
## Yosuke Matsuo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5488710/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | New degradation mechanism of black tea pigment theaflavin involving condensation with epigallocatechin-3-O-gallate. Food Chemistry, 2022, 370, 131326.                                                    | 4.2 | 17        |
| 2  | Ellagitannins and Oligomeric Proanthocyanidins of Three Polygonaceous Plants. Molecules, 2021, 26, 337.                                                                                                   | 1.7 | 4         |
| 3  | Formation of Dehydrohexahydroxydiphenoyl Esters by Oxidative Coupling of Galloyl Esters in an<br>Aqueous Medium Involved in Ellagitannin Biosynthesis. Chemistry - an Asian Journal, 2021, 16, 1735-1740. | 1.7 | 8         |
| 4  | Ellagitannin Digestion in Moth Larvae and a New Dimeric Ellagitannin from the Leaves of Platycarya strobilacea. Molecules, 2021, 26, 4134.                                                                | 1.7 | 4         |
| 5  | Stereochemistry of a Cyclic Epicatechin Trimer with <i>C</i> <sub>3</sub> Symmetry Produced by Oxidative Coupling. European Journal of Organic Chemistry, 2021, 2021, 777-781.                            | 1.2 | 4         |
| 6  | Computationally Assisted Structural Revision of Flavoalkaloids with a Seven-Membered Ring:<br>Aquiledine, Isoaquiledine, and Cheliensisine. Journal of Natural Products, 2020, 83, 3347-3353.             | 1.5 | 10        |
| 7  | Highly Oxidized Ellagitannins of <i>Carpinus japonica</i> and Their Oxidation–Reduction<br>Disproportionation. Journal of Natural Products, 2020, 83, 3424-3434.                                          | 1.5 | 8         |
| 8  | Production of Ellagitannin Hexahydroxydiphenoyl Ester by Spontaneous Reduction of<br>Dehydrohexa-hydroxydiphenoyl Ester. Molecules, 2020, 25, 1051.                                                       | 1.7 | 11        |
| 9  | Nupharanin, the first ellagitannin with 1,4-dehydrohexahydroxydiphenoyl-α-d-glucopyranose from<br>Nuphar japonicum. Tetrahedron, 2020, 76, 131204.                                                        | 1.0 | 3         |
| 10 | Oxidation of the Oak Ellagitannin, Vescalagin. Journal of Natural Products, 2020, 83, 413-421.                                                                                                            | 1.5 | 6         |
| 11 | Production Mechanisms of Black Tea Polyphenols. Chemical and Pharmaceutical Bulletin, 2020, 68, 1131-1142.                                                                                                | 0.6 | 45        |
| 12 | Diversity of Furanoeremophilane Composition in <i>Ligularia tongolensis</i> . Natural Product<br>Communications, 2019, 14, 1934578X1987893.                                                               | 0.2 | 1         |
| 13 | Oligomerization mechanism of tea catechins during tea roasting. Food Chemistry, 2019, 285, 252-259.                                                                                                       | 4.2 | 19        |
| 14 | Characterization and cytotoxicity of ellagitannins from Stachyurus praecox fruit. Tetrahedron, 2019,<br>75, 4042-4052.                                                                                    | 1.0 | 3         |
| 15 | Reductive Metabolism of Ellagitannins in the Young Leaves of Castanopsis sieboldii. Molecules, 2019, 24, 4279.                                                                                            | 1.7 | 8         |
| 16 | Ellagitannins and Related Compounds from <i>Penthorum chinense</i> . Journal of Natural Products, 2019, 82, 129-135.                                                                                      | 1.5 | 7         |
| 17 | Solubility of Tannins and Preparation of Oil-Soluble Derivatives. Journal of Oleo Science, 2018, 67, 1179-1187.                                                                                           | 0.6 | 14        |
| 18 | Utilization of Flavonoid Compounds from Bark and Wood. III. Application in Health Foods. Molecules, 2018, 23, 1860.                                                                                       | 1.7 | 11        |

