Wolfgang Rauch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5488373/publications.pdf

Version: 2024-02-01

216 papers 6,142 citations

39 h-index 102432 66 g-index

237 all docs

237 docs citations

times ranked

237

5039 citing authors

#	Article	IF	CITATIONS
1	Towards a smart water city: A comprehensive review of applications, data requirements, and communication technologies for integrated management. Sustainable Cities and Society, 2022, 76, 103442.	5.1	67
2	Detection and abundance of SARS-CoV-2 in wastewater in Liechtenstein, and the estimation of prevalence and impact of the B.1.1.7 variant. Journal of Water and Health, 2022, 20, 114-125.	1.1	18
3	2D SPH simulation of an anaerobic digester. Computational Particle Mechanics, 2022, 9, 1073-1083.	1.5	3
4	Evaluating the Digital Resilience of Urban Water Infrastructure Retrofitted with Smart Rainwater Harvesting. , 2022, , .		0
5	Quantifying the UDS Hydraulic and Social Resilience to Flooding: An Index-Based Approach vs. a Parameter-Based MCDM Method. Water (Switzerland), 2022, 14, 2007.	1.2	1
6	Viral variant-resolved wastewater surveillance of SARS-CoV-2 at national scale. Nature Biotechnology, 2022, 40, 1814-1822.	9.4	82
7	Data modelling recipes for SARS-CoV-2 wastewater-based epidemiology. Environmental Research, 2022, 214, 113809.	3.7	7
8	A rapid fine-scale approach to modelling urban bioclimatic conditions. Science of the Total Environment, 2021, 756, 143732.	3.9	22
9	Stationary vs non-stationary modelling of flood frequency distribution across northwest England. Hydrological Sciences Journal, 2021, 66, 729-744.	1.2	23
10	Efficient integration of IoT-based micro storages to improve urban drainage performance through advanced control strategies. Water Science and Technology, 2021, 83, 2678-2690.	1.2	10
11	Integrated urban water management with micro storages developed as an IoT-based solution – The smart rain barrel. Environmental Modelling and Software, 2021, 139, 105028.	1.9	31
12	Model-Based Upscaling of the IoT-Based Smart Rain Barrelâ€"An Integrated Analysis of the Urban Water Cycle. , 2021, , .		1
13	CFD Modeling of a Stirred Anaerobic Digestion Tank for Evaluating Energy Consumption through Mixing. Water (Switzerland), 2021, 13, 1629.	1.2	5
14	On the effect of the inlet configuration for anaerobic digester mixing. Bioprocess and Biosystems Engineering, 2021, 44, 2455-2468.	1.7	2
15	Revealing the Challenges of Smart Rainwater Harvesting for Integrated and Digital Resilience of Urban Water Infrastructure. Water (Switzerland), 2021, 13, 1902.	1.2	11
16	Data filtering methods for SARS-CoV-2 wastewater surveillance. Water Science and Technology, 2021, 84, 1324-1339.	1.2	24
17	On the effect of biogas bubbles in anaerobic digester mixing. Biochemical Engineering Journal, 2021, 173, 108088.	1.8	8
18	Quest for Optimal Regression Models in SARS-CoV-2 Wastewater Based Epidemiology. International Journal of Environmental Research and Public Health, 2021, 18, 10778.	1.2	23

