List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5488518/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Energy input from quasars regulates the growth and activity of black holes and their host galaxies. Nature, 2005, 433, 604-607.	13.7	2,577
2	Modelling feedback from stars and black holes in galaxy mergers. Monthly Notices of the Royal Astronomical Society, 2005, 361, 776-794.	1.6	1,746
3	A Unified, Mergerâ€driven Model of the Origin of Starbursts, Quasars, the Cosmic Xâ€Ray Background, Supermassive Black Holes, and Galaxy Spheroids. Astrophysical Journal, Supplement Series, 2006, 163, 1-49.	3.0	1,484
4	A Fundamental Plane of black hole activity. Monthly Notices of the Royal Astronomical Society, 2003, 345, 1057-1076.	1.6	977
5	A unified model for AGN feedback in cosmological simulations of structure formation. Monthly Notices of the Royal Astronomical Society, 0, 380, 877-900.	1.6	692
6	Black Holes in Galaxy Mergers: The Formation of Red Elliptical Galaxies. Astrophysical Journal, 2005, 620, L79-L82.	1.6	642
7	Black Holes in Galaxy Mergers: Evolution of Quasars. Astrophysical Journal, 2005, 630, 705-715.	1.6	497
8	Blockchain Technologies: The Foreseeable Impact on Society and Industry. Computer, 2017, 50, 18-28.	1.2	459
9	A Mergerâ€driven Scenario for Cosmological Disk Galaxy Formation. Astrophysical Journal, 2006, 645, 986-1000.	1.6	443
10	Direct Cosmological Simulations of the Growth of Black Holes and Galaxies. Astrophysical Journal, 2008, 676, 33-53.	1.6	423
11	A Physical Model for the Origin of Quasar Lifetimes. Astrophysical Journal, 2005, 625, L71-L74.	1.6	316
12	The Kinematic Structure of Merger Remnants. Astrophysical Journal, 2006, 650, 791-811.	1.6	315
13	Neutrino Trapping and Accretion Models for Gammaâ€Ray Bursts. Astrophysical Journal, 2002, 579, 706-715.	1.6	282
14	The MassiveBlack-II simulation: the evolution of haloes and galaxies to zÂâ^1⁄4Â0. Monthly Notices of the Royal Astronomical Society, 2015, 450, 1349-1374.	1.6	262
15	Accretion onto the Supermassive Black Hole in M87. Astrophysical Journal, 2003, 582, 133-140.	1.6	261
16	Formation of <i>z</i> â^1⁄46 Quasars from Hierarchical Galaxy Mergers. Astrophysical Journal, 2007, 665, 187-208.	1.6	253
17	COLD FLOWS AND THE FIRST QUASARS. Astrophysical Journal Letters, 2012, 745, L29.	3.0	219
18	The Evolution of theMBHâ€if Relation, Astrophysical Journal, 2006, 641, 90-102,	1.6	217

