## Shrikrishna Sartale

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5489110/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Preparation of nanocrystalline ZnS by a new chemical bath deposition route. Thin Solid Films, 2005, 480-481, 168-172.                                                                                                   | 0.8 | 101       |
| 2  | Preparation and characterization of nickel sulphide thin films using successive ionic layer adsorption and reaction (SILAR) method. Materials Chemistry and Physics, 2001, 72, 101-104.                                 | 2.0 | 95        |
| 3  | Growth of copper sulphide thin films by successive ionic layer adsorption and reaction (SILAR) method. Materials Chemistry and Physics, 2000, 65, 63-67.                                                                | 2.0 | 92        |
| 4  | Growth and characterization of nanocrystalline CdSe thin films deposited by the successive ionic layer adsorption and reaction method. Semiconductor Science and Technology, 2004, 19, 980-986.                         | 1.0 | 91        |
| 5  | Zinc oxide superstructures: Recent synthesis approaches and application for hydrogen production via photoelectrochemical water splitting. International Journal of Hydrogen Energy, 2019, 44, 2091-2127.                | 3.8 | 82        |
| 6  | Photocatalytic degradation of methylene blue by hydrothermally synthesized CZTS nanoparticles.<br>Journal of Materials Science: Materials in Electronics, 2017, 28, 8186-8191.                                          | 1.1 | 70        |
| 7  | Polyaniline–RuO <sub>2</sub> composite for high performance supercapacitors: chemical synthesis<br>and properties. RSC Advances, 2015, 5, 28687-28695.                                                                  | 1.7 | 60        |
| 8  | Patterning Co nanoclusters on thin-film Al2O3/NiAl(100). Nanotechnology, 2006, 17, 360-366.                                                                                                                             | 1.3 | 56        |
| 9  | In2S3 nanoparticles dispersed on g-C3N4 nanosheets: role of heterojunctions in photoinduced charge transfer and photoelectrochemical and photocatalytic performance. Journal of Materials Science, 2017, 52, 7077-7090. | 1.7 | 51        |
| 10 | A novel method for the deposition of nanocrystalline Bi2Se3, Sb2Se3 and Bi2Se3–Sb2Se3 thin films —<br>SILAR. Applied Surface Science, 2001, 182, 413-417.                                                               | 3.1 | 49        |
| 11 | Facile Soft Solution Route To Engineer Hierarchical Morphologies of ZnO Nanostructures. Crystal<br>Growth and Design, 2015, 15, 4813-4820.                                                                              | 1.4 | 46        |
| 12 | Chemical and electrochemical synthesis of nanosized TiO2 anatase for large-area photon conversion.<br>Comptes Rendus Chimie, 2006, 9, 702-707.                                                                          | 0.2 | 44        |
| 13 | Electrochemical synthesis of nanocrystalline CoFe2O4 thin films and their characterization.<br>Ceramics International, 2002, 28, 467-477.                                                                               | 2.3 | 43        |
| 14 | Room temperature synthesis of compact TiO2 thin films for 3-D solar cells by chemical arrested route.<br>Applied Surface Science, 2005, 246, 271-278.                                                                   | 3.1 | 41        |
| 15 | Inexpensive synthesis route of porous polyaniline–ruthenium oxide composite for supercapacitor<br>application. Chemical Engineering Journal, 2014, 257, 82-89.                                                          | 6.6 | 41        |
| 16 | Chemical synthesis of Cd-free wide band gap materials for solar cells. Solar Energy Materials and<br>Solar Cells, 2004, 83, 447-458.                                                                                    | 3.0 | 40        |
| 17 | Recent developments in nickel based electrocatalysts for ethanol electrooxidation. International<br>Journal of Hydrogen Energy, 2020, 45, 5928-5947.                                                                    | 3.8 | 40        |
| 18 | Seed-layer-free deposition of well-oriented ZnO nanorods thin films by SILAR and their photoelectrochemical studies. International Journal of Hydrogen Energy, 2020, 45, 5783-5792.                                     | 3.8 | 40        |