#	Article	IF	CITATIONS
19	WRSS: An Object-Oriented R Package for Large-Scale Water Resources Operation. Water (Switzerland), 2021, 13, 3037.	1.2	O
20	Impacts of urban development on urban water management – Limits of predictability. Computers, Environment and Urban Systems, 2020, 84, 101546.	3.3	10
21	Accelerating Surface Tension Calculation in SPH via Particle Classification and Monte Carlo Integration. Computers, 2020, 9, 23.	2.1	5
22	Digitalisierung in der Siedlungswasserwirtschaft. Osterreichische Wasser- Und Abfallwirtschaft, 2019, 71, 335-336.	0.3	0
23	Effects of Urban Forms on Separate Drainage Systems: A Virtual City Perspective. Water (Switzerland), 2019, 11, 758.	1.2	13
24	The Impacts of Spatially Variable Demand Patterns on Water Distribution System Design and Operation. Water (Switzerland), 2019, 11, 567.	1,2	8
25	Sweating the assets \hat{a} The role of instrumentation, control and automation in urban water systems. Water Research, 2019, 155, 381-402.	5.3	76
26	Improving sustainability of urban drainage systems for climate change adaptation using best management practices: a case study of Tehran, Iran. Hydrological Sciences Journal, 2019, 64, 381-404.	1.2	28
27	A fully Lagrangian computational model for the integration of mixing and biochemical reactions in anaerobic digestion. Computers and Fluids, 2019, 181, 224-235.	1.3	24
28	An Insight to the Cornucopia of Possibilities in Calibration Data Collection. Water Resources Management, 2019, 33, 1629-1645.	1.9	5
29	Future trajectories of urban drainage systems: A simple exploratory modeling approach for assessing socio-technical transitions. Science of the Total Environment, 2019, 651, 1709-1719.	3.9	29
30	gpuSPHASE—A shared memory caching implementation for 2D SPH using CUDA (new version) Tj ETQq0 0 0 rg	gBT / Overlo	ock ₈ 10 Tf 50 3
31	From water footprint to climate change adaptation: Capacity development with teenagers to save water. Land Use Policy, 2019, 80, 456-463.	2.5	18
32	Smart Rain Barrels: Advanced LID Management Through Measurement and Control. Green Energy and Technology, 2019, , 777-782.	0.4	16
33	Greenhouse gas emissions from integrated urban drainage systems: Where do we stand?. Journal of Hydrology, 2018, 559, 307-314.	2.3	31
34	Pipe failure modelling for water distribution networks using boosted decision trees. Structure and Infrastructure Engineering, 2018, 14, 1402-1411.	2.0	97
35	An ISPH scheme for numerical simulation of multiphase flows with complex interfaces and high density ratios. Computers and Mathematics With Applications, 2018, 75, 2658-2677.	1.4	41
36	Neighbour lists for smoothed particle hydrodynamics on GPUs. Computer Physics Communications, 2018, 225, 140-148.	3.0	25

#	Article	IF	Citations
37	On the sensitivity of geospatial low impact development locations to the centralized sewer network. Water Science and Technology, 2018, 77, 1851-1860.	1.2	27
38	What can we learn from a 500-year event? Experiences from urban drainage in Austria. Water Science and Technology, 2018, 77, 2146-2154.	1.2	10
39	Design and optimization of small hydropower systems in water distribution networks under consideration of rehabilitation measures. Urban Water Journal, 2018, 15, 183-191.	1.0	11
40	Mixing non-Newtonian flows in anaerobic digesters by impellers and pumped recirculation. Advances in Engineering Software, 2018, 115, 194-203.	1.8	53
41	Importance of scenario analysis in urban development for urban water infrastructure planning and management. Computers, Environment and Urban Systems, 2018, 68, 9-16.	3 . 3	33
42	Virtual reality in urban water management: communicating urban flooding with particle-based CFD simulations. Water Science and Technology, 2018, 77, 518-524.	1.2	10
43	A Heuristic Method for Measurement Site Selection in Sewer Systems. Water (Switzerland), 2018, 10, 122.	1.2	7
44	Morphogenesis of Urban Water Distribution Networks: A Spatiotemporal Planning Approach for Cost-Efficient and Reliable Supply. Entropy, 2018, 20, 708.	1.1	18
45	Conceptual Urban Water Balance Model for Water Policy Testing: An Approach for Large Scale Investigation. Sustainability, 2018, 10, 716.	1.6	11
46	A Hydrological Response Analysis Considering Climatic Variability: Case Study of Hunza Catchment. Engineering, Technology & Applied Science Research, 2018, 8, 2981-2984.	0.8	4
47	gpuSPHASEâ€"A shared memory caching implementation for 2D SPH using CUDA. Computer Physics Communications, 2017, 213, 165-180.	3.0	26
48	Integrating hydrodynamics and biokinetics in wastewater treatment modelling by using smoothed particle hydrodynamics. Computers and Chemical Engineering, 2017, 99, 1-12.	2.0	17
49	Evolution of Complex Network Topologies in Urban Water Infrastructure. , 2017, , .		11
50	Info-Gap robustness pathway method for transitioning of urban drainage systems under deep uncertainties. Water Science and Technology, 2017, 76, 1272-1281.	1.2	20
51	Investigating the interactions of decentralized and centralized wastewater heat recovery systems. Water Science and Technology, 2017, 75, 1243-1250.	1.2	18
52	Modelling transitions in urban water systems. Water Research, 2017, 126, 501-514.	5. 3	52
53	Decision Support for Adaptation Planning of Urban Drainage Systems. Journal of Water Resources Planning and Management - ASCE, 2017, 143, .	1.3	16
54	A Bayesian method for missing rainfall estimation using a conceptual rainfall–runoff model. Hydrological Sciences Journal, 2017, 62, 2456-2468.	1.2	6