2

#	Article	IF	CITATIONS
19	Radio Foregrounds for the 21 Centimeter Tomography of the Neutral Intergalactic Medium at High Redshifts. Astrophysical Journal, 2002, 564, 576-580.	1.6	190
20	THE FUNDAMENTAL PLANE OF ACCRETION ONTO BLACK HOLES WITH DYNAMICAL MASSES. Astrophysical Journal, 2009, 706, 404-416.	1.6	172
21	The 'quiescent' black hole in M87. Monthly Notices of the Royal Astronomical Society, 1996, 283, L111-L116.	1.6	171
22	THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY: THE QUASAR LUMINOSITY FUNCTION FROM DATA RELEASE NINE. Astrophysical Journal, 2013, 773, 14.	1.6	170
23	Galactic Centre stellar winds and Sgr A* accretion. Monthly Notices of the Royal Astronomical Society, 2006, 366, 358-372.	1.6	138
24	Black Hole Growth and Activity in a $\hat{\mathfrak{h}}$ Cold Dark Matter Universe. Astrophysical Journal, 2003, 593, 56-68.	1.6	131
25	Possible Evidence for Truncated Thin Disks in the Low-Luminosity Active Galactic Nuclei M81 and NGC 4579. Astrophysical Journal, 1999, 525, L89-L92.	1.6	125
26	Luminosityâ€dependent Quasar Lifetimes: A New Interpretation of the Quasar Luminosity Function. Astrophysical Journal, 2005, 630, 716-720.	1.6	125
27	Tracing the cosmological assembly of stars and supermassive black holes in galaxies. Monthly Notices of the Royal Astronomical Society, 2004, 354, L37-L42.	1.6	116
28	Magnetic reconnection: flares and coronal heating in active galactic nuclei. Monthly Notices of the Royal Astronomical Society, 1998, 299, L15-L20.	1.6	113
29	How Rapidly Do Supermassive Black Hole "Seeds―Grow at Early Times?. Astrophysical Journal, 2007, 665, 107-119.	1.6	105
30	The Evolution in the Faintâ€End Slope of the Quasar Luminosity Function. Astrophysical Journal, 2006, 639, 700-709.	1.6	98
31	Low‣uminosity States of the Black Hole Candidate GX 339â^'4. I.ASCAand Simultaneous Radio/RXTEObservations. Astrophysical Journal, 1999, 522, 460-475.	1.6	89
32	Hierarchical Information Clustering by Means of Topologically Embedded Graphs. PLoS ONE, 2012, 7, e31929.	1.1	87
33	Xâ€Ray Emission from Hot Gas in Galaxy Mergers. Astrophysical Journal, 2006, 643, 692-706.	1.6	87
34	The 21-cm emission from the reionization epoch: extended and point source foregrounds. Monthly Notices of the Royal Astronomical Society, 2004, 355, 1053-1065.	1.6	86
35	The origin of the most massive black holes at high-z: BlueTides and the next quasar frontier. Monthly Notices of the Royal Astronomical Society, 2017, 467, 4243-4251.	1.6	83
36	Hydrodynamic Simulation of the Cosmological Xâ€Ray Background. Astrophysical Journal, 2001, 557, 67-87.	1.6	83

#	Article	IF	CITATIONS
37	Galaxy shapes and intrinsic alignments in the MassiveBlack-II simulation. Monthly Notices of the Royal Astronomical Society, 2014, 441, 470-485.	1.6	82
38	Instabilities in the Timeâ€Dependent Neutrino Disk in Gammaâ€Ray Bursts. Astrophysical Journal, 2007, 664, 1011-1025.	1.6	81
39	The Role of Galactic Winds on Molecular Gas Emission from Galaxy Mergers. Astrophysical Journal, Supplement Series, 2008, 176, 331-354.	3.0	78
40	Evolution of a neutrino-cooled disc in gamma-ray bursts. Monthly Notices of the Royal Astronomical Society, 2004, 355, 950-958.	1.6	77
41	Luminosityâ€dependent Quasar Lifetimes: Reconciling the Optical and Xâ€Ray Quasar Luminosity Functions. Astrophysical Journal, 2005, 632, 81-91.	1.6	70
42	Galaxy morphology, kinematics and clustering in a hydrodynamic simulation of a �� cold dark matter universe. Monthly Notices of the Royal Astronomical Society, 2009, 400, 43-67.	1.6	67
43	The Fundamental Plane of Black Hole Accretion and Its Use as a Black Hole-Mass Estimator. Astrophysical Journal, 2019, 871, 80.	1.6	67
44	Intrinsic alignments of galaxies in the MassiveBlack-II simulation: analysis of two-point statistics. Monthly Notices of the Royal Astronomical Society, 2015, 448, 3522-3544.	1.6	66
45	Magnetic flares in accretion disc coronae and the spectral states of black hole candidates: the case of GX339-4. Monthly Notices of the Royal Astronomical Society, 1999, 304, 809-820.	1.6	65
46	Strong observational constraints on advection-dominated accretion in the cores of elliptical galaxies. Monthly Notices of the Royal Astronomical Society, 1999, 305, 492-504.	1.6	64
47	The properties of the first galaxies in the BlueTides simulation. Monthly Notices of the Royal Astronomical Society, 2017, 469, 2517-2530.	1.6	63
48	Accretion onto Nearby Supermassive Black Holes: [ITAL]Chandra[/ITAL] Constraints on the Dominant Cluster Galaxy NGC 6166. Astrophysical Journal, 2001, 550, L19-L23.	1.6	59
49	Magnetic flares and the optical variability of the X-ray transient XTE J1118+480. Monthly Notices of the Royal Astronomical Society, 2000, 318, L15-L19.	1.6	52
50	Galaxy shapes and alignments in the MassiveBlack-II hydrodynamic and dark matter-only simulations. Monthly Notices of the Royal Astronomical Society, 2015, 453, 469-482.	1.6	52
51	The Clustering of Active Galactic Nuclei in the Sloan Digital Sky Survey. Astrophysical Journal, 2004, 610, L85-L88.	1.6	51
52	The epoch of cosmic heating by early sources of X-rays. Monthly Notices of the Royal Astronomical Society, 2018, 476, 1174-1190.	1.6	51
53	Interpreting the observed UV continuum slopes of high-redshift galaxies. Monthly Notices of the Royal Astronomical Society, 2013, 430, 2885-2890.	1.6	50
54	Molecular Outflows in Galaxy Merger Simulations with Embedded Active Galactic Nuclei. Astrophysical Journal, 2006, 642, L107-L110.	1.6	48