SHRIKRISHNA SARTALE

| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Architecture of 3D ZnCo 2 O 4 marigold flowers: Influence of annealing on cold emission and photocatalytic behavior. Materials Chemistry and Physics, 2017, 194, 55-64.                                                    | 2.0 | 39        |
| 20 | Magnetic interactions and electrical properties of Tb3+ substituted NiCuZn ferrites. Journal of Magnetism and Magnetic Materials, 2019, 473, 99-108.                                                                       | 1.0 | 39        |
| 21 | Structures of Co and Pt nanoclusters on a thin film of Al2O3/NiAl(100) from reflection high-energy electron diffraction and scanning-tunnelling microscopy. Surface Science, 2007, 601, 2139-2146.                         | 0.8 | 33        |
| 22 | Electrochemical synthesis of nanocrystalline CuFe2O4 thin films from non-aqueous (ethylene glycol)<br>medium. Materials Chemistry and Physics, 2003, 80, 120-128.                                                          | 2.0 | 32        |
| 23 | Photocatalytic performance of Pd decorated TiO2–CdO composite: Role of in situ formed CdS in the photocatalytic activity. International Journal of Hydrogen Energy, 2015, 40, 13431-13442.                                 | 3.8 | 32        |
| 24 | α-Fe2O3 thin film on stainless steel mesh: A flexible electrode for supercapacitor. Materials Chemistry and Physics, 2019, 225, 284-291.                                                                                   | 2.0 | 31        |
| 25 | Deposition and annealing effect on lanthanum sulfide thin films by spray pyrolysis. Thin Solid Films, 2003, 445, 1-6.                                                                                                      | 0.8 | 29        |
| 26 | Room temperature chemical synthesis of lead selenide thin films with preferred orientation. Applied Surface Science, 2006, 253, 930-936.                                                                                   | 3.1 | 29        |
| 27 | α-Fe2O3 thin films by liquid phase deposition: low-cost option for supercapacitor. Journal of Solid<br>State Electrochemistry, 2017, 21, 2555-2566.                                                                        | 1.2 | 29        |
| 28 | Growth and electronic properties of Au nanoclusters on thin-film Al2O3/NiAl(100) studied by scanning tunnelling microscopy and photoelectron spectroscopy with synchrotron radiation. Surface Science, 2008, 602, 241-248. | 0.8 | 28        |
| 29 | Electrochemical deposition and characterization of CoFe2O4thin films. Physica Status Solidi (A)<br>Applications and Materials Science, 2005, 202, 85-94.                                                                   | 0.8 | 26        |
| 30 | Novel electrochemical process for the deposition of nanocrystalline NiFe2O4thin films. Journal of Physics Condensed Matter, 2004, 16, 773-784.                                                                             | 0.7 | 23        |
| 31 | An efficient fabrication of ZnO–carbon nanocomposites with enhanced photocatalytic activity and superior photostability. Journal of Materials Science: Materials in Electronics, 2019, 30, 1133-1147.                      | 1.1 | 23        |
| 32 | Scanning tunneling microscopy study of growth of Pt nanoclusters on thin film Al2O3/NiAl(100).<br>Surface Science, 2006, 600, 4978-4985.                                                                                   | 0.8 | 22        |
| 33 | Studies on large area (â^1⁄450 cm2) MoS2 thin films deposited using successive ionic layer adsorption and reaction (SILAR) method. Materials Chemistry and Physics, 2001, 71, 94-97.                                       | 2.0 | 21        |
| 34 | Preparation and characterization of As2S3 thin films deposited using successive ionic layer adsorption and reaction (SILAR) method. Materials Research Bulletin, 2000, 35, 1345-1353.                                      | 2.7 | 20        |
| 35 | Adsorption and Decomposition of Methanol on Gold Nanoclusters Supported on a Thin Film of Al2O3/NiAl(100). Journal of Physical Chemistry C, 2008, 112, 2066-2073.                                                          | 1.5 | 20        |
| 36 | Assessment of ecologically prepared carbon-nano-spheres for fabrication of flexible and durable supercell devices. Journal of Materials Chemistry A, 2018, 6, 7246-7256.                                                   | 5.2 | 20        |