#	Article	IF	Citations
55	Case study on the use of a combined system as an intermediate solution in Brazil: cost estimate. Water and Environment Journal, 2017, 31, 478-485.	1.0	4
56	Co-Vergäung auf kommunalen Abwasserbehandlungsanlagen. Osterreichische Wasser- Und Abfallwirtschaft, 2017, 69, 367-368.	0.3	0
57	Where to Find Water Pipes and Sewers?â€"On the Correlation of Infrastructure Networks in the Urban Environment. Water (Switzerland), 2017, 9, 146.	1.2	45
58	Enabling Efficient and Sustainable Transitions of Water Distribution Systems under Network Structure Uncertainty. Water (Switzerland), 2017, 9, 715.	1.2	11
59	Comparison of Multi-Criteria Decision Support Methods for Integrated Rehabilitation Prioritization. Water (Switzerland), 2017, 9, 68.	1.2	106
60	Lost in calibration: why people still do not calibrate their models, and why they still should – a case study from urban drainage modelling. Water Science and Technology, 2016, 74, 2337-2348.	1.2	28
61	An Integrated Approach to Identify the Most Efficient Solutions for the Landfill Leachate Problem. , 2016, , .		O
62	Design of Interacting Small Hydropower Systems in Water Distribution Networks under the Consideration of Demand Uncertainties and Rehabilitation Measures. , 2016, , .		0
63	Methodological proposal to assess the water footprint accounting of direct water use at an urban level: A case study of the Municipality of Vicenza. Ecological Indicators, 2016, 69, 165-175.	2.6	27
64	Designing and implementing a multi-core capable integrated urban drainage modelling Toolkit:Lessons from CityDrain3. Advances in Engineering Software, 2016, 100, 277-289.	1.8	15
65	Wastewater treatment modelling with smoothed particle hydrodynamics. Environmental Modelling and Software, 2016, 75, 206-211.	1.9	11
66	Enhancement of limited water supply network data for deterioration modelling and determination of rehabilitation rate. Structure and Infrastructure Engineering, 2016, 12, 366-380.	2.0	30
67	Quest for a New Solver for EPANET 2. Journal of Water Resources Planning and Management - ASCE, 2016, 142, .	1.3	21
68	Integrated rehabilitation planning of urban infrastructure systems using a street section priority model. Urban Water Journal, 2016, 13, 28-40.	1.0	51
69	SPHASEâ€"Smoothed Particle Hydrodynamics in Wastewater Treatment. , 2016, , .		2
70	What Can We Learn from Historical Water Network Transition?. , 2015, , .		1
71	Modelling aerated flows with smoothed particle hydrodynamics. Journal of Hydroinformatics, 2015, 17, 493-504.	1.1	8
72	Integrated Rehabilitation Management by Prioritization of Rehabilitation Areas for Small and Medium Sized Municipalities. , 2015 , , .		2

