Yinguang Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5489016/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hydrolysis and acidification of waste activated sludge at different pHs. Water Research, 2007, 41, 683-689.	11.3	598
2	Enhancement of methane production in anaerobic digestion process: A review. Applied Energy, 2019, 240, 120-137.	10.1	567
3	Improved Bioproduction of Short-Chain Fatty Acids (SCFAs) from Excess Sludge under Alkaline Conditions. Environmental Science & Technology, 2006, 40, 2025-2029.	10.0	496
4	Enhancement of Waste Activated Sludge Protein Conversion and Volatile Fatty Acids Accumulation during Waste Activated Sludge Anaerobic Fermentation by Carbohydrate Substrate Addition: The Effect of pH. Environmental Science & Technology, 2009, 43, 4373-4380.	10.0	391
5	Effects of ZnO Nanoparticles on Wastewater Biological Nitrogen and Phosphorus Removal. Environmental Science & Technology, 2011, 45, 2826-2832.	10.0	356
6	Nitrogen-doped carbon nanotubes as efficient and durable metal-free cathodic catalysts for oxygen reduction in microbial fuel cells. Energy and Environmental Science, 2011, 4, 1892.	30.8	343
7	Effect of acid and surfactant treatment on activated sludge dewatering and settling. Water Research, 2001, 35, 2615-2620.	11.3	271
8	Long-term effect of ZnO nanoparticles on waste activated sludge anaerobic digestion. Water Research, 2011, 45, 5612-5620.	11.3	260
9	Waste activated sludge hydrolysis and short-chain fatty acids accumulation under mesophilic and thermophilic conditions: Effect of pH. Water Research, 2009, 43, 3735-3742.	11.3	238
10	Effects of metal oxide nanoparticles (TiO2, Al2O3, SiO2 and ZnO) on waste activated sludge anaerobic digestion. Bioresource Technology, 2011, 102, 10305-10311.	9.6	229
11	Dilemma of Sewage Sludge Treatment and Disposal in China. Environmental Science & Technology, 2015, 49, 4781-4782.	10.0	226
12	The efficiency of enhanced biological phosphorus removal from real wastewater affected by different ratios of acetic to propionic acid. Water Research, 2004, 38, 27-36.	11.3	208
13	Long-Term Effects of Titanium Dioxide Nanoparticles on Nitrogen and Phosphorus Removal from Wastewater and Bacterial Community Shift in Activated Sludge. Environmental Science & Technology, 2011, 45, 7284-7290.	10.0	205
14	Easy-to-Operate and Low-Temperature Synthesis of Gram-Scale Nitrogen-Doped Graphene and Its Application as Cathode Catalyst in Microbial Fuel Cells. ACS Nano, 2011, 5, 9611-9618.	14.6	205
15	New Sludge Pretreatment Method to Improve Methane Production in Waste Activated Sludge Digestion. Environmental Science & Technology, 2010, 44, 4802-4808.	10.0	203
16	Enhanced production of short-chain fatty acid by co-fermentation of waste activated sludge and kitchen waste under alkaline conditions and its application to microbial fuel cells. Applied Energy, 2013, 102, 1197-1204.	10.1	201
17	Pyrosequencing Reveals the Key Microorganisms Involved in Sludge Alkaline Fermentation for Efficient Short-Chain Fatty Acids Production. Environmental Science & Technology, 2013, 47, 4262-4268.	10.0	199
18	Pilot-Scale Waste Activated Sludge Alkaline Fermentation, Fermentation Liquid Separation, and Application of Fermentation Liquid To Improve Biological Nutrient Removal. Environmental Science &: Technology, 2011, 45, 1834-1839.	10.0	194

#	Article	IF	CITATIONS
19	Response of Anaerobic Granular Sludge to a Shock Load of Zinc Oxide Nanoparticles during Biological Wastewater Treatment. Environmental Science & Technology, 2012, 46, 5997-6003.	10.0	188
20	Effect of CO ₂ on Microbial Denitrification via Inhibiting Electron Transport and Consumption. Environmental Science & amp; Technology, 2016, 50, 9915-9922.	10.0	186
21	Enhanced Biological Phosphorus Removal Driven by Short-Chain Fatty Acids Produced from Waste Activated Sludge Alkaline Fermentation. Environmental Science & Technology, 2007, 41, 7126-7130.	10.0	179
22	Polycyclic aromatic hydrocarbons contamination in surface soil of China: A review. Science of the Total Environment, 2017, 605-606, 1011-1020.	8.0	174
23	Effect of Humic Acids with Different Characteristics on Fermentative Short-Chain Fatty Acids Production from Waste Activated Sludge. Environmental Science & Technology, 2015, 49, 4929-4936.	10.0	159
24	Zinc Oxide Nanoparticles Cause Inhibition of Microbial Denitrification by Affecting Transcriptional Regulation and Enzyme Activity. Environmental Science & Technology, 2014, 48, 13800-13807.	10.0	148
