
## Jingjie Yeo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5488600/publications.pdf Version: 2024-02-01



LINCUE YEO

| #  | Article                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Current Insights on the Diverse Structures and Functions in Bacterial Collagen-like Proteins. ACS<br>Biomaterials Science and Engineering, 2023, 9, 3778-3795.                                                        | 2.6  | 25        |
| 2  | Fiberâ€Based Biopolymer Processing as a Route toward Sustainability. Advanced Materials, 2022, 34, e2105196.                                                                                                          | 11.1 | 71        |
| 3  | The effect of ionic liquid-based electrolytes for dendrite-inhibited and performance-boosted lithium metal batteries. Electrochimica Acta, 2022, 401, 139527.                                                         | 2.6  | 9         |
| 4  | Customizing the properties of borosilicate foam glasses via additions under low sintering<br>temperatures with insights from molecular dynamics simulations. Journal of Non-Crystalline Solids,<br>2022, 576, 121273. | 1.5  | 6         |
| 5  | Hybridly double-crosslinked carbon nanotube networks with combined strength and toughness<br><i>via</i> cooperative energy dissipation. Nanoscale, 2022, 14, 2434-2445.                                               | 2.8  | 3         |
| 6  | The Impact of Foaming Effect on the Physical and Mechanical Properties of Foam Glasses with Molecular-Level Insights. Molecules, 2022, 27, 876.                                                                       | 1.7  | 6         |
| 7  | Producing light, strong foam glass under a low sintering temperature with insights from molecular simulations. Journal of Non-Crystalline Solids, 2022, 582, 121447.                                                  | 1.5  | 4         |
| 8  | Engineering Natural and Recombinant Silks for Sustainable Biodevices. Frontiers in Chemistry, 2022, 10, .                                                                                                             | 1.8  | 6         |
| 9  | Performance-enhanced lithium metal batteries through ionic liquid based electrolytes and mechanism research derived by density functional theory calculations. Electrochimica Acta, 2021, 368, 137535.                | 2.6  | 14        |
| 10 | Solar-powered nanostructured biopolymer hygroscopic aerogels for atmospheric water harvesting.<br>Nano Energy, 2021, 80, 105569.                                                                                      | 8.2  | 99        |
| 11 | Birefringent Silk Fibroin Hydrogel Constructed via Binary Solvent-Exchange-Induced Self-Assembly.<br>Biomacromolecules, 2021, 22, 1955-1965.                                                                          | 2.6  | 16        |
| 12 | Metamodeling of constitutive model using Gaussian process machine learning. Journal of the Mechanics and Physics of Solids, 2021, 154, 104532.                                                                        | 2.3  | 17        |
| 13 | Dataâ€Driven Approaches Toward Smarter Additive Manufacturing. Advanced Intelligent Systems, 2021, 3, 2100014.                                                                                                        | 3.3  | 21        |
| 14 | Design and Production of Customizable and Highly Aligned Fibrillar Collagen Scaffolds. ACS<br>Biomaterials Science and Engineering, 2021, , .                                                                         | 2.6  | 2         |
| 15 | Specific osteogenesis imperfecta-related Gly substitutions in type I collagen induce distinct structural, mechanical, and dynamic characteristics. Chemical Communications, 2021, 57, 12183-12186.                    | 2.2  | 3         |
| 16 | Conformational Freedomâ€Enhanced Optomechanical Energy Conversion Efficiency in Bulk<br>Azoâ€Polyimides (Adv. Funct. Mater. 45/2021). Advanced Functional Materials, 2021, 31, .                                      | 7.8  | 2         |
| 17 | Strengthening the Sustainability of Additive Manufacturing through Dataâ€Driven Approaches and Workforce Development. Advanced Intelligent Systems, 2021, 3, 2100069.                                                 | 3.3  | 8         |
| 18 | A review on low dimensional carbon desalination and gas separation membrane designs. Journal of<br>Membrane Science, 2020, 598, 117785.                                                                               | 4.1  | 64        |

