Yosuke Matsuo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5488710/publications.pdf

Version: 2024-02-01

78 1,699
papers citations

23 38 h-index g-index

86 86 all docs citations

86 times ranked 1691 citing authors

#	Article	IF	CITATIONS
1	Chemistry of Secondary Polyphenols Produced during Processing of Tea and Selected Foods. International Journal of Molecular Sciences, 2010, 11, 14-40.	1.8	137
2	\hat{l}_{\pm} -Amylase and Lipase Inhibitory Activity and Structural Characterization of Acacia Bark Proanthocyanidins. Journal of Natural Products, 2011, 74, 119-128.	1.5	116
3	Production of theasinensins A and D, epigallocatechin gallate dimers of black tea, by oxidation–reduction dismutation of dehydrotheasinensin A. Tetrahedron, 2003, 59, 7939-7947.	1.0	97
4	A new catechin oxidation product and polymeric polyphenols of post-fermented tea. Food Chemistry, 2011, 129, 830-836.	4.2	72
5	A Novel Black Tea Pigment and Two New Oxidation Products of Epigallocatechin-3-O-gallate. Journal of Agricultural and Food Chemistry, 2005, 53, 7571-7578.	2.4	71
6	Identification of Antidiabetic Effect of Iridoid Glycosides and Low Molecular Weight Polyphenol Fractions of Corni Fructus, a Constituent of Hachimi-jio-gan, in Streptozotocin-Induced Diabetic Rats. Biological and Pharmaceutical Bulletin, 2007, 30, 1289-1296.	0.6	71
7	Polymer-Like Polyphenols of Black Tea and Their Lipase and Amylase Inhibitory Activities. Chemical and Pharmaceutical Bulletin, 2008, 56, 266-272.	0.6	66
8	Chemical constituents of the leaves of rabbiteye blueberry (Vaccinium ashei) and characterisation of polymeric proanthocyanidins containing phenylpropanoid units and A-type linkages. Food Chemistry, 2010, 121, 1073-1079.	4.2	59
9	A new mechanism for oxidation of epigallocatechin and production of benzotropolone pigments. Tetrahedron, 2006, 62, 4774-4783.	1.0	53
10	Reaction of the Black Tea Pigment Theaflavin during Enzymatic Oxidation of Tea Catechins. Journal of Natural Products, 2010, 73, 33-39.	1.5	48
11	Production Mechanisms of Black Tea Polyphenols. Chemical and Pharmaceutical Bulletin, 2020, 68, 1131-1142.	0.6	45
12	Biomimetic One-Pot Preparation of a Black Tea Polyphenol Theasinensin A from Epigallocatechin Gallate by Treatment with Copper(II) Chloride and Ascorbic Acid. Chemical and Pharmaceutical Bulletin, 2011, 59, 1183-1185.	0.6	42
13	Reinvestigation of the Stereochemistry of the $\langle i \rangle C \langle i \rangle$ -Glycosidic Ellagitannins, Vescalagin and Castalagin. Organic Letters, 2015, 17, 46-49.	2.4	37
14	Increase of Theaflavin Gallates and Thearubigins by Acceleration of Catechin Oxidation in a New Fermented Tea Product Obtained by the Tea-Rolling Processing of Loquat (Eriobotrya japonica) and Green Tea Leaves. Journal of Agricultural and Food Chemistry, 2009, 57, 5816-5822.	2.4	36
15	Structure of Polymeric Polyphenols of Cinnamon Bark Deduced from Condensation Products of Cinnamaldehyde with Catechin and Procyanidins. Journal of Agricultural and Food Chemistry, 2008, 56, 5864-5870.	2.4	31
16	Oxidation mechanism of black tea pigment theaflavin by peroxidase. Tetrahedron Letters, 2015, 56, 5099-5102.	0.7	31
17	Production and degradation mechanism of theacitrin C, a black tea pigment derived from epigallocatechin-3-O-gallate via a bicyclo [3.2.1] octane-type intermediate. Tetrahedron, 2011, 67, 2051-2059.	1.0	30
18	Structures of Epicatechin Gallate Trimer and Tetramer Produced by Enzymatic Oxidation. Chemical and Pharmaceutical Bulletin, 2007, 55, 1768-1772.	0.6	29