25	Simultaneous enhancement of methane production and methane content in biogas from waste activated sludge and perennial ryegrass anaerobic co-digestion: The effects of pH and C/N ratio. Bioresource Technology, 2016, 216, 323-330.	9.6	145
26	Polycyclic Aromatic Hydrocarbon Affects Acetic Acid Production during Anaerobic Fermentation of Waste Activated Sludge by Altering Activity and Viability of Acetogen. Environmental Science & Technology, 2016, 50, 6921-6929.	10.0	145
27	Efficient Polyhydroxyalkanoates Production from a Waste-Activated Sludge Alkaline Fermentation Liquid by Activated Sludge Submitted to the Aerobic Feeding and Discharge Process. Environmental Science & Technology, 2009, 43, 7734-7741.	10.0	143
28	Long-Term Effects of Copper Nanoparticles on Wastewater Biological Nutrient Removal and N ₂ O Generation in the Activated Sludge Process. Environmental Science & Technology, 2012, 46, 12452-12458.	10.0	143
29	Biological short-chain fatty acids (SCFAs) production from waste-activated sludge affected by surfactant. Water Research, 2007, 41, 3112-3120.	11.3	140
30	Waste Activated Sludge Fermentation for Hydrogen Production Enhanced by Anaerobic Process Improvement and Acetobacteria Inhibition: The Role of Fermentation pH. Environmental Science & Technology, 2010, 44, 3317-3323.	10.0	137
31	Reduction of N ₂ O and NO Generation in Anaerobicâ^'Aerobic (Low Dissolved Oxygen) Biological Wastewater Treatment Process by Using Sludge Alkaline Fermentation Liquid. Environmental Science & Technology, 2011, 45, 2137-2143.	10.0	131
32	How Does Poly(hydroxyalkanoate) Affect Methane Production from the Anaerobic Digestion of Waste-Activated Sludge?. Environmental Science & Technology, 2015, 49, 12253-12262.	10.0	125
33	Recent advances in partial denitrification in biological nitrogen removal: From enrichment to application. Bioresource Technology, 2020, 298, 122444.	9.6	125
34	Alkyl polyglucose enhancing propionic acid enriched short-chain fatty acids production during anaerobic treatment of waste activated sludge and mechanisms. Water Research, 2015, 73, 332-341.	11.3	123
35	Recovery of nitrogen and phosphorus from alkaline fermentation liquid of waste activated sludge and application of the fermentation liquid to promote biological municipal wastewater treatment. Water Research, 2009, 43, 2969-2976.	11.3	122
36	The effects of fulvic acid on microbial denitrification: promotion of NADH generation, electron transfer, and consumption. Applied Microbiology and Biotechnology, 2016, 100, 5607-5618.	3.6	120

#	Article	IF	CITATIONS
37	Efficient production of optically pure l-lactic acid from food waste at ambient temperature by regulating key enzyme activity. Water Research, 2015, 70, 148-157.	11.3	116
38	Using Sludge Fermentation Liquid To Improve Wastewater Short-Cut Nitrification-Denitrification and Denitrifying Phosphorus Removal via Nitrite. Environmental Science & Technology, 2010, 44, 8957-8963.	10.0	113
39	Effect of sodium dodecyl sulfate on waste activated sludge hydrolysis and acidification. Chemical Engineering Journal, 2007, 132, 311-317.	12.7	110
40	Distribution of tetracycline resistance genes in anaerobic treatment of waste sludge: The role of pH in regulating tetracycline resistant bacteria and horizontal gene transfer. Bioresource Technology, 2016, 218, 1284-1289.	9.6	110
41	Effects of Metal Nanoparticles on Methane Production from Waste-Activated Sludge and Microorganism Community Shift in Anaerobic Granular Sludge. Scientific Reports, 2016, 6, 25857.	3.3	109
42	Towards a metagenomic understanding on enhanced biomethane production from waste activated sludge after pH 10 pretreatment. Biotechnology for Biofuels, 2013, 6, 38.	6.2	108
43	Generation and characterization of DOM in wastewater treatment processes. Chemosphere, 2018, 201, 96-109.	8.2	107
44	Simultaneous Nitrogen and Phosphorus Recovery from Sludge-Fermentation Liquid Mixture and Application of the Fermentation Liquid To Enhance Municipal Wastewater Biological Nutrient Removal. Environmental Science & Technology, 2009, 43, 6164-6170.	10.0	100
45	Enhancement of visible-light-driven photocatalytic activity of carbon plane/g-C3N4/TiO2 nanocomposite by improving heterojunction contact. Chemical Engineering Journal, 2019, 371, 706-718.	12.7	100
46	Understanding Short-Chain Fatty Acids Accumulation Enhanced in Waste Activated Sludge Alkaline Fermentation: Kinetics and Microbiology. Environmental Science & Technology, 2010, 44, 9343-9348.	10.0	99