Τιζιανά Di Μάττεο

#	Article	IF	CITATIONS
55	Al-assisted superresolution cosmological simulations. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	46
56	Limits on the Accretion Rates onto Massive Black Holes in Nearby Galaxies. Astrophysical Journal, 2001, 547, 731-739.	1.6	46
57	Why the fundamental plane of black hole activity is not simply a distance driven artifact. New Astronomy, 2006, 11, 567-576.	0.8	45
58	High-redshift supermassive black holes: accretion through cold flows. Monthly Notices of the Royal Astronomical Society, 2014, 440, 1865-1879.	1.6	42
59	Intrinsic alignments of disc and elliptical galaxies in the MassiveBlack-II and Illustris simulations. Monthly Notices of the Royal Astronomical Society, 2016, 462, 2668-2680.	1.6	42
60	The halo occupation distribution of active galactic nuclei. Monthly Notices of the Royal Astronomical Society, 2012, 419, 2657-2669.	1.6	40
61	THE FORMATION OF MILKY WAY–MASS DISK GALAXIES IN THE FIRST 500 MILLION YEARS OF A COLD DARK MATTER UNIVERSE. Astrophysical Journal Letters, 2015, 808, L17.	3.0	40
62	Quasi-Periodic Variability and the Inner Radii of Thin Accretion Disks in Galactic Black Hole Systems. Astrophysical Journal, 1999, 526, L101-L104.	1.6	39
63	usepackage{amssymb} usepackage{bm} usepackage{mathrsfs} usepackage{piront} usepackage{stmaryrd} usepackage{textcomp} usepackage{portland,xspace} usepackage{amsmath,amsxtra} usepackage[OT2,OT1]{fontenc} ewcommandcyr{ enewcommandmdefault{wncyr} enewcommandsfdefault{wncyss}	3.0	39
64	Faint-end quasar luminosity functions from cosmological hydrodynamic simulations. Monthly Notices of the Royal Astronomical Society, 2010, 402, 1927-1936.	1.6	38
65	The formation of galaxies hosting <i>z</i> â€fâ^¼ 6 quasars. Monthly Notices of the Royal Astronomical Society, 2012, 423, 2397-2406.	1.6	38
66	Cyclo-synchrotron emission from magnetically dominated active regions above accretion discs. Monthly Notices of the Royal Astronomical Society, 1997, 291, 805-810.	1.6	37
67	Theoretical predictions for the effect of nebular emission on the broad-band photometry of high-redshift galaxies. Monthly Notices of the Royal Astronomical Society, 2013, 435, 2885-2895.	1.6	35
68	Investigating galaxy-filament alignments in hydrodynamic simulations using density ridges. Monthly Notices of the Royal Astronomical Society, 2015, 454, 3341-3350.	1.6	35
69	Forecasts for the <i>WFIRST</i> High Latitude Survey using the BlueTides simulation. Monthly Notices of the Royal Astronomical Society, 2016, 463, 3520-3530.	1.6	34
70	Feedbackâ€driven Evolution of the Farâ€Infrared Spectral Energy Distributions of Luminous and Ultraluminous Infrared Galaxies. Astrophysical Journal, 2007, 658, 840-850.	1.6	34
71	Supermassive black holes and their environments. Monthly Notices of the Royal Astronomical Society, 2008, 387, 1163-1178.	1.6	32
72	Angular Anisotropies in the Cosmic Gamma-Ray Background as a Probe of Its Origin. Astrophysical Journal, 2007, 667, L1-L4.	1.6	31