#	Article	IF	Citations
19	Polyphenol Composition of a Functional Fermented Tea Obtained by Tea-Rolling Processing of Green Tea and Loquat Leaves. Journal of Agricultural and Food Chemistry, 2011, 59, 7253-7260.	2.4	29
20	Transformation of tea catechins and flavonoid glycosides by treatment with Japanese post-fermented tea acetone powder. Food Chemistry, 2012, 134, 276-281.	4.2	28
21	Chalcane–stilbene conjugates and oligomeric flavonoids from Chinese Dragon's Blood produced from Dracaena cochinchinensis. Phytochemistry, 2015, 119, 76-82.	1.4	24
22	Production mechanism of proepitheaflagallin, a precursor of benzotropolone-type black tea pigment, derived from epigallocatechin via a bicyclo[3.2.1]octane-type intermediate. Tetrahedron Letters, 2009, 50, 1348-1351.	0.7	23
23	Selective oxidation of pyrogallol-type catechins with unripe fruit homogenate of Citrus unshiu and structural revision of oolongtheanins. Tetrahedron, 2015, 71, 2540-2548.	1.0	23
24	Stereochemistry of the Black Tea Pigments Theacitrins A and C. Journal of Natural Products, 2016, 79, 189-195.	1.5	23
25	Enzymatic oxidation of gallocatechin and epigallocatechin: Effects of C-ring configuration on the reaction products. Phytochemistry, 2008, 69, 3054-3061.	1.4	22
26	Triterpene hexahydroxydiphenoyl esters and a quinic acid purpurogallin carbonyl ester from the leaves of Castanopsis fissa. Phytochemistry, 2011, 72, 2006-2014.	1.4	22
27	New phenolic compounds from Camellia sinensis L. fermented leaves. Journal of Natural Medicines, 2013, 67, 652-656.	1.1	21
28	Oligomerization mechanism of tea catechins during tea roasting. Food Chemistry, 2019, 285, 252-259.	4.2	19
29	Two new phenolic glucosides and an ellagitannin from the leaves of Castanopsis sclerophylla. Phytochemistry Letters, 2012, 5, 158-161.	0.6	18
30	Characterization of Proanthocyanidin Oligomers of Ephedra sinica. Molecules, 2017, 22, 1308.	1.7	18
31	New degradation mechanism of black tea pigment theaflavin involving condensation with epigallocatechin-3-O-gallate. Food Chemistry, 2022, 370, 131326.	4.2	17
32	Two New Oleanane-Type Triterpenes Isolated from Japanese Post-Fermented Tea Produced by Anaerobic Microbial Fermentation. Molecules, 2013, 18, 4868-4875.	1.7	14
33	New Metabolites of <i>C</i> -Glycosidic Ellagitannin from Japanese Oak Sapwood. Organic Letters, 2014, 16, 1378-1381.	2.4	14
34	Solubility of Tannins and Preparation of Oil-Soluble Derivatives. Journal of Oleo Science, 2018, 67, 1179-1187.	0.6	14
35	ent-Eudesmane sesquiterpenoids, galloyl esters of the oak lactone precursor, and a 3-O-methylellagic acid glycoside from the wood of Platycarya strobilacea. Phytochemistry, 2011, 72, 796-803.	1.4	13
36	Proanthocyanidin Oligomers Isolated from <i>Salacia reticulata</i> leaves potently Inhibit Pancreatic Lipase Activity. Journal of Food Science, 2013, 78, H105-11.	1.5	13