47	Enhancement of denitrification performance with reduction of nitrite accumulation and N2O emission by Shewanella oneidensis MR-1 in microbial denitrifying process. Water Research, 2020, 169, 115242.	11.3	98
48	Effect of solids retention time and temperature on waste activated sludge hydrolysis and short-chain fatty acids accumulation under alkaline conditions in continuous-flow reactors. Bioresource Technology, 2009, 100, 44-49.	9.6	97
49	Critical review of the influences of nanoparticles on biological wastewater treatment and sludge digestion. Critical Reviews in Biotechnology, 2016, 36, 816-828.	9.0	97
50	Alteration of intracellular protein expressions as a key mechanism of the deterioration of bacterial denitrification caused by copper oxide nanoparticles. Scientific Reports, 2015, 5, 15824.	3.3	94
51	Stimulating short-chain fatty acids production from waste activated sludge by nano zero-valent iron. Journal of Biotechnology, 2014, 187, 98-105.	3.8	92
52	Effects of emerging pollutants on the occurrence and transfer of antibiotic resistance genes: A review. Journal of Hazardous Materials, 2021, 420, 126602.	12.4	92
53	Short-Chain Fatty Acid Production from Different Biological Phosphorus Removal Sludges: The Influences of PHA and Gram-Staining Bacteria. Environmental Science & Technology, 2013, 47, 2688-2695.	10.0	89
54	Alumina nanoparticles-induced effects on wastewater nitrogen and phosphorus removal after short-term and long-term exposure. Water Research, 2012, 46, 4379-4386.	11.3	88

#	Article	IF	CITATIONS
55	Effect of polyhydroxyalkanoates on dark fermentative hydrogen production from waste activated sludge. Water Research, 2015, 73, 311-322.	11.3	88
56	Preliminary studies on continuous chromium(VI) biological removal from wastewater by anaerobic–aerobic activated sludge process. Bioresource Technology, 2005, 96, 1713-1721.	9.6	85
57	Nano-TiO ₂ Enhanced Photofermentative Hydrogen Produced from the Dark Fermentation Liquid of Waste Activated Sludge. Environmental Science & Technology, 2011, 45, 8589-8595.	10.0	85
58	The impacts of silver nanoparticles and silver ions on wastewater biological phosphorous removal and the mechanisms. Journal of Hazardous Materials, 2012, 239-240, 88-94.	12.4	81
59	Boron-, sulfur-, and phosphorus-doped graphene for environmental applications. Science of the Total Environment, 2020, 698, 134239.	8.0	79
60	Improved production of short-chain fatty acids from waste activated sludge driven by carbohydrate addition in continuous-flow reactors: Influence of SRT and temperature. Applied Energy, 2014, 113, 51-58.	10.1	78
61	Enhancement of propionic acid fraction in volatile fatty acids produced from sludge fermentation by the use of food waste and Propionibacterium acidipropionici. Water Research, 2013, 47, 615-622.	11.3	74
62	Increasing municipal wastewater BNR by using the preferred carbon source derived from kitchen wastewater to enhance phosphorus uptake and short-cut nitrification-denitrification. Chemical Engineering Journal, 2018, 344, 556-564.	12.7	74
63	Hydroxyl functionalization of single-walled carbon nanotubes causes inhibition to the bacterial denitrification process. Chemical Engineering Journal, 2015, 279, 47-55.	12.7	72
64	Tetrabromobisphenol A (TBBPA) inhibits denitrification via regulating carbon metabolism to decrease electron donation and bacterial population. Water Research, 2019, 162, 190-199.	11.3	70
65	Bio-denitrification performance enhanced by graphene-facilitated iron acquisition. Water Research, 2020, 180, 115916.	11.3	70
66	CuO and ZnO nanoparticles drive the propagation of antibiotic resistance genes during sludge anaerobic digestion: possible role of stimulated signal transduction. Environmental Science: Nano, 2019, 6, 528-539.	4.3	69
67	Effects of elevated carbon dioxide on environmental microbes and its mechanisms: A review. Science of the Total Environment, 2019, 655, 865-879.	8.0	69
68	Acute and Chronic Responses of Activated Sludge Viability and Performance to Silica Nanoparticles. Environmental Science & Technology, 2012, 46, 7182-7188.	10.0	66
69	New method for algae comprehensive utilization: Algae-derived biochar enhances algae anaerobic fermentation for short-chain fatty acids production. Bioresource Technology, 2019, 289, 121637.	9.6	66
70	Alkaline fermentation of waste sludge causes a significant reduction of antibiotic resistance genes in anaerobic reactors. Science of the Total Environment, 2017, 580, 380-387.	8.0	65
71	Metagenomic analysis reveals nonylphenol-shaped acidification and methanogenesis during sludge anaerobic digestion. Water Research, 2021, 196, 117004.	11.3	64