Yosuke Matsuo

| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Eremophilanes from <i>Ligularia hookeri</i> Collected in China and Structural Revision of 3β-Acyloxyfuranoeremophilan-15,6-olide. Chemical and Pharmaceutical Bulletin, 2018, 66, 668-673.                                         | 0.6 | 5         |
| 20 | Enzymatic oxidation of ellagitannin and a new ellagitannin metabolite from Camellia japonica leaves.<br>Tetrahedron, 2017, 73, 500-507.                                                                                            | 1.0 | 9         |
| 21 | Structural Revision and Biomimetic Synthesis of Goupioloneâ€B. Angewandte Chemie - International<br>Edition, 2017, 56, 11855-11859.                                                                                                | 7.2 | 13        |
| 22 | Structural Revision and Biomimetic Synthesis of Goupioloneâ€B. Angewandte Chemie, 2017, 129, 12017-12021.                                                                                                                          | 1.6 | 3         |
| 23 | Nonenzymatic Biomimetic Synthesis of Black Tea Pigment Theaflavins. Synlett, 2017, 28, 2505-2508.                                                                                                                                  | 1.0 | 11        |
| 24 | Diastereomeric Right―and Leftâ€Handed Helical Structures with Fourteen ( <i>R</i> )â€Chiral Centers.<br>Chemistry - A European Journal, 2017, 23, 18120-18124.                                                                     | 1.7 | 10        |
| 25 | Ferulic acid esters of glucosylglucose from <i>Allium macrostemon</i> Bunge. Journal of Asian<br>Natural Products Research, 2017, 19, 215-221.                                                                                     | 0.7 | 7         |
| 26 | Conjugation of Vescalagin with Glucose and Phenylpropanoid: Reactions Related to the<br>Insolubilization of Oak Wood Ellagitannins. Natural Product Communications, 2017, 12,<br>1934578X1701200.                                  | 0.2 | 4         |
| 27 | Characterization of Proanthocyanidin Oligomers of Ephedra sinica. Molecules, 2017, 22, 1308.                                                                                                                                       | 1.7 | 18        |
| 28 | Triterpene Galloyl Esters from Edible Acorn of Castanopsis Cuspidata. Natural Product<br>Communications, 2016, 11, 1934578X1601100.                                                                                                | 0.2 | 2         |
| 29 | Three New Oxidation Products Produced from Epigallocatechin-3-O-gallate and<br>Epicatechin-3-O-gallate. Natural Product Communications, 2016, 11, 1934578X1601100.                                                                 | 0.2 | 1         |
| 30 | Characterization of the α-Amylase Inhibitory Activity of Oligomeric Proanthocyanidins from Acacia<br>mearnsii Bark Extract. Natural Product Communications, 2016, 11, 1934578X1601101.                                             | 0.2 | 1         |
| 31 | Eudesmane Sesquiterpenoids from the Wood of <i>Platycarya strobilacea</i> . Natural Product<br>Communications, 2016, 11, 1934578X1601100.                                                                                          | 0.2 | 1         |
| 32 | Theagalloflavic Acid, a New Pigment Derived from Hexahydroxydiphenoyl Group, and Lignan Oxidation<br>Products Produced by Aerobic Microbial Fermentation of Green Tea. Chemical and Pharmaceutical<br>Bulletin, 2016, 64, 918-923. | 0.6 | 2         |
| 33 | Stereochemistry of the Black Tea Pigments Theacitrins A and C. Journal of Natural Products, 2016, 79, 189-195.                                                                                                                     | 1.5 | 23        |
| 34 | Characterization of the α-Amylase Inhibitory Activity of Oligomeric Proanthocyanidins from Acacia<br>mearnsii Bark Extract. Natural Product Communications, 2016, 11, 1851-1854.                                                   | 0.2 | 4         |
| 35 | Three new flavans in dragon's blood from <i>Daemonorops draco</i> . Natural Product Research, 2015, 29, 1419-1425.                                                                                                                 | 1.0 | 5         |
| 36 | Diastereomeric Ellagitannin Isomers from <i>Penthorum chinense</i> . Journal of Natural Products, 2015, 78, 2104-2109.                                                                                                             | 1.5 | 13        |