#	Article	IF	Citations
73	Stochastic Performance Assessment and Optimization Strategies of the Water Supply Network Transition of Kiruna During City Relocation., 2015,,.		O
74	A dynamic urban development model designed for purposes in the field of urban water management. Journal of Hydroinformatics, 2015, 17, 390-403.	1.1	11
75	Development of an urban drainage safety plan concept based on spatial risk assessment. Structure and Infrastructure Engineering, 2015, 11, 918-928.	2.0	9
76	Modelling of moving bed biofilm membrane reactors (MBBMR) for on-site greywater treatment. Water Science and Technology, 2015, 71, 1180-1188.	1.2	1
77	Optimizing Small Hydropower Systems in Water Distribution Systems Based on Long-Time-Series Simulation and Future Scenarios. Journal of Water Resources Planning and Management - ASCE, 2015, 141, .	1.3	20
78	Design and Optimization of Small Hydropower Systems in Water Distribution Networks Based on 10-Years Simulation with Epanet2. Procedia Engineering, 2014, 89, 533-539.	1.2	7
79	Spanning Tree-Based Algorithm for Generating Water Distribution Network Sets by Using Street Network Data Sets., 2014,,.		19
80	The application of a Web-geographic information system for improving urban water cycle modelling. Water Science and Technology, 2014, 70, 1838-1846.	1,2	10
81	Integrated hydraulic modelling of water supply and urban drainage networks for assessment of decentralized options. Water Science and Technology, 2014, 70, 1817-1824.	1.2	10
82	Modelling the urban water cycle as an integrated part of the city: a review. Water Science and Technology, 2014, 70, 1857-1872.	1.2	23
83	Simplifying impact of urban development on sewer systems. Water Science and Technology, 2014, 70, 1808-1816.	1.2	5
84	Editorial: Modeling the urban water cycle as part of the city. Water Science and Technology, 2014, 70, 1717-1720.	1.2	5
85	Adaptation of sewer networks using integrated rehabilitation management. Water Science and Technology, 2014, 70, 1847-1856.	1.2	19
86	Stability of Traditional Urban Water Systems – Integrated Assessment of Transitions Scenarios. Procedia Engineering, 2014, 89, 727-733.	1,2	1
87	Estimating inflow to a combined sewer overflow structure with storage tank in real time: evaluation of different approaches. Water Science and Technology, 2014, 70, 1143-1151.	1.2	11
88	Performance improvement with parallel numerical model simulations in the field of urban water management. Journal of Hydroinformatics, 2014, 16, 477-486.	1,1	8
89	Assessing Model Structure Uncertainties in Water Distribution Models. , 2014, , .		4
90	Improving Incomplete Water Distribution System Data. Procedia Engineering, 2014, 70, 1055-1062.	1,2	7

#	Article	IF	Citations
91	Dynamics in Urban Development, Population Growth and their Influences on Urban Water Infrastructure. Procedia Engineering, 2014, 70, 1147-1156.	1.2	21
92	Speedup of water distribution simulation by domain decomposition. Environmental Modelling and Software, 2014, 52, 253-263.	1.9	20
93	A critical review of integrated urban water modelling – Urban drainage and beyond. Environmental Modelling and Software, 2014, 54, 88-107.	1.9	229
94	Comparison of two model based approaches for areal rainfall estimation in urban hydrology. Journal of Hydrology, 2014, 511, 880-890.	2.3	13
95	Impacts of measured data uncertainty on urban stormwater models. Journal of Hydrology, 2014, 508, 28-42.	2.3	35
96	Exploring critical pathways for urban water management to identify robust strategies under deep uncertainties. Water Research, 2014, 66, 374-389.	5.3	74
97	On the Reynolds number sensitivity of smoothed particle hydrodynamics. Journal of Hydraulic Research/De Recherches Hydrauliques, 2014, 52, 824-835.	0.7	20
98	Replace contamination, not the pipes. Science, 2014, 345, 734-735.	6.0	27
99	Impact of a Changing Environment on Drainage System Performance. Procedia Engineering, 2014, 70, 943-950.	1.2	30
100	Investigating Transitions of Centralized Water Infrastructure to Decentralized Solutions – An Integrated Approach. Procedia Engineering, 2014, 70, 1549-1557.	1.2	20
101	Parallel flow routing in SWMM 5. Environmental Modelling and Software, 2014, 53, 27-34.	1.9	65
102	Long Time Simulations and Analysis of Future Scenarios for Design and Benefit Cost Analysis of Small Hydropower in Water Distribution Systems. , 2014, , .		3
103	Prioritization of Rehabilitation Areas for Urban Water Infrastructure. A Case Study. Procedia Engineering, 2014, 89, 811-816.	1.2	4
104	Scientific Computing in Urban Water Management. , 2014, , 173-193.		4
105	Austrian Activities in Protecting Critical Water Infrastructure. , 2014, , 343-373.		1
106	Automatic generation of water distribution systems based on GIS data. Environmental Modelling and Software, 2013, 47, 138-147.	1.9	38
107	Urban water management to increase sustainability of cities. Water Research, 2013, 47, 7149.	5.3	5
108	Controllability analysis as a pre-selection method for sensor placement in water distribution systems. Water Research, 2013, 47, 6097-6108.	5.3	30

#	Article	IF	CITATIONS
109	Modelling Interactions Between Lot-Scale Decentralised Water Infrastructure and Urban Form – a Case Study on Infiltration Systems. Water Resources Management, 2013, 27, 4845-4863.	1.9	32
110	Automated Creation of District Metered Area Boundaries in Water Distribution Systems. Journal of Water Resources Planning and Management - ASCE, 2013, 139, 184-190.	1.3	146
111	Assessing the impact of transitions from centralised to decentralised water solutions on existing infrastructures – Integrated city-scale analysis with VIBe. Water Research, 2013, 47, 7251-7263.	5. 3	71
112	Assessing the efficiency of different CSO positions based on network graph characteristics. Water Science and Technology, 2013, 67, 1574-1580.	1,2	10
113	Integrated planning of rehabilitation strategies for sewers. Water Science and Technology, 2013, 68, 176-183.	1.2	18
114	A planning algorithm for quantifying decentralised water management opportunities in urban environments. Water Science and Technology, 2013, 68, 1857-1865.	1.2	38
115	Modelling cities and water infrastructure dynamics. Proceedings of the Institution of Civil Engineers: Engineering Sustainability, 2013, 166, 301-308.	0.4	21
116	To what extent does climate change result in a shift in Alpine hydrology? A case study in the Austrian Alps. Hydrological Sciences Journal, 2012, 57, 103-117.	1.2	44
117	A software-based sensor for combined sewer overflows. Water Science and Technology, 2012, 66, 1475-1482.	1.2	5
118	GIS-based applications of sensitivity analysis for sewer models. Water Science and Technology, 2012, 65, 1215-1222.	1.2	35
119	Identifiability analysis in conceptual sewer modelling. Water Science and Technology, 2012, 66, 1467-1474.	1.2	3
120	Influence of characteristics on combined sewer performance. Water Science and Technology, 2012, 66, 1052-1060.	1.2	4
121	Analysis of Hydraulic and Combined Sewer Overflow Performance Indicators., 2012,,.		0
122	Identifying Hydropower Potential in Water Distribution Systems of Alpine Regions., 2012,,.		8
123	Modeling Dynamic Expansion of Water Distribution Systems for New Urban Developments. , 2012, , .		8
124	Identifying Multi Utility Network Similarities. , 2012, , .		4
125	Stormwater in urban areas. Water Research, 2012, 46, 6588.	5. 3	6
126	Assessing uncertainties in urban drainage models. Physics and Chemistry of the Earth, 2012, 42-44, 3-10.	1.2	93

#	Article	IF	CITATIONS
127	Comparison of different uncertainty techniques in urban stormwater quantity and quality modelling. Water Research, 2012, 46, 2545-2558.	5.3	153
128	Failure Propagation for Large-Diameter Transmission Water Mains Using Dynamic Failure Risk Index. , 2012, , .		10
129	The Indus basin in the framework of current and future water resources management. Hydrology and Earth System Sciences, 2012, 16, 1063-1083.	1.9	166
130	Systematic generation of virtual networks for water supply. Water Resources Research, 2011, 47, .	1.7	37
131	The Role of Exposure in Risk Analysis for Critical Water Infrastructure. , 2011, , .		1
132	Geothermal Energy in a Central European Perspectiveâ€"Challenges and Opportunities. , 2011, , .		0
133	Application of a Stochastic Test Case Generation for Water Distribution Systems., 2011,,.		5
134	Rasterised Water Demands: Methodology for Their Assessment and Possible Applications. Water Resources Management, 2011, 25, 3301-3320.	1.9	12
135	Spatial risk assessment for critical network infrastructure using sensitivity analysis. Frontiers of Earth Science, 2011, 5, 414-420.	0.9	13
136	Performance and sensitivity analysis of stormwater models using a Bayesian approach and long-term high resolution data. Environmental Modelling and Software, 2011, 26, 1225-1239.	1.9	83
137	GIS Based Applications of Sensitivity Analysis for Water Distribution Models., 2011,,.		15
138	Implications of long-term stormwater quality modelling for design of combined sewer infrastructure. Urban Water Journal, 2011, 8, 155-166.	1.0	10
139	Spatial Distributed Risk Assessment for Urban Water Infrastructure. , 2011, , 119-134.		0
140	Influence of Network Properties and Model Purpose on the Level of Skeletonization., 2011,,.		5
141	Performance of infiltration swales with regard to operation in winter times in an Alpine region. Water Science and Technology, 2011, 63, 2658-2665.	1.2	22
142	An application of Austrian legal requirements for CSO emissions. Water Science and Technology, 2011, 64, 1081-1088.	1.2	18
143	Cascade vulnerability for risk analysis of water infrastructure. Water Science and Technology, 2011, 64, 1885-1891.	1.2	38
144	The Cauvery river basin in Southern India: major challenges and possible solutions in the 21st century. Water Science and Technology, 2011, 64, 122-131.	1.2	23

#	Article	IF	CITATIONS
145	Graph-based approach for generating virtual water distribution systems in the software VIBe. Water Science and Technology: Water Supply, 2010, 10, 923-932.	1.0	12
146	WDS Designerâ€"A Tool Algorithmic Generation of Water Distribution Systems based on GIS Data. , 2010, , .		6
147	How Many Network Sources are Enough?. , 2010, , .		4
148	Empirical Equation for Spacing of Ground Water Heat Pump Systems. , 2010, , .		2
149	Nutzung der Geothermie. Osterreichische Wasser- Und Abfallwirtschaft, 2010, 62, A23-A24.	0.3	0
150	Dynamic virtual infrastructure benchmarking: DynaVIBe. Water Science and Technology: Water Supply, 2010, 10, 600-609.	1.0	16
151	Sediment and pollutant load modelling using an integrated urban drainage modelling toolbox: an application of City Drain. Water Science and Technology, 2010, 61, 2273-2282.	1.2	13
152	Parallel computing in conceptual sewer simulations. Water Science and Technology, 2010, 61, 283-291.	1.2	9
153	Stormwater quality models: performance and sensitivity analysis. Water Science and Technology, 2010, 62, 837-843.	1.2	36
154	A multi-layer cellular automata approach for algorithmic generation of virtual case studies: VIBe. Water Science and Technology, 2010, 61, 37-45.	1.2	32
155	An agent-based approach for generating virtual sewer systems. Water Science and Technology, 2010, 62, 1090-1097.	1.2	35
156	Determining the spill flow discharge of combined sewer overflows using rating curves based on computational fluid dynamics instead of the standard weir equation. Water Science and Technology, 2009, 60, 3035-3043.	1.2	15
157	Optimization of measurement campaigns for calibration of a conceptual sewer model. Water Science and Technology, 2009, 59, 1523-1530.	1.2	27
158	Impact of snowmaking on alpine water resources management under present and climate change conditions. Water Science and Technology, 2009, 59, 1793-1801.	1.2	38
159	Identifying weak points of urban drainage systems by means of VulNetUD. Water Science and Technology, 2009, 60, 2507-2513.	1.2	31
160	Impact of an extreme dry and hot summer on water supply security in an alpine region. Water Science and Technology, 2009, 59, 469-477.	1.2	21
161	A case independent approach on the impact of climate change effects on combined sewer system performance. Water Science and Technology, 2009, 60, 1555-1564.	1.2	43
162	Are extreme rainfall intensities more frequent? Analysis of trends in rainfall patterns relevant to urban drainage systems. Water Science and Technology, 2009, 59, 1769-1776.	1.2	30

#	Article	IF	Citations
163	Impact of input data uncertainties on urban stormwater model parameters. Water Science and Technology, 2009, 60, 1545-1554.	1.2	59
164	Nowcasting of rainfall and of combined sewage flow in urban drainage systems. Water Science and Technology, 2009, 59, 1145-1151.	1.2	24
165	A stochastic approach for automatic generation of urban drainage systems. Water Science and Technology, 2009, 59, 1137-1143.	1.2	28
166	Suitability of CSO performance indicators for compliance with ambient water quality targets. Urban Water Journal, 2008, 5, 43-49.	1.0	16
167	Influence of climate change on the water resources in an alpine region. Water Science and Technology, 2008, 58, 839-846.	1.2	3
168	Potential impact of natural hazards on water supply systems in Alpine regions. Water Practice and Technology, 2008, 3, .	1.0	6
169	Technical Note: Seasonality in alpine water resources management – a regional assessment. Hydrology and Earth System Sciences, 2008, 12, 91-100.	1.9	33
170	Urine separation as part of a real-time control strategy. Urban Water Journal, 2007, 4, 233-240.	1.0	6
171	Local infiltration devices at parking sites – Experimental assessment of temporal changes in hydraulic and contaminant removal capacity. Water Science and Technology, 2007, 55, 193-200.	1.2	15
172	Combined sewer system versus separate system – a comparison of ecological and economical performance indicators. Water Science and Technology, 2007, 55, 255-264.	1.2	25
173	Stochastic approach for performance evaluation regarding water distribution systems. Water Science and Technology, 2007, 56, 29-36.	1.2	24
174	CITY DRAIN © – An open source approach for simulation of integrated urban drainage systems. Environmental Modelling and Software, 2007, 22, 1184-1195.	1.9	73
175	Environmental impacts of urban snow management â€" The alpine case study of Innsbruck. Science of the Total Environment, 2007, 382, 286-294.	3.9	54
176	Increase of River Base Flow by Hydropower Gate Operation for Mitigation of CSO Impacts – Potential and Limitations. Water Resources Management, 2007, 21, 1487-1503.	1.9	6
177	Groundbreaking papers in Water Research 1967–2006. Water Research, 2006, 40, 3149-3149.	5.3	5
178	Assessment of CSO loads – based on UV/VIS-spectroscopy by means of different regression methods. Water Science and Technology, 2006, 54, 239-246.	1.2	38
179	On the issue of trend and noise in the estimation of extreme rainfall properties. Water Science and Technology, 2006, 54, 17-24.	1.2	7
180	On the effect of spatial variances in historical rainfall time series to CSO performance evaluation. Water Science and Technology, 2006, 54, 25-31.	1.2	8

#	Article	IF	CITATIONS
181	Integrated Approaches in Urban Storm Drainage: Where Do We Stand?. Environmental Management, 2005, 35, 396-409.	1.2	65
182	The European Water Framework Directive: Water Quality Classification and Implications to Engineering Planning. Environmental Management, 2005, 35, 517-525.	1.2	27
183	Challenges in the implementation of the Water Framework Directive: case study of the alpine River Drau, Austria. Water Science and Technology, 2005, 52, 243-250.	1.2	6
184	Model based hydropower gate operation for mitigation of CSO impacts by means of river base flow increase. Water Science and Technology, 2005, 52, 87-94.	1.2	74
185	Stochastic modeling of total suspended solids (TSS) in urban areas during rain events. Water Research, 2005, 39, 4188-4196.	5.3	61
186	Combining urine separation with waste design: an analysis using a stochastic model for urine production. Water Research, 2003, 37, 681-689.	5.3	66
187	The role of inorganic carbon limitation in biological nitrogen removal of extremely ammonia concentrated wastewater. Water Research, 2003, 37, 1100-1110.	5. 3	194
188	Probabilistic Modeling as a New Planning Approach to Stormwater Management., 2002, , 1.		2
189	Deterministic modelling of integrated urban drainage systems. Water Science and Technology, 2002, 45, 81-94.	1.2	157
190	REBEKA––a software tool for planning urban drainage on the basis of predicted impacts on receiving waters. Urban Water, 2002, 4, 355-361.	0.5	14
191	Deterministic modelling of integrated urban drainage systems. Water Science and Technology, 2002, 45, 81-94.	1.2	4
192	River Water Quality Model no. 1 (RWQM1): III. Biochemical submodel selection. Water Science and Technology, 2001, 43, 31-40.	1.2	37
193	Urban drainage redefined: from stormwater removal to integrated management. Water Science and Technology, 2001, 43, 61-68.	1.2	103
194	River Water Quality Model no. 1 (RWQM1): I. Modelling approach. Water Science and Technology, 2001, 43, 1-9.	1.2	38
195	River Water Quality Model no. 1 (RWQM1): II. Biochemical process equations. Water Science and Technology, 2001, 43, 11-30.	1.2	129
196	Waste sludge disposal in extreme alpine environments. Waste Management and Research, 2000, 18, 33-40.	2.2	2
197	Environmental engineering education - summary report of the $1 \mathrm{st}$ European Seminar. Water Science and Technology, 2000, 41, 1-7.	1.2	11
198	Integrated Urban Water Systems (IUWS) - an international postgraduate course. Water Science and Technology, 2000, 41, 67-74.	1.2	1

#	Article	IF	CITATIONS
199	Setting up measuring campaigns for integrated wastewater modelling. Water Science and Technology, 1999, 