72	Efficient municipal wastewater treatment by oxidation ditch process at low temperature: Bacterial community structure in activated sludge. Science of the Total Environment, 2020, 703, 135031.	8.0	62

#	Article	IF	CITATIONS
73	Continuous bioproduction of short-chain fatty acids from sludge enhanced by the combined use of surfactant and alkaline pH. Bioresource Technology, 2013, 140, 97-102.	9.6	61
74	CO2 promotes the conjugative transfer of multiresistance genes by facilitating cellular contact and plasmid transfer. Environment International, 2019, 129, 333-342.	10.0	60
75	A New Process for Efficiently Producing Methane from Waste Activated Sludge: Alkaline Pretreatment of Sludge Followed by Treatment of Fermentation Liquid in an EGSB Reactor. Environmental Science & Technology, 2011, 45, 803-808.	10.0	59
76	Comprehensive analysis of transcriptional and proteomic profiling reveals silver nanoparticles-induced toxicity to bacterial denitrification. Journal of Hazardous Materials, 2018, 344, 291-298.	12.4	58
77	Biochar Mitigates N ₂ O Emission of Microbial Denitrification through Modulating Carbon Metabolism and Allocation of Reducing Power. Environmental Science & Technology, 2021, 55, 8068-8078.	10.0	58
78	A new method for the simultaneous enhancement of methane yield and reduction of hydrogen sulfide production in the anaerobic digestion of waste activated sludge. Bioresource Technology, 2017, 243, 914-921.	9.6	55
79	Enhanced Methane Production from Food Waste Using Cysteine To Increase Biotransformation of <scp>l</scp> -Monosaccharide, Volatile Fatty Acids, and Biohydrogen. Environmental Science & Technology, 2018, 52, 3777-3785.	10.0	53
80	The fate and enhanced removal of polycyclic aromatic hydrocarbons in wastewater and sludge treatment system: A review. Critical Reviews in Environmental Science and Technology, 2019, 49, 1425-1475.	12.8	53
81	New method for enhancement of bioenergy production from municipal organic wastes via regulation of anaerobic fermentation process. Applied Energy, 2017, 196, 190-198.	10.1	51
82	Advances in heavy metal removal by sulfate-reducing bacteria. Water Science and Technology, 2020, 81, 1797-1827.	2.5	49
83	Lactic acid accumulation from sludge and food waste to improve the yield of propionic acid-enriched VFA. Biochemical Engineering Journal, 2014, 84, 28-35.	3.6	48
84	Low-level free nitrous acid efficiently inhibits the conjugative transfer of antibiotic resistance by altering intracellular ions and disabling transfer apparatus. Water Research, 2019, 158, 383-391.	11.3	48
85	Waste Activated Sludge Alkaline Fermentation Liquid as Carbon Source for Biological Nutrients Removal in Anaerobic Followed by Alternating Aerobic-Anoxic Sequencing Batch Reactors. Chinese Journal of Chemical Engineering, 2010, 18, 478-485.	3.5	47
86	Integrated Metagenomic and Metaproteomic Analyses Unravel Ammonia Toxicity to Active Methanogens and Syntrophs, Enzyme Synthesis, and Key Enzymes in Anaerobic Digestion. Environmental Science & Technology, 2021, 55, 14817-14827.	10.0	47
87	Waste-Activated Sludge Fermentation for Polyacrylamide Biodegradation Improved by Anaerobic Hydrolysis and Key Microorganisms Involved in Biological Polyacrylamide Removal. Scientific Reports, 2015, 5, 11675.	3.3	46
88	Removal of intl1 and associated antibiotics resistant genes in water, sewage sludge and livestock manure treatments. Reviews in Environmental Science and Biotechnology, 2018, 17, 471-500.	8.1	46
89	Pig manure-derived nitrogen-doped mesoporous carbon for adsorption and catalytic oxidation of tetracycline. Science of the Total Environment, 2020, 708, 135071.	8.0	46
90	Comparative Metagenomic and Metatranscriptomic Analyses Reveal the Functional Species and Metabolic Characteristics of an Enriched Denitratation Community. Environmental Science & Technology, 2020, 54, 14312-14321.	10.0	46

#	Article	IF	CITATIONS
91	The Role of Nanomaterials and Nanotechnologies in Wastewater Treatment: a Bibliometric Analysis. Nanoscale Research Letters, 2018, 13, 233.	5.7	45
92	Anaerobic metabolic models for phosphorus- and glycogen-accumulating organisms with mixed acetic and propionic acids as carbon sources. Water Research, 2008, 42, 3745-3756.	11.3	42
93	Enhanced phosphorus biological removal from wastewater—effect of microorganism acclimatization with different ratios of short-chain fatty acids mixture. Biochemical Engineering Journal, 2005, 27, 24-32.	3.6	41