| #  | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Influence of Ti film thickness and oxidation temperature on TiO2 thin film formation via thermal oxidation of sputtered Ti film. Materials Science in Semiconductor Processing, 2013, 16, 2005-2012.                                  | 1.9 | 19        |
| 38 | Room temperature synthesis of nanocrystalline ferrite (MFe2O4, M = Cu, Co and Ni) thin films using novel electrochemical route. Applied Surface Science, 2001, 182, 366-371.                                                          | 3.1 | 18        |
| 39 | Growth of Co clusters on thin films Al2O3â^•NiAl(100). Journal of Chemical Physics, 2006, 124, 164709.                                                                                                                                | 1.2 | 18        |
| 40 | Controlled growth of thermally stable uniform-sized Ag nanoparticles on flat support and their electrochemical activity. Applied Physics A: Materials Science and Processing, 2015, 119, 503-516.                                     | 1.1 | 18        |
| 41 | Dodecyl benzene sulfonic acid (DBSA) doped polypyrrole (PPy) films: synthesis, structural,<br>morphological, gas sensing and impedance study. Journal of Materials Science: Materials in<br>Electronics, 2015, 26, 8497-8506.         | 1.1 | 18        |
| 42 | Effect of processing parameters on size, density and oxygen reduction reaction (ORR) activity of Pd nanoparticles grown by spin coating. Surface and Coatings Technology, 2015, 281, 68-75.                                           | 2.2 | 18        |
| 43 | SILAR deposited porous polyaniline-titanium oxide composite thin film for supercapacitor application.<br>Materials Today Communications, 2016, 8, 205-213.                                                                            | 0.9 | 18        |
| 44 | Nickel nanoparticles grown by successive ionic layer adsorption and reaction method for ethanol electrooxidation and electrochemical quartz crystal microbalance study. New Journal of Chemistry, 2019, 43, 2955-2965.                | 1.4 | 18        |
| 45 | Electrochemical deposition and oxidation of CuFe2 alloy: a new method to deposit CuFe2O4 thin films at room temperature. Materials Chemistry and Physics, 2001, 70, 274-284.                                                          | 2.0 | 17        |
| 46 | Pd–TiO <sub>2</sub> –SrIn <sub>2</sub> O <sub>4</sub> heterojunction photocatalyst: enhanced photocatalytic activity for hydrogen generation and degradation of methylene blue. RSC Advances, 2014, 4, 55539-55547.                   | 1.7 | 16        |
| 47 | SILAR Grown K <sup>+</sup> and Na <sup>+</sup> Ions Preinserted MnO <sub>2</sub> Nanostructures for Supercapacitor Applications: A Comparative Study. Energy & Fuels, 2021, 35, 4577-4586.                                            | 2.5 | 16        |
| 48 | Mesoporous Nanohybrids of 2D Niâ€Cr‣ayered Double Hydroxide Nanosheets Pillared with<br>Polyoxovanadate Anions for Highâ€Performance Hybrid Supercapacitor. Advanced Materials Interfaces,<br>2022, 9, 2101216.                       | 1.9 | 16        |
| 49 | Magnetic, Electric and Optical Properties of Mg-Substituted Ni-Cu-Zn Ferrites. Journal of Electronic<br>Materials, 2017, 46, 5693-5704.                                                                                               | 1.0 | 14        |
| 50 | Room temperature chemical bath deposition of cadmium selenide, cadmium sulfide and cadmium sulfoselenide thin films with novel nanostructures. Solid State Sciences, 2015, 48, 186-192.                                               | 1.5 | 13        |
| 51 | <scp>SILAR</scp> grown Ag nanoparticles as an efficient large area <scp>SERS</scp> substrate.<br>Journal of Raman Spectroscopy, 2018, 49, 1274-1287.                                                                                  | 1.2 | 13        |
| 52 | A Room Temperature Two-Step Electrochemical Process for Large Area Nanocrystalline Ferrite Thin<br>Films Deposition. Journal of Electroceramics, 2005, 15, 35-44.                                                                     | 0.8 | 12        |
| 53 | Superior supercapacitive performance of grass-like CuO thin films deposited by liquid phase deposition. New Journal of Chemistry, 2020, 44, 6778-6790.                                                                                | 1.4 | 12        |
| 54 | Green Strategy for the Synthesis of K <sup>+</sup> Pre-inserted MnO <sub>2</sub> /rGO and Its<br>Electrochemical Conversion to Na-MnO <sub>2</sub> /rGO for High-Performance Supercapacitors.<br>Energy & Fuels, 2022, 36, 4596-4608. | 2.5 | 12        |