Jingjie Yeo

| #  | Article                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Investigations on different two-dimensional materials as slit membranes for enhanced desalination.<br>Journal of Membrane Science, 2020, 598, 117653.                                                           | 4.1  | 32        |
| 20 | Synergistic Rollâ€ŧoâ€Roll Transfer and Doping of CVDâ€Graphene Using Parylene for Ambientâ€Stable and<br>Ultra‣ightweight Photovoltaics. Advanced Functional Materials, 2020, 30, 2001924.                     | 7.8  | 45        |
| 21 | Discovery and design of soft polymeric bio-inspired materials with multiscale simulations and artificial intelligence. Journal of Materials Chemistry B, 2020, 8, 6562-6587.                                    | 2.9  | 44        |
| 22 | Adverse effects of Alport syndrome-related Gly missense mutations on collagen type IV: Insights from molecular simulations and experiments. Biomaterials, 2020, 240, 119857.                                    | 5.7  | 18        |
| 23 | Wood-Derived Carbon with Selectively Introduced Câ•O Groups toward Stable and High Capacity<br>Anodes for Sodium Storage. ACS Applied Materials & Interfaces, 2020, 12, 27499-27507.                            | 4.0  | 75        |
| 24 | Silica Aerogels: A Review of Molecular Dynamics Modelling and Characterization of the Structural,<br>Thermal, and Mechanical Properties. , 2020, , 1575-1595.                                                   |      | 7         |
| 25 | Tuning the structure of monomeric amyloid beta peptide by the curvature of carbon nanotubes.<br>Carbon, 2019, 153, 717-724.                                                                                     | 5.4  | 14        |
| 26 | Conductive Silkâ€Based Composites Using Biobased Carbon Materials. Advanced Materials, 2019, 31,<br>e1904720.                                                                                                   | 11.1 | 52        |
| 27 | Many-body dissipative particle dynamics simulations of nanodroplet formation in 3D nano-inkjet printing. Modelling and Simulation in Materials Science and Engineering, 2019, 27, 055005.                       | 0.8  | 9         |
| 28 | Multiscale Modeling of Silk and Silkâ€Based Biomaterials—A Review. Macromolecular Bioscience, 2019,<br>19, 1970007.                                                                                             | 2.1  | 12        |
| 29 | Dynamic pigmentary and structural coloration within cephalopod chromatophore organs. Nature Communications, 2019, 10, 1004.                                                                                     | 5.8  | 105       |
| 30 | Toward rational algorithmic design of collagen-based biomaterials through multiscale computational modeling. Current Opinion in Chemical Engineering, 2019, 24, 79-87.                                          | 3.8  | 13        |
| 31 | Carbon nanotube arrays as multilayer transverse flow carbon nanotube membrane for efficient desalination. Journal of Membrane Science, 2019, 581, 383-392.                                                      | 4.1  | 20        |
| 32 | Paraffin-enabled graphene transfer. Nature Communications, 2019, 10, 867.                                                                                                                                       | 5.8  | 185       |
| 33 | Multiscale Design of Graphyneâ€Based Materials for Highâ€Performance Separation Membranes. Advanced<br>Materials, 2019, 31, e1805665.                                                                           | 11.1 | 30        |
| 34 | Multiscale Modeling of Silk and Silkâ€Based Biomaterials—A Review. Macromolecular Bioscience, 2019,<br>19, e1800253.                                                                                            | 2.1  | 40        |
| 35 | Effects of oscillating pressure on desalination performance of transverse flow CNT membrane.<br>Desalination, 2019, 451, 35-44.                                                                                 | 4.0  | 10        |
| 36 | Multiscale modeling of keratin, collagen, elastin and related human diseases: Perspectives from<br>atomistic to coarse-grained molecular dynamics simulations. Extreme Mechanics Letters, 2018, 20,<br>112-124. | 2.0  | 39        |