94	How does the entering of copper nanoparticles into biological wastewater treatment system affect sludge treatment for VFA production. Water Research, 2014, 63, 125-134.	11.3	40
95	Effect of CO2 on NADH production of denitrifying microbes via inhibiting carbon source transport and its metabolism. Science of the Total Environment, 2018, 627, 896-904.	8.0	40
96	Improved production of propionic acid driven by hydrolyzed liquid containing high concentration of l-lactic acid from co-fermentation of food waste and sludge. Bioresource Technology, 2016, 220, 523-529.	9.6	39
97	Influence of Copper Nanoparticles on the Physical-Chemical Properties of Activated Sludge. PLoS ONE, 2014, 9, e92871.	2.5	38
98	Biological nutrient removal with low nitrous oxide generation by cancelling the anaerobic phase and extending the idle phase in a sequencing batch reactor. Chemosphere, 2014, 109, 56-63.	8.2	38
99	Enhanced Bio-hydrogen Production from Protein Wastewater by Altering Protein Structure and Amino Acids Acidification Type. Scientific Reports, 2014, 4, 3992.	3.3	38
100	Carboxyl-modified single-walled carbon nanotubes negatively affect bacterial growth and denitrification activity. Scientific Reports, 2014, 4, 5653.	3.3	38
101	A review: factors affecting excess sludge anaerobic digestion for volatile fatty acids production. Water Science and Technology, 2015, 72, 678-688.	2.5	38
102	Enhancement of hydrogen production during waste activated sludge anaerobic fermentation by carbohydrate substrate addition and pH control. Bioresource Technology, 2012, 114, 349-356.	9.6	37
103	Effect of fulvic acids with different characteristics on biological denitrification. RSC Advances, 2016, 6, 14993-15001.	3.6	36
104	Minimizing nitrous oxide in biological nutrient removal from municipal wastewater by controlling copper ion concentrations. Applied Microbiology and Biotechnology, 2013, 97, 1325-1334.	3.6	35
105	Altering protein conformation to improve fermentative hydrogen production from protein wastewater. Water Research, 2013, 47, 5700-5707.	11.3	35
106	Tetracycline-induced effects on the nitrogen transformations in sediments: Roles of adsorption behavior and bacterial activity. Science of the Total Environment, 2019, 695, 133811.	8.0	35
107	Inherent humic substance promotes microbial denitrification of landfill leachate via shifting bacterial community, improving enzyme activity and up-regulating gene. Scientific Reports, 2017, 7, 12215.	3.3	33
108	Long-term performance of enhanced biological phosphorus removal with increasing concentrations of silver nanoparticles and ions. RSC Advances, 2013, 3, 9835.	3.6	31

#	Article	IF	CITATIONS
109	Kinetic analysis of waste activated sludge hydrolysis and short-chain fatty acids production at pH 10. Journal of Environmental Sciences, 2009, 21, 589-594.	6.1	30
110	More than sulfidation: Roles of biogenic sulfide in attenuating the impacts of CuO nanoparticle on antibiotic resistance genes during sludge anaerobic digestion. Water Research, 2019, 158, 1-10.	11.3	28
111	Current research and perspective of microplastics (MPs) in soils (dusts), rivers (lakes), and marine environments in China. Ecotoxicology and Environmental Safety, 2020, 202, 110976.	6.0	28
112	Occurrence, effects, and biodegradation of plastic additives in sludge anaerobic digestion: A review. Environmental Pollution, 2021, 287, 117568.	7.5	28
113	Using sludge fermentation liquid to reduce the inhibitory effect of copper oxide nanoparticles on municipal wastewater biological nutrient removal. Water Research, 2016, 99, 216-224.	11.3	27
114	Anaerobic fermentation metabolism of Moorella thermoacetica inhibited by copper nanoparticles: Comprehensive analyses of transcriptional response and enzyme activity. Water Research, 2021, 197, 117081.	11.3	27
115	Global transcriptional responses of denitrifying bacteria to functionalized single-walled carbon nanotubes revealed by weighted gene-coexpression network analysis. Science of the Total Environment, 2018, 613-614, 1240-1249.	8.0	26
116	Boosting exciton dissociation and molecular oxygen activation by in-plane grafting nitrogen-doped carbon nanosheets to graphitic carbon nitride for enhanced photocatalytic performance. Journal of Colloid and Interface Science, 2019, 553, 59-70.	9.4	26
117	Co-fermentation of waste activated sludge with food waste for short-chain fatty acids production: effect of pH at ambient temperature. Frontiers of Environmental Science and Engineering in China, 2011, 5, 623-632.	0.8	25
