Jill Wildonger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5488522/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genome Engineering of <i>Drosophila</i> with the CRISPR RNA-Guided Cas9 Nuclease. Genetics, 2013, 194, 1029-1035.	1.2	926
2	Dynein is required for polarized dendritic transport and uniform microtubule orientation in axons. Nature Cell Biology, 2008, 10, 1172-1180.	4.6	265
3	Safeguarding gene drive experiments in the laboratory. Science, 2015, 349, 927-929.	6.0	254
4	A CRISPR view of development. Genes and Development, 2014, 28, 1859-1872.	2.7	194
5	CRISPRâ€Cas9 Genome Editing in <i>Drosophila</i> . Current Protocols in Molecular Biology, 2015, 111, 31.2.1-31.2.20.	2.9	159
6	Advances in Engineering the Fly Genome with the CRISPR-Cas System. Genetics, 2018, 208, 1-18.	1.2	154
7	CRISPR/Cas9-mediated genome engineering and the promise of designer flies on demand. Fly, 2013, 7, 249-255.	0.9	100
8	Microtubule control of functional architecture in neurons. Current Opinion in Neurobiology, 2019, 57, 39-45.	2.0	77
9	Role of kinesin-1–based microtubule sliding in <i>Drosophila</i> nervous system development. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4985-94.	3.3	73
10	Microtubule–microtubule sliding by kinesin-1 is essential for normal cytoplasmic streaming in <i>Drosophila</i> oocytes. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4995-5004.	3.3	73
11	Autoinhibition of kinesin-1 is essential to the dendrite-specific localization of Golgi outposts. Journal of Cell Biology, 2018, 217, 2531-2547.	2.3	56
12	Precise Genome Editing of Drosophila with CRISPR RNA-Guided Cas9. Methods in Molecular Biology, 2015, 1311, 335-348.	0.4	52
13	Dendrite arborization requires the dynein cofactor NudE. Journal of Cell Science, 2015, 128, 2191-2201.	1.2	47
14	Microtubule Acetylation Is Required for Mechanosensation in Drosophila. Cell Reports, 2018, 25, 1051-1065.e6.	2.9	47
15	Effects of mutating α-tubulin lysine 40 on sensory dendrite development. Journal of Cell Science, 2017, 130, 4120-4131.	1.2	38
16	The Seckel syndrome and centrosomal protein Ninein localizes asymmetrically to stem cell centrosomes but is not required for normal development, behavior, or DNA damage response in Drosophila. Molecular Biology of the Cell, 2016, 27, 1740-1752.	0.9	25
17	Golgi Outposts Locally Regulate Microtubule Orientation in Neurons but Are Not Required for the Overall Polarity of the Dendritic Cytoskeleton. Genetics, 2020, 215, 435-447.	1.2	25
18	Acetylated α-tubulin K394 regulates microtubule stability to shape the growth of axon terminals. Current Biology, 2022, 32, 614-630.e5.	1.8	18

#	Article	IF	CITATIONS
19	Non-enzymatic Activity of the α-Tubulin Acetyltransferase αTAT Limits Synaptic Bouton Growth in Neurons. Current Biology, 2020, 30, 610-623.e5.	1.8	5