3

#	Article	IF	CITATIONS
37	Diastereomeric Ellagitannin Isomers from <i>Penthorum chinense</i> . Journal of Natural Products, 2015, 78, 2104-2109.	1.5	13
38	Structural Revision and Biomimetic Synthesis of Goupioloneâ€B. Angewandte Chemie - International Edition, 2017, 56, 11855-11859.	7.2	13
39	New ellagitannin and galloyl esters of phenolic glycosides from sapwood of Quercus mongolica var. crispula (Japanese oak). Phytochemistry Letters, 2013, 6, 486-490.	0.6	12
40	Structures of enzymatic oxidation products of epigallocatechin. Tetrahedron, 2013, 69, 8952-8958.	1.0	12
41	Coupling Reactions of Catechins with Natural Aldehydes and Allyl Alcohols and Radical Scavenging Activities of the Triglyceride-Soluble Products. Journal of Agricultural and Food Chemistry, 2009, 57, 6417-6424.	2.4	11
42	Euscaphinin, a New Ellagitannin Dimer from Euscaphis japonica (THUNB.) KANITZ. Chemical and Pharmaceutical Bulletin, 2009, 57, 421-423.	0.6	11
43	New Phenylpropanoid-Substituted Flavan-3-ols from the Leaves of Castanopsis sclerophylla. Heterocycles, 2011, 83, 2321.	0.4	11
44	Nonenzymatic Biomimetic Synthesis of Black Tea Pigment Theaflavins. Synlett, 2017, 28, 2505-2508.	1.0	11
45	Utilization of Flavonoid Compounds from Bark and Wood. III. Application in Health Foods. Molecules, 2018, 23, 1860.	1.7	11
46	Production of Ellagitannin Hexahydroxydiphenoyl Ester by Spontaneous Reduction of Dehydrohexa-hydroxydiphenoyl Ester. Molecules, 2020, 25, 1051.	1.7	11
47	Diastereomeric Right―and Leftâ€Handed Helical Structures with Fourteen (<i>R</i>)â€Chiral Centers. Chemistry - A European Journal, 2017, 23, 18120-18124.	1.7	10
48	Computationally Assisted Structural Revision of Flavoalkaloids with a Seven-Membered Ring: Aquiledine, Isoaquiledine, and Cheliensisine. Journal of Natural Products, 2020, 83, 3347-3353.	1.5	10
49	Benzyl Benzoate Glycoside and 3-Deoxy- <scp>d</scp> -manno-2-octulosonic Acid Derivatives from <i>Solidago decurrens</i> . Journal of Natural Products, 2012, 75, 88-92.	1.5	9
50	Enzymatic oxidation of ellagitannin and a new ellagitannin metabolite from Camellia japonica leaves. Tetrahedron, 2017, 73, 500-507.	1.0	9
51	Reductive Metabolism of Ellagitannins in the Young Leaves of Castanopsis sieboldii. Molecules, 2019, 24, 4279.	1.7	8
52	Highly Oxidized Ellagitannins of <i>Carpinus japonica</i> and Their Oxidation–Reduction Disproportionation. Journal of Natural Products, 2020, 83, 3424-3434.	1.5	8
53	Formation of Dehydrohexahydroxydiphenoyl Esters by Oxidative Coupling of Galloyl Esters in an Aqueous Medium Involved in Ellagitannin Biosynthesis. Chemistry - an Asian Journal, 2021, 16, 1735-1740.	1.7	8
54	Isolation of Ellagitannin Monomer and Macrocyclic Dimer from Castanopsis carlesii Leaves. Heterocycles, 2012, 86, 381.	0.4	7