118	The effects of carbon nanotubes on nitrogen and phosphorus removal from real wastewater in the activated sludge system. RSC Advances, 2014, 4, 45953-45959.	3.6	25
119	Coenzyme cobalamin: biosynthesis, overproduction and its application in dehalogenation—a review. Reviews in Environmental Science and Biotechnology, 2018, 17, 259-284.	8.1	25
120	Pyridinic and pyrrolic nitrogen-rich ordered mesoporous carbon for efficient oxygen reduction in microbial fuel cells. RSC Advances, 2017, 7, 14669-14677.	3.6	24
121	Recent advances in biological removal of nitroaromatics from wastewater. Environmental Pollution, 2022, 307, 119570.	7.5	24
122	Immobilizing photogenerated electrons from graphitic carbon nitride for an improved visible-light photocatalytic activity. Scientific Reports, 2016, 6, 22808.	3.3	23
123	Volatile fatty acids production from waste activated sludge during anaerobic fermentation: The effect of superfine sand. Bioresource Technology, 2021, 319, 124249.	9.6	23
124	Effect of humic acid on photofermentative hydrogen production of volatile fatty acids derived from wastewater fermentation. Renewable Energy, 2019, 131, 356-363.	8.9	22
125	A study by response surface methodology (RSM) on optimization of phosphorus adsorption with nano spherical calcium carbonate derived from waste. Water Science and Technology, 2019, 79, 188-197.	2.5	22
126	Anaerobic accumulation of short-chain fatty acids from algae enhanced by damaging cell structure and promoting hydrolase activity. Bioresource Technology, 2018, 250, 777-783.	9.6	21

#	Article	IF	CITATIONS
127	Nitrogen-doped porous carbon derived from digested sludge for electrochemical reduction of carbon dioxide to formate. Science of the Total Environment, 2021, 759, 143575.	8.0	21
128	Hydrogen-oxidizing bacteria and their applications in resource recovery and pollutant removal. Science of the Total Environment, 2022, 835, 155559.	8.0	21
129	Long-term effects of engineered nanoparticles on enzyme activity and functional bacteria in wastewater treatment plants. Water Science and Technology, 2015, 72, 99-105.	2.5	20
130	Using Mixed Sludge-derived Short-chain Fatty Acids Enhances Power Generation of Microbial Fuel Cells. Energy Procedia, 2017, 105, 1282-1288.	1.8	20
131	Integrated approach to enhance the anaerobic biodegradation of benz[α]anthracene: A high-molecule-weight polycyclic aromatic hydrocarbon in sludge by simultaneously improving the bioavailability and microbial activity. Journal of Hazardous Materials, 2019, 365, 322-330.	12.4	20
132	Microbial Ecological Mechanism for Long-Term Production of High Concentrations of <i>n</i> -Caproate via Lactate-Driven Chain Elongation. Applied and Environmental Microbiology, 2021, 87, .	3.1	20
133	Propionic acid-rich fermentation (PARF) production from organic wastes: A review. Bioresource Technology, 2021, 339, 125569.	9.6	20
134	Nitric Oxide: A Neglected Driver for the Conjugative Transfer of Antibiotic Resistance Genes among Wastewater Microbiota. Environmental Science & Technology, 2022, 56, 6466-6478.	10.0	20
135	A new process to improve short-chain fatty acids and bio-methane generation from waste activated sludge. Journal of Environmental Sciences, 2016, 43, 159-168.	6.1	19
136	New applications of quinone redox mediators: Modifying nature-derived materials for anaerobic biotransformation process. Science of the Total Environment, 2020, 744, 140652.	8.0	19
137	Carbon Nitride Anchored on a Nitrogen-Doped Carbon Nanotube Surface for Enhanced Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2020, 12, 56954-56962.	8.0	19
138	Joint effects of carbon nanotubes and copper oxide nanoparticles on fermentation metabolism towards Saccharofermentans acetigenes: Enhancing environmental adaptability and transcriptional expression. Bioresource Technology, 2021, 336, 125318.	9.6	19
139	Determination of cyflufenamid residues in 12 foodstuffs by QuEChERS-HPLC-MS/MS. Food Chemistry, 2021, 362, 130148.	8.2	19
140	Insight into a direct carbon dioxide effect on denitrification and denitrifying bacterial communities in estuarine sediment. Science of the Total Environment, 2018, 643, 1074-1083.	8.0	18
141	Source separation, transportation, pretreatment, and valorization of municipal solid waste: a critical review. Environment, Development and Sustainability, 2022, 24, 11471-11513.	5.0	18
142	Influence of alkyl sulfates on waste activated sludge fermentation at ambient temperature. Journal of Hazardous Materials, 2007, 148, 110-115.	12.4	17
