 41736-41743.	1.6	51
36	The vertebrate protein CTCF functions as an insulator in Saccharomyces cerevisiae. Nucleic Acids Research, 2002, 30, 5136-5141.	6.5	25

#	Article	IF	CITATIONS
37	Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature, 2002, 418, 344-348.	13.7	950
38	Restriction calorique et longévité : résultats inattendus chez la levure. Medecine/Sciences, 2002, 18, 1191-1193.	0.0	0
39	Sound silencing: the Sir2 protein and cellular senescence. BioEssays, 2001, 23, 327-332.	1.2	21
40	Requirement of NAD and SIR2 for Life-Span Extension by Calorie Restriction in Saccharomyces cerevisiae. Science, 2000, 289, 2126-2128.	6.0	1,696
41	Elimination of Replication Block Protein Fob1 Extends the Life Span of Yeast Mother Cells. Molecular Cell, 1999, 3, 447-455.	4.5	380
42	Effects of Mutations in DNA Repair Genes on Formation of Ribosomal DNA Circles and Life Span in <i>Saccharomyces cerevisiae</i> . Molecular and Cellular Biology, 1999, 19, 3848-3856.	1.1	145
43	Vicious circles: a mechanism for yeast aging. Current Opinion in Microbiology, 1998, 1, 707-711.	2.3	25
44	Differential expression patterns of the PEA3 group transcription factors through murine embryonic development. Oncogene, 1997, 15, 937-952.	2.6	138
45	Structure–Function Relationships of the PEA3 Group of Ets-Related Transcription Factors. Biochemical and Molecular Medicine, 1997, 61, 127-135.	1.5	84
46	Genomic Organization of the Human ERM (ETV5) Gene, a PEA3 Group Member of ETS Transcription Factors. Genomics, 1996, 35, 236-240.	1.3	26
47	Androgen Receptor-Ets Protein Interaction Is a Novel Mechanism for Steroid Hormone-mediated Down-modulation of Matrix Metalloproteinase Expression. Journal of Biological Chemistry, 1996, 271, 23907-23913.	1.6	147