JINGJIE YEO

| #  | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Effects of CNT size on the desalination performance of an outer-wall CNT slit membrane. Physical Chemistry Chemical Physics, 2018, 20, 13896-13902.                                                          | 1.3 | 16        |
| 38 | Materials-by-design: computation, synthesis, and characterization from atoms to structures. Physica Scripta, 2018, 93, 053003.                                                                               | 1.2 | 32        |
| 39 | Advancing the frontiers of silk fibroin protein-based materials for futuristic electronics and clinical wound-healing (Invited review). Materials Science and Engineering C, 2018, 86, 151-172.              | 3.8 | 99        |
| 40 | Highâ€Strength, Durable Allâ€Silk Fibroin Hydrogels with Versatile Processability toward<br>Multifunctional Applications. Advanced Functional Materials, 2018, 28, 1704757.                                  | 7.8 | 133       |
| 41 | Fabrication and Characterization of Recombinant Silkâ€Elastinâ€Likeâ€Protein (SELP) Fiber. Macromolecular<br>Bioscience, 2018, 18, e1800265.                                                                 | 2.1 | 26        |
| 42 | Silica Aerogels: A Review of Molecular Dynamics Modelling and Characterization of the Structural, Thermal, and Mechanical Properties. , 2018, , 1-21.                                                        |     | 1         |
| 43 | Numerical study of surface agglomeration of ultravioletâ€polymeric ink and its control during 3D<br>nanoâ€inkjet printing process. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 1615-1624. | 2.4 | 3         |
| 44 | Unraveling the molecular mechanisms of thermo-responsive properties of silk-elastin-like proteins by integrating multiscale modeling and experiment. Journal of Materials Chemistry B, 2018, 6, 3727-3734.   | 2.9 | 21        |
| 45 | Numerical characterization of ultraviolet ink fluid agglomeration and the surfactant effect in nanoinkjet printing. Polymers for Advanced Technologies, 2017, 28, 1057-1064.                                 | 1.6 | 10        |
| 46 | Nanoscale Fluid Mechanics Working Principles of Transverse Flow Carbon Nanotube Membrane for<br>Enhanced Desalination. International Journal of Applied Mechanics, 2017, 09, 1750034.                        | 1.3 | 16        |
| 47 | Carbon nanoscroll–silk crystallite hybrid structures with controllable hydration and mechanical properties. Nanoscale, 2017, 9, 9181-9189.                                                                   | 2.8 | 21        |
| 48 | Unusually low and density-insensitive thermal conductivity of three-dimensional gyroid graphene.<br>Nanoscale, 2017, 9, 13477-13484.                                                                         | 2.8 | 38        |
| 49 | Adsorption and Conformational Evolution of Alpha-Helical BSA Segments on Graphene: A Molecular<br>Dynamics Study. International Journal of Applied Mechanics, 2016, 08, 1650021.                             | 1.3 | 11        |
| 50 | Free-standing graphene slit membrane for enhanced desalination. Carbon, 2016, 110, 350-355.                                                                                                                  | 5.4 | 44        |
| 51 | Effects of Nanoporosity on the Mechanical Properties and Applications of Aerogels in Composite Structures. , 2016, , 97-126.                                                                                 |     | 0         |
| 52 | Molecular dynamics modelling of EGCG clusters on ceramide bilayers. AIP Conference Proceedings, 2015, , .                                                                                                    | 0.3 | 0         |
| 53 | Peptide–Graphene Interactions Enhance the Mechanical Properties of Silk Fibroin. ACS Applied<br>Materials & Interfaces, 2015, 7, 21787-21796.                                                                | 4.0 | 64        |
| 54 | Molecular Dynamics Analysis of the Thermal Conductivity of Graphene and Silicene Monolayers of<br>Different Lengths. Journal of Computational and Theoretical Nanoscience, 2014, 11, 1790-1796.              | 0.4 | 10        |

Jingjie Yeo

| #  | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Superlubricity-activated thinning of graphite flakes compressed by passivated crystalline silicon substrates for graphene exfoliation. Carbon, 2014, 80, 68-74.                                            | 5.4 | 6         |
| 56 | Determination of the Young's modulus of silica aerogels – an analytical–numerical approach. Soft<br>Matter, 2013, 9, 11367.                                                                                | 1.2 | 38        |
| 57 | Molecular dynamics simulation of the thermal conductivity of shorts strips of graphene and silicene:<br>a comparative study. International Journal of Mechanics and Materials in Design, 2013, 9, 105-114. | 1.7 | 70        |
| 58 | Enhanced thermal characterization of silica aerogels through molecular dynamics simulation.<br>Modelling and Simulation in Materials Science and Engineering, 2013, 21, 075004.                            | 0.8 | 27        |
| 59 | Comparing the effects of dispersed Stone–Thrower–Wales defects and double vacancies on the thermal conductivity of graphene nanoribbons. Nanotechnology, 2012, 23, 385702.                                 | 1.3 | 56        |
| 60 | A molecular dynamics study of the thermal conductivity of nanoporous silica aerogel, obtained through negative pressure rupturing. Journal of Non-Crystalline Solids, 2012, 358, 1350-1355.                | 1.5 | 41        |
| 61 | A molecular dynamics study of the thermal conductivity of graphene nanoribbons containing<br>dispersed Stone–Thrower–Wales defects. Carbon, 2012, 50, 4887-4893.                                           | 5.4 | 150       |
| 62 | Conformational Freedomâ€Enhanced Optomechanical Energy Conversion Efficiency in Bulk<br>Azoâ€Polyimides. Advanced Functional Materials, 0, , 2104414.                                                      | 7.8 | 4         |