| #  | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Spray pyrolytic deposition and characterization of lanthanum selenide (La2Se3) thin films. Applied<br>Surface Science, 2003, 214, 27-35.                                                                                                     | 3.1 | 11        |
| 56 | An investigation of chemical and electrochemical conversion of SILAR grown Mn3O4 into MnO2 thin films. Journal of Environmental Management, 2021, 299, 113564.                                                                               | 3.8 | 11        |
| 57 | Spray deposition of lanthanum selenide (La2Se3) thin films from non-aqueous medium and their characterizations. Materials Chemistry and Physics, 2003, 80, 714-718.                                                                          | 2.0 | 10        |
| 58 | Growth of Ag Nanoparticles by Spin Coating. Journal of Nano Research, 0, 24, 163-167.                                                                                                                                                        | 0.8 | 10        |
| 59 | The Calculation of Electronic Parameters of Al/TiO <sub>2</sub> / <i>p</i> -Si MOS Structure Formed<br>Using TiO <sub>2</sub> Thin Films Grown by Thermal Oxidation of Sputtered Ti Films. Advanced Science<br>Letters, 2016, 22, 1013-1016. | 0.2 | 10        |
| 60 | Narrow size distributed Ag nanoparticles grown by spin coating and thermal reduction: effect of processing parameters. Materials Research Express, 2016, 3, 085023.                                                                          | 0.8 | 9         |
| 61 | Spray pyrolysis deposition of lanthanum telluride thin films and their characterizations. Materials<br>Chemistry and Physics, 2005, 89, 402-405.                                                                                             | 2.0 | 8         |
| 62 | Engineering patterns of Co nanoclusters on thin film Al2O3â^•NiAl(100) using scanning tunneling microscopy manipulation techniques. Applied Physics Letters, 2006, 89, 063118.                                                               | 1.5 | 8         |
| 63 | Photoelectrochemical performance of MWCNT–Ag–ZnO ternary hybrid: a study of Ag loading and MWCNT garnishing. Journal of Materials Science, 2021, 56, 8627-8642.                                                                              | 1.7 | 8         |
| 64 | Spin-Coated Ag NPs SERS Substrate: Role of Electromagnetic and Chemical Enhancement in Trace<br>Detection of Methylene Blue and Congo Red. Plasmonics, 2022, 17, 1889-1900.                                                                  | 1.8 | 8         |
| 65 | Dehydrogenation of Cyclohexene on Platinum Nanoclusters on a Thin Film of Al2O3/NiAl(100).<br>Catalysis Letters, 2007, 119, 95-100.                                                                                                          | 1.4 | 7         |
| 66 | Substrate assisted electrochemical deposition of patterned cobalt thin films. Electrochemistry Communications, 2009, 11, 1711-1713.                                                                                                          | 2.3 | 7         |
| 67 | Cadmium sulfide coated zinc oxide photoelectrode: Preparation and characterization. Optik, 2018, 161, 166-171.                                                                                                                               | 1.4 | 7         |
| 68 | Investigating functional groups in GO and r-GO through spectroscopic tools and effect on optical properties. Optik, 2018, 175, 312-318.                                                                                                      | 1.4 | 7         |
| 69 | Zinc Oxide Thin Films: Nanoflakes to Spongy Balls via Seed Layer. Advanced Science Letters, 2016, 22,<br>880-883.                                                                                                                            | 0.2 | 5         |
| 70 | ZnS nanoflakes deposition by modified chemical method. , 2014, , .                                                                                                                                                                           |     | 4         |
| 71 | Deposition and Characterization Of Nanocrystalline Silver Thin Films By Using SILAR Method. AIP Conference Proceedings, 2011, , .                                                                                                            | 0.3 | 3         |
| 72 | ZnO nanocactus loaded with gold nanoparticles for dye sensitized solar cells. , 2014, , .                                                                                                                                                    |     | 3         |

5

SHRIKRISHNA SARTALE

| #  | Article                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Nanomaterials for Energy Production and Storage. Journal of Nanotechnology, 2012, 2012, 1-2.                                                                             | 1.5 | 2         |
| 74 | Plasmonic Metal Nanoparticles Decorated ZnO Nanostructures for Photoelectrochemical (PEC)<br>Applications. , 2021, , 293-328.                                            |     | 2         |
| 75 | Fabrication and evaluation of symmetric flexible solid state supercapacitor device based on $\hat{l}\pm$ -Fe2O3 thin films by LPD. AIP Conference Proceedings, 2021, , . | 0.3 | 2         |
| 76 | Role of oxidation states of iron on the super-capacitive behaviour of iron oxide films. Applied Physics<br>A: Materials Science and Processing, 2022, 128, 1.            | 1.1 | 2         |
| 77 | Investigation of Cu–Al surface alloy formation on Cu substrate. Journal of Vacuum Science and<br>Technology B:Nanotechnology and Microelectronics, 2010, 28, 353-358.    | 0.6 | 1         |
| 78 | Spin coating of Ag nanoparticles: Effect of reduction. , 2014, , .                                                                                                       |     | 1         |
| 79 | Polythiophene-carbon nanotubes composites as energy storage materials for supercapacitor application. AIP Conference Proceedings, 2016, , .                              | 0.3 | 1         |
| 80 | Liquid Phase Deposition of Nanostructured Materials for Supercapacitor Applications. , 2021, , 725-763.                                                                  |     | 1         |
| 81 | Chemical Synthesis of Nanocrystalline Ceria. , 2011, , .                                                                                                                 |     | 0         |
| 82 | Effect of ultrasonication on properties of sequential layer deposited nanocrystalline silver thin films. , 2012, , .                                                     |     | 0         |
| 83 | Effect of oxidizing agents in CeO2 thin film formation , 2012, , .                                                                                                       |     | 0         |
| 84 | Modified chemical route for deposition of molybdenum disulphide thin films. , 2014, , .                                                                                  |     | 0         |
| 85 | Synthesis of Zinc Ferrite Nanoparticles by Mechanochemical Method. Advanced Science Letters, 2016, 22, 839-842.                                                          | 0.2 | 0         |