#	Article	IF	CITATIONS
73	Effects of quasar feedback in galaxy groups. Monthly Notices of the Royal Astronomical Society, 2008, 389, 34-44.	1.6	31
74	Dust-obscured star-forming galaxies in the early universe. Monthly Notices of the Royal Astronomical Society, 2018, 473, 5363-5369.	1.6	30
75	Dynamical friction modelling of massive black holes in cosmological simulations and effects on merger rate predictions. Monthly Notices of the Royal Astronomical Society, 2021, 510, 531-550.	1.6	30
76	Monsters in the dark: predictions for luminous galaxies in the early Universe from the B <scp>lue</scp> T <scp>ides</scp> simulation. Monthly Notices of the Royal Astronomical Society: Letters, 2016, 461, L51-L55.	1.2	28
77	Black hole clustering in cosmological hydrodynamic simulations: evidence for mergers. Monthly Notices of the Royal Astronomical Society, 2011, 413, 1383-1394.	1.6	27
78	lon-supported tori: a thermal bremsstrahlung model for the X-ray background. Monthly Notices of the Royal Astronomical Society, 1997, 286, 393-402.	1.6	26
79	Two-temperature coronae in active galactic nuclei. Monthly Notices of the Royal Astronomical Society, 1997, 291, L23-L27.	1.6	25
80	Iron Kα Emission from the Low‣uminosity Active Galaxies M81 and NGC 4579. Astrophysical Journal, 2004, 607, 788-793.	1.6	25
81	The descendants of the first quasars in the BlueTides simulation. Monthly Notices of the Royal Astronomical Society, 2018, 474, 597-603.	1.6	25
82	Nebular-line emission during the Epoch of Reionization. Monthly Notices of the Royal Astronomical Society, 2020, 493, 6079-6094.	1.6	24
83	Advectively dominated flows in the cores of giant elliptical galaxies: application to M60 (NGC 4649). Monthly Notices of the Royal Astronomical Society, 1997, 286, L50-L54.	1.6	23
84	Early black holes in cosmological simulations: luminosity functions and clustering behaviour. Monthly Notices of the Royal Astronomical Society, 2012, 424, 1892-1898.	1.6	23
85	A <i>CHANDRA</i> SURVEY OF SUPERMASSIVE BLACK HOLES WITH DYNAMICAL MASS MEASUREMENTS. Astrophysical Journal, 2012, 749, 129.	1.6	22
86	GROWTH OF EARLY SUPERMASSIVE BLACK HOLES AND THE HIGH-REDSHIFT EDDINGTON RATIO DISTRIBUTION. Astrophysical Journal Letters, 2012, 755, L8.	3.0	21
87	Detecting neutral hydrogen in emission at redshift z $3\% f$ 1. Monthly Notices of the Royal Astronomical Society, 2011, 415, 2580-2593.	1.6	20
88	The Cosmological Evolution of Metal Enrichment in Quasar Host Galaxies. Astrophysical Journal, 2004, 610, 80-92.	1.6	19
89	Al-assisted superresolution cosmological simulations – II. Halo substructures, velocities, and higher order statistics. Monthly Notices of the Royal Astronomical Society, 2021, 507, 1021-1033.	1.6	19
90	DESCQA: An Automated Validation Framework for Synthetic Sky Catalogs. Astrophysical Journal, Supplement Series, 2018, 234, 36.	3.0	18