#	Article	IF	Citations
55	Ferulic acid esters of glucosylglucose from <i>Allium macrostemon</i> Bunge. Journal of Asian Natural Products Research, 2017, 19, 215-221.	0.7	7
56	Ellagitannins and Related Compounds from <i>Penthorum chinense</i> . Journal of Natural Products, 2019, 82, 129-135.	1.5	7
57	New Bisabolane Sesquiterpene from the Mycelia of <i>Amanita virgineoides</i> . Chemical and Pharmaceutical Bulletin, 2013, 61, 366-369.	0.6	6
58	Oxidation of the Oak Ellagitannin, Vescalagin. Journal of Natural Products, 2020, 83, 413-421.	1.5	6
59	Three new flavans in dragon's blood from <i>Daemonorops draco</i> . Natural Product Research, 2015, 29, 1419-1425.	1.0	5
60	Eremophilanes from <i>Ligularia hookeri</i> Collected in China and Structural Revision of 3Î2-Acyloxyfuranoeremophilan-15,6-olide. Chemical and Pharmaceutical Bulletin, 2018, 66, 668-673.	0.6	5
61	Polyphenols in lahpet-so and two new catechin metabolites produced by anaerobic microbial fermentation of green tea. Journal of Natural Medicines, 2014, 68, 459-464.	1.1	4
62	Conjugation of Vescalagin with Glucose and Phenylpropanoid: Reactions Related to the Insolubilization of Oak Wood Ellagitannins. Natural Product Communications, 2017, 12, 1934578X1701200.	0.2	4
63	Ellagitannins and Oligomeric Proanthocyanidins of Three Polygonaceous Plants. Molecules, 2021, 26, 337.	1.7	4
64	Ellagitannin Digestion in Moth Larvae and a New Dimeric Ellagitannin from the Leaves of Platycarya strobilacea. Molecules, 2021, 26, 4134.	1.7	4
65	Stereochemistry of a Cyclic Epicatechin Trimer with <i>C</i> 3 Symmetry Produced by Oxidative Coupling. European Journal of Organic Chemistry, 2021, 2021, 777-781.	1.2	4
66	Characterization of the α-Amylase Inhibitory Activity of Oligomeric Proanthocyanidins from Acacia mearnsii Bark Extract. Natural Product Communications, 2016, 11, 1851-1854.	0.2	4
67	Structural Revision and Biomimetic Synthesis of Goupioloneâ€B. Angewandte Chemie, 2017, 129, 12017-12021.	1.6	3
68	Characterization and cytotoxicity of ellagitannins from Stachyurus praecox fruit. Tetrahedron, 2019, 75, 4042-4052.	1.0	3
69	Nupharanin, the first ellagitannin with 1,4-dehydrohexahydroxydiphenoyl-α-d-glucopyranose from Nuphar japonicum. Tetrahedron, 2020, 76, 131204.	1.0	3
70	Biochemical and PhysicochemicalÂCharacteristics of GreenÂTea Polyphenols., 2013,, 19-38.		2
71	Triterpene Galloyl Esters from Edible Acorn of Castanopsis Cuspidata. Natural Product Communications, 2016, 11, 1934578X1601100.	0.2	2
72	Theagalloflavic Acid, a New Pigment Derived from Hexahydroxydiphenoyl Group, and Lignan Oxidation Products Produced by Aerobic Microbial Fermentation of Green Tea. Chemical and Pharmaceutical Bulletin, 2016, 64, 918-923.	0.6	2

Yosuke Matsuo

#	Article	lF	CITATIONS
73	Production of Theaflavins, Theasinensins, and Related Polyphenols during Tea Fermentation. Nutraceutical Science and Technology, 2008, , 59-76.	0.0	2
74	Production of Theaflavins and Theasinensins during Tea Fermentation. ACS Symposium Series, 2005, , $188-196$.	0.5	1
75	Three New Oxidation Products Produced from Epigallocatechin-3-O-gallate and Epicatechin-3-O-gallate. Natural Product Communications, 2016, 11, 1934578X1601100.	0.2	1
76	Characterization of the \hat{l}_{\pm} -Amylase Inhibitory Activity of Oligomeric Proanthocyanidins from Acacia mearnsii Bark Extract. Natural Product Communications, 2016, 11, 1934578X1601101.	0.2	1
77	Eudesmane Sesquiterpenoids from the Wood of <i>Platycarya strobilacea</i> Communications, 2016, 11, 1934578X1601100.	0.2	1
78	Diversity of Furanoeremophilane Composition in <i>Ligularia tongolensis</i> . Natural Product Communications, 2019, 14, 1934578X1987893.	0.2	1