Υοѕике Μатѕио

| #  | Article                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Oxidation mechanism of black tea pigment theaflavin by peroxidase. Tetrahedron Letters, 2015, 56,<br>5099-5102.                                                                             | 0.7 | 31        |
| 38 | Selective oxidation of pyrogallol-type catechins with unripe fruit homogenate of Citrus unshiu and structural revision of oolongtheanins. Tetrahedron, 2015, 71, 2540-2548.                 | 1.0 | 23        |
| 39 | Chalcane–stilbene conjugates and oligomeric flavonoids from Chinese Dragon's Blood produced from Dracaena cochinchinensis. Phytochemistry, 2015, 119, 76-82.                                | 1.4 | 24        |
| 40 | Reinvestigation of the Stereochemistry of the <i>C</i> -Glycosidic Ellagitannins, Vescalagin and Castalagin. Organic Letters, 2015, 17, 46-49.                                              | 2.4 | 37        |
| 41 | Polyphenols in lahpet-so and two new catechin metabolites produced by anaerobic microbial fermentation of green tea. Journal of Natural Medicines, 2014, 68, 459-464.                       | 1.1 | 4         |
| 42 | New Metabolites of <i>C</i> -Glycosidic Ellagitannin from Japanese Oak Sapwood. Organic Letters, 2014, 16, 1378-1381.                                                                       | 2.4 | 14        |
| 43 | New ellagitannin and galloyl esters of phenolic glycosides from sapwood of Quercus mongolica var.<br>crispula (Japanese oak). Phytochemistry Letters, 2013, 6, 486-490.                     | 0.6 | 12        |
| 44 | Structures of enzymatic oxidation products of epigallocatechin. Tetrahedron, 2013, 69, 8952-8958.                                                                                           | 1.0 | 12        |
| 45 | New phenolic compounds from Camellia sinensis L. fermented leaves. Journal of Natural Medicines, 2013, 67, 652-656.                                                                         | 1.1 | 21        |
| 46 | Proanthocyanidin Oligomers Isolated from <i>Salacia reticulata</i> leaves potently Inhibit Pancreatic<br>Lipase Activity. Journal of Food Science, 2013, 78, H105-11.                       | 1.5 | 13        |
| 47 | New Bisabolane Sesquiterpene from the Mycelia of <i>Amanita virgineoides</i> . Chemical<br>and Pharmaceutical Bulletin, 2013, 61, 366-369.                                                  | 0.6 | 6         |
| 48 | Biochemical and PhysicochemicalÂCharacteristics of GreenÂTea Polyphenols. , 2013, , 19-38.                                                                                                  |     | 2         |
| 49 | Two New Oleanane-Type Triterpenes Isolated from Japanese Post-Fermented Tea Produced by Anaerobic<br>Microbial Fermentation. Molecules, 2013, 18, 4868-4875.                                | 1.7 | 14        |
| 50 | Isolation of Ellagitannin Monomer and Macrocyclic Dimer from Castanopsis carlesii Leaves.<br>Heterocycles, 2012, 86, 381.                                                                   | 0.4 | 7         |
| 51 | Benzyl Benzoate Glycoside and 3-Deoxy- <scp>d</scp> -manno-2-octulosonic Acid Derivatives from<br><i>Solidago decurrens</i> . Journal of Natural Products, 2012, 75, 88-92.                 | 1.5 | 9         |
| 52 | Transformation of tea catechins and flavonoid glycosides by treatment with Japanese post-fermented tea acetone powder. Food Chemistry, 2012, 134, 276-281.                                  | 4.2 | 28        |
| 53 | Two new phenolic glucosides and an ellagitannin from the leaves of Castanopsis sclerophylla.<br>Phytochemistry Letters, 2012, 5, 158-161.                                                   | 0.6 | 18        |
| 54 | Polyphenol Composition of a Functional Fermented Tea Obtained by Tea-Rolling Processing of Green<br>Tea and Loquat Leaves. Journal of Agricultural and Food Chemistry, 2011, 59, 7253-7260. | 2.4 | 29        |