TIZIANA DI MATTEO

#	Article	IF	CITATIONS
91	Dark matter halo occupation: environment and clustering. Monthly Notices of the Royal Astronomical Society, 2012, 425, 2766-2777.	1.6	17
92	The radial acceleration relation in disc galaxies in the MassiveBlack-II simulation. Monthly Notices of the Royal Astronomical Society, 2018, 474, 3125-3132.	1.6	17
93	The clustering of zÂ>Â7 galaxies: predictions from the BLUETIDES simulation. Monthly Notices of the Royal Astronomical Society, 2018, 474, 5393-5405.	1.6	16
94	Predictions for the abundance of high-redshift galaxies in a fuzzy dark matter universe. Monthly Notices of the Royal Astronomical Society, 2019, 488, 5551-5565.	1.6	16
95	Observing the host galaxies of high-redshift quasars with <i>JWST</i> : predictions from the <scp>BlueTides</scp> simulation. Monthly Notices of the Royal Astronomical Society, 2021, 506, 1209-1228.	1.6	16
96	The impact of dust on the sizes of galaxies in the Epoch of Reionization. Monthly Notices of the Royal Astronomical Society, 2022, 511, 5475-5491.	1.6	15
97	The halo occupation distribution of black holes. Monthly Notices of the Royal Astronomical Society, 2011, 416, 1591-1600.	1.6	14
98	Rayleigh–Taylor instability of ionization front around black holes. Monthly Notices of the Royal Astronomical Society, 2014, 437, 2856-2864.	1.6	14
99	On the origin of the hard X-ray background. Monthly Notices of the Royal Astronomical Society, 1999, 305, L1-L5.	1.6	12
100	Luminosity function of [O ii] emission-line galaxies in the MassiveBlack-II simulation. Monthly Notices of the Royal Astronomical Society, 2015, 454, 277-287.	1.6	11
101	TXS 2116â^'077: A Gamma-Ray Emitting Relativistic Jet Hosted in a Galaxy Merger. Astrophysical Journal, 2020, 892, 133.	1.6	11
102	A Fundamental Plane of Black Hole Activity: Pushing Forward the Unification Scheme. Astrophysics and Space Science, 2005, 300, 45-53.	0.5	10
103	"No Worries": Trends in Econophysics. European Physical Journal B, 2007, 55, 121-122.	0.6	10
104	TERAPIXEL IMAGING OF COSMOLOGICAL SIMULATIONS. Astrophysical Journal, Supplement Series, 2011, 197, 18.	3.0	10
105	On the small-scale clustering of quasars: constraints from the MassiveBlack II simulation. Monthly Notices of the Royal Astronomical Society, 2019, 485, 2026-2040.	1.6	10
106	Stochastic Processes as the Origin of the Double Power-law Shape of the Quasar Luminosity Function. Astrophysical Journal, 2020, 894, 124.	1.6	10
107	The role of Compton heating in radiation-regulated accretion on to black holes. Monthly Notices of the Royal Astronomical Society, 2014, 445, 2325-2330.	1.6	9
108	Synchrotron Emission from Hot Accretion Flows and the Cosmic Microwave Background Anisotropy. Astrophysical Journal, 2000, 542, 68-73.	1.6	9