143	Using cassava distiller's dried grains as carbon and microbe sources to enhance denitrification of nitrate-contaminated groundwater. Applied Microbiology and Biotechnology, 2015, 99, 2839-2847. 	3.6	17
144	Short-term batch studies on biological removal of chromium from synthetic wastewater using activated sludge biomass. Bioresource Technology, 2005, 96, 1722-1729.	9.6	16

#	Article	IF	CITATIONS
145	Effects of CO2 on the transformation of antibiotic resistance genes via increasing cell membrane channels. Environmental Pollution, 2019, 254, 113045.	7.5	16
146	Production of propionic acid-enriched volatile fatty acids from co-fermentation liquid of sewage sludge and food waste using Propionibacterium acidipropionici. Water Science and Technology, 2013, 68, 2061-2066.	2.5	15
147	A new biological process for short-chain fatty acid generation from waste activated sludge improved by Clostridiales enhancement. Environmental Science and Pollution Research, 2016, 23, 23972-23982.	5.3	15
148	Acidogenic Fermentation Facilitates Anaerobic Biodegradation of Polycyclic Aromatic Hydrocarbons in Waste Activated Sludge. ACS Sustainable Chemistry and Engineering, 2019, 7, 5404-5411.	6.7	15
149	Biological removal of sulfamethoxazole enhanced by S. oneidensis MR-1 via promoting NADH generation and electron transfer and consumption. Journal of Hazardous Materials, 2022, 426, 127839.	12.4	15
150	Chronic Response of Waste Activated Sludge Fermentation to Titanium Dioxide Nanoparticles. Chinese Journal of Chemical Engineering, 2014, 22, 1162-1167.	3.5	14
151	Fate of sulfonamide resistance genes during sludge anaerobic fermentation: Roles of sludge components and fermentation pHs. Bioresource Technology, 2019, 289, 121636.	9.6	14
152	Electrochemical removal of nitrate by Cu/Ti electrode coupled with copper-modified activated carbon particles at a low current density. Environmental Science and Pollution Research, 2019, 26, 17567-17576.	5.3	14
153	The influence of amino acids structure on their anaerobic digestion and the strategy to enhance biotransformation of refractory ones. Chemical Engineering Journal, 2021, 409, 128169.	12.7	14
154	Optimal poly (3-hydroxybutyrate/3-hydroxyvalerate) biosynthesis by fermentation liquid from primary and waste activated sludge. Environmental Technology (United Kingdom), 2014, 35, 1791-1801.	2.2	13
155	Variability in plant trace element uptake across different crops, soil contamination levels and soil properties in the Xinjiang Uygur Autonomous Region of northwest China. Scientific Reports, 2021, 11, 2064.	3.3	13
156	Methane Production from Propionate Enhanced by Met@Fe ₃ O ₄ via Increasing Microbe–Material Attachment in a Direct Interspecies Electron-Transfer Process. ACS Sustainable Chemistry and Engineering, 2021, 9, 471-480.	6.7	13
157	Does electrolysis facilitate simultaneous nitrogen removal and toxicity reduction of low C/N dyeing wastewater by sulfur-based denitrification biofilter?. Science of the Total Environment, 2020, 722, 137898.	8.0	12
158	Amino Acid Configuration Affects Volatile Fatty Acid Production during Proteinaceous Waste Valorization: Chemotaxis, Quorum Sensing, and Metabolism. Environmental Science & Technology, 2022, 56, 8702-8711.	10.0	12
159	Effect of the addition of organic carbon sources on nitrous oxide emission in anaerobic-aerobic (low) Tj ETQq1 1 China, 2010, 4, 490-499.	0.784314 0.8	rgBT /Over 11
160	Carbon nanotubes affect the toxicity of CuO nanoparticles to denitrification in marine sediments by altering cellular internalization of nanoparticle. Scientific Reports, 2016, 6, 27748.	3.3	11
161	Research on polyhydroxyalkanoates and glycogen transformations: Key aspects to biologic nitrogen and phosphorus removal in low dissolved oxygen systems. Frontiers of Environmental Science and Engineering in China, 2011, 5, 283-290.	0.8	10
162	Inhibition of 1, 4-dioxane on the denitrification process by altering the viability and metabolic activity of Paracoccus denitrificans. Environmental Science and Pollution Research, 2018, 25, 27274-27282.	5.3	10

#	Article	IF	CITATIONS
163	Comparison of bacterial communities and antibiotic resistance genes in oxidation ditches and membrane bioreactors. Scientific Reports, 2021, 11, 8955.	3.3	10
164	Long-term effects of copper nanoparticles on volatile fatty acids production from sludge fermentation: Roles of copper species and bacterial community structure. Bioresource Technology, 2022, 348, 126789.	9.6	10
165	Cysteine reduced the inhibition of CO2 on heterotrophic denitrification: Restoring redox balance, facilitating iron acquisition and carbon metabolism. Science of the Total Environment, 2022, 826, 154173.	8.0	10