Υοѕике Μатѕио

| #  | Article                                                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | α-Amylase and Lipase Inhibitory Activity and Structural Characterization of Acacia Bark<br>Proanthocyanidins. Journal of Natural Products, 2011, 74, 119-128.                                                                                                                             | 1.5 | 116       |
| 56 | New Phenylpropanoid-Substituted Flavan-3-ols from the Leaves of Castanopsis sclerophylla.<br>Heterocycles, 2011, 83, 2321.                                                                                                                                                                | 0.4 | 11        |
| 57 | Biomimetic One-Pot Preparation of a Black Tea Polyphenol Theasinensin A from Epigallocatechin<br>Gallate by Treatment with Copper(II) Chloride and Ascorbic Acid. Chemical and Pharmaceutical<br>Bulletin, 2011, 59, 1183-1185.                                                           | 0.6 | 42        |
| 58 | Triterpene hexahydroxydiphenoyl esters and a quinic acid purpurogallin carbonyl ester from the leaves of Castanopsis fissa. Phytochemistry, 2011, 72, 2006-2014.                                                                                                                          | 1.4 | 22        |
| 59 | ent-Eudesmane sesquiterpenoids, galloyl esters of the oak lactone precursor, and a 3-O-methylellagic<br>acid glycoside from the wood of Platycarya strobilacea. Phytochemistry, 2011, 72, 796-803.                                                                                        | 1.4 | 13        |
| 60 | A new catechin oxidation product and polymeric polyphenols of post-fermented tea. Food Chemistry, 2011, 129, 830-836.                                                                                                                                                                     | 4.2 | 72        |
| 61 | Production and degradation mechanism of theacitrin C, a black tea pigment derived from<br>epigallocatechin-3-O-gallate via a bicyclo[3.2.1]octane-type intermediate. Tetrahedron, 2011, 67,<br>2051-2059.                                                                                 | 1.0 | 30        |
| 62 | Chemical constituents of the leaves of rabbiteye blueberry (Vaccinium ashei) and characterisation of polymeric proanthocyanidins containing phenylpropanoid units and A-type linkages. Food Chemistry, 2010, 121, 1073-1079.                                                              | 4.2 | 59        |
| 63 | Chemistry of Secondary Polyphenols Produced during Processing of Tea and Selected Foods.<br>International Journal of Molecular Sciences, 2010, 11, 14-40.                                                                                                                                 | 1.8 | 137       |
| 64 | Reaction of the Black Tea Pigment Theaflavin during Enzymatic Oxidation of Tea Catechins. Journal of<br>Natural Products, 2010, 73, 33-39.                                                                                                                                                | 1.5 | 48        |
| 65 | Production mechanism of proepitheaflagallin, a precursor of benzotropolone-type black tea pigment, derived from epigallocatechin via a bicyclo[3.2.1]octane-type intermediate. Tetrahedron Letters, 2009, 50, 1348-1351.                                                                  | 0.7 | 23        |
| 66 | Increase of Theaflavin Gallates and Thearubigins by Acceleration of Catechin Oxidation in a New<br>Fermented Tea Product Obtained by the Tea-Rolling Processing of Loquat (Eriobotrya japonica) and<br>Green Tea Leaves. Journal of Agricultural and Food Chemistry, 2009, 57, 5816-5822. | 2.4 | 36        |
| 67 | Coupling Reactions of Catechins with Natural Aldehydes and Allyl Alcohols and Radical Scavenging<br>Activities of the Triglyceride-Soluble Products. Journal of Agricultural and Food Chemistry, 2009, 57,<br>6417-6424.                                                                  | 2.4 | 11        |
| 68 | Euscaphinin, a New Ellagitannin Dimer from Euscaphis japonica (THUNB.) KANITZ. Chemical and<br>Pharmaceutical Bulletin, 2009, 57, 421-423.                                                                                                                                                | 0.6 | 11        |
| 69 | Enzymatic oxidation of gallocatechin and epigallocatechin: Effects of C-ring configuration on the reaction products. Phytochemistry, 2008, 69, 3054-3061.                                                                                                                                 | 1.4 | 22        |
| 70 | Structure of Polymeric Polyphenols of Cinnamon Bark Deduced from Condensation Products of<br>Cinnamaldehyde with Catechin and Procyanidins. Journal of Agricultural and Food Chemistry, 2008,<br>56, 5864-5870.                                                                           | 2.4 | 31        |
| 71 | Polymer-Like Polyphenols of Black Tea and Their Lipase and Amylase Inhibitory Activities. Chemical and Pharmaceutical Bulletin, 2008, 56, 266-272.                                                                                                                                        | 0.6 | 66        |
| 72 | Production of Theaflavins, Theasinensins, and Related Polyphenols during Tea Fermentation.<br>Nutraceutical Science and Technology, 2008, , 59-76.                                                                                                                                        | 0.0 | 2         |

Υοѕике Μатѕио

| #  | Article                                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Identification of Antidiabetic Effect of Iridoid Glycosides and Low Molecular Weight Polyphenol<br>Fractions of Corni Fructus, a Constituent of Hachimi-jio-gan, in Streptozotocin-Induced Diabetic Rats.<br>Biological and Pharmaceutical Bulletin, 2007, 30, 1289-1296. | 0.6 | 71        |
| 74 | Structures of Epicatechin Gallate Trimer and Tetramer Produced by Enzymatic Oxidation. Chemical and Pharmaceutical Bulletin, 2007, 55, 1768-1772.                                                                                                                         | 0.6 | 29        |
| 75 | A new mechanism for oxidation of epigallocatechin and production of benzotropolone pigments.<br>Tetrahedron, 2006, 62, 4774-4783.                                                                                                                                         | 1.0 | 53        |
| 76 | Production of Theaflavins and Theasinensins during Tea Fermentation. ACS Symposium Series, 2005, ,<br>188-196.                                                                                                                                                            | 0.5 | 1         |
| 77 | A Novel Black Tea Pigment and Two New Oxidation Products of Epigallocatechin-3-O-gallate. Journal of Agricultural and Food Chemistry, 2005, 53, 7571-7578.                                                                                                                | 2.4 | 71        |
| 78 | Production of theasinensins A and D, epigallocatechin gallate dimers of black tea, by<br>oxidation–reduction dismutation of dehydrotheasinensin A. Tetrahedron, 2003, 59, 7939-7947.                                                                                      | 1.0 | 97        |