Τιζιανά Di Μάττεο

#	Article	IF	CITATIONS
109	Massive black hole mergers with orbital information: predictions from the ASTRID simulation. Monthly Notices of the Royal Astronomical Society, 2022, 514, 2220-2238.	1.6	9
110	Growth and anisotropy of ionization fronts near high-redshift quasars in the MassiveBlack simulation. Monthly Notices of the Royal Astronomical Society, 2013, 429, 1554-1563.	1.6	8
111	Hard X-Ray Emission from Elliptical Galaxies and Its Contribution to the X-Ray Background. Astrophysical Journal, 1999, 527, L21-L24.	1.6	7
112	Vertical structure of hyper-accreting disks and consequences for gamma-ray burst outflows. Astrophysics and Space Science, 2007, 311, 185-190.	0.5	7
113	Xâ€Ray Images of Hot Accretion Flows. Astrophysical Journal, 2001, 548, 213-218.	1.6	7
114	Testing the Fidelity of Simulations of Black Hole–Galaxy Coevolution at zÂâ^1⁄4Â1.5 with Observations. Astrophysical Journal, 2020, 896, 159.	1.6	7
115	Confronting predictions of the galaxy stellar mass function with observations at high redshift. Monthly Notices of the Royal Astronomical Society, 2013, 429, 2098-2103.	1.6	6
116	Cosmological Simulation of Galaxy Groups and Clusters. I. Global Effect of Feedback from Active Galactic Nuclei. Astrophysical Journal, 2020, 889, 60.	1.6	6
117	Concordance between Observations and Simulations in the Evolution of the Mass Relation between Supermassive Black Holes and Their Host Galaxies. Astrophysical Journal, 2022, 933, 132.	1.6	6
118	On the Relationship Between the Jets from X-Ray Binaries and Agn. Astrophysics and Space Science, 2005, 300, 15-21.	0.5	5
119	Multiplicity functions of quasars: predictions from the <tt>MassiveBlackII</tt> simulation. Monthly Notices of the Royal Astronomical Society, 2020, 492, 5620-5633.	1.6	5
120	Black Hole Formation and Growth. Saas-Fee Advanced Course, 2019, , .	1.1	4
121	Not all peaks are created equal: the early growth of supermassive black holes. Monthly Notices of the Royal Astronomical Society, 2021, 509, 3043-3064.	1.6	4
122	Harmonic susceptibilities and pinning properties of MgB2 bulk superconductors. Physica C: Superconductivity and Its Applications, 2003, 388-389, 161-162.	0.6	3
123	The Diversity of Environments around Luminous Quasars at Redshift z â^1⁄4 6. Astrophysical Journal, 2021, 917, 89.	1.6	2
124	Simulated Xâ€ r ay emission in galaxy clusters with feedback from active galactic nuclei. Astronomische Nachrichten, 2021, 342, 164-170.	0.6	2
125	XTE J1118+480: Clues on the Nature of the Accretion Flow from the Optical Variability. Astrophysics and Space Science, 2001, 276, 213-216.	0.5	1
126	Title is missing!. Physica A: Statistical Mechanics and Its Applications, 2006, 370, xi-xiv.	1.2	1

8

TIZIANA DI MATTEO

#	Article	IF	CITATIONS
127	Coronal heating and emission mechanisms in AGN. AIP Conference Proceedings, 2001, , .	0.3	0
128	Quasars and their enviroments along cosmic history. Proceedings of the International Astronomical Union, 2004, 2004, 471-476.	0.0	0
129	Instabilities in the Gamma Ray Burst central engine. What makes the jet variable?. Proceedings of the International Astronomical Union, 2010, 6, 349-353.	0.0	0
130	Petascale Cosmology: Simulations of Structure Formation. Computing in Science and Engineering, 2015, 17, 40-46.	1.2	0
131	Black Holes Across Cosmic History: A Journey Through 13.8 Billion Years. Saas-Fee Advanced Course, 2019, , 159-212.	1.1	0
132	Chandra and the Black Hole in M87. , 0, , 443-449.		0
133	COSMO: a Research Data Service Platform and Experiences from the BlueTides Project. , 2022, , .		0