166	Linking Genome-Centric Metagenomics to Kinetic Analysis Reveals the Regulation Mechanism of Hydroxylamine in Nitrite Accumulation of Biological Denitrification. Environmental Science & Technology, 2022, 56, 10317-10328.	10.0	10
167	Simultaneous determination of 20 disperse dyes in foodstuffs by ultra high performance liquid chromatography–tandem mass spectrometry. Food Chemistry, 2019, 300, 125183.	8.2	9
168	A study of synchronous measurement of liable phosphorous and iron based on ZrO-Chelex (DGT) in the sediment of the Chaiwopu Lake, Xinjiang, Northwest China. Environmental Science and Pollution Research, 2020, 27, 15057-15067.	5.3	9
169	Carbon nanotubes mitigate copper-oxide nanoparticles-induced inhibition to acidogenic metabolism of Propionibacterium acidipropionici by regulating carbon source utilization. Bioresource Technology, 2021, 330, 125003.	9.6	9
170	Effects of different amino acids and their configurations on methane yield and biotransformation of intermediate metabolites during anaerobic digestion. Journal of Environmental Management, 2021, 296, 113152.	7.8	9
171	Advances in downstream processes and applications of biological carboxylic acids derived from organic wastes. Bioresource Technology, 2022, 346, 126609.	9.6	9
172	The effects of the ratio of propionate to acetate on the transformation and composition of polyhydroxyalkanoates with enriched cultures of glycogenâ€accumulating organisms. Environmental Technology (United Kingdom), 2009, 30, 241-249.	2.2	8
173	Performance of wastewater biological phosphorus removal under long-term exposure to CuNPs: adapting toxicity via microbial community structure adjustment. RSC Advances, 2015, 5, 61094-61102.	3.6	8
174	lonic copper strengthens the toxicity of tetrabromobisphenol A (TBBPA) to denitrification by decreasing substrate transport and electron transfer. Journal of Hazardous Materials, 2021, 416, 126203.	12.4	8
175	Bacterial Hosts and Genetic Characteristics of Antibiotic Resistance Genes in Wastewater Treatment Plants of Xinjiang (China) Revealed by Metagenomics. Applied Sciences (Switzerland), 2022, 12, 3100.	2.5	8
176	Polycyclic aromatic hydrocarbons stimulate acidogenesis, acetogenesis and methanogenesis during anaerobic co-digestion of waste activated sludge and food waste. Bioresource Technology, 2022, 360, 127567.	9.6	8
177	Effect of changes of pH on the anaerobic/aerobic transformations of biological phosphorus removal in wastewater fed with a mixture of propionic and acetic acids. Journal of Chemical Technology and Biotechnology, 2006, 81, 1021-1028.	3.2	7
178	Identification of CO2 induces oxidative stress to change bacterial surface properties. Chemosphere, 2021, 277, 130336.	8.2	7
179	Different Responses of Soil Bacterial Communities to Nitrogen Addition in Moss Crust. Frontiers in Microbiology, 2021, 12, 665975.	3.5	6
180	Efficient recovery of carbon, nitrogen, and phosphorus from waste activated sludge. Water Science and Technology, 2013, 68, 916-922.	2.5	5

#	Article	IF	CITATIONS
181	Production of high optical purity l-lactic acid from waste activated sludge by supplementing carbohydrate: effect of temperature and pretreatment time. Environmental Technology (United) Tj ETQq1 1 0.784	1 321 24 rgBT	/&verlock
182	Mesophilic Biohydrogen Production from Food Waste. , 2008, , .		4
183	Phosphorous Removal in Intermittent Cycle Extended Aeration System Wastewater Treatment Plant - Effect of Temperature. , 2008, , .		3
184	Municipal wastewater biological nutrient removal driven by the fermentation liquid of dairy wastewater. Environmental Technology (United Kingdom), 2017, 38, 2639-2649.	2.2	3
185	Shewanella oneidensis MR-1 improving denitrification performance via influencing electron competition and distribution. Bioresource Technology Reports, 2020, 10, 100381.	2.7	3
186	THE EFFECTS OF PROPIONIC VERSUS ACETIC ACID CONTENT OF DOMESTIC SEWAGE ON ENHANCED BIOLOGICAL PHOSPHORUS REMOVAL. Proceedings of the Water Environment Federation, 2002, 2002, 160-178.	0.0	2
187	Effects of pH on the Waste Activated Sludge Hydrolysis and Acidification under Mesophilic and Thermophilic Conditions. , 2009, , .		0
188	The study on waste activated sludge reclamation via alkaline fermentation. , 2011, , .		0
189	Long-term exposure to zinc oxide nanoparticles improves PAOs function in enhanced biological phosphorus removal. Environmental Technology (United Kingdom), 2022, , 1-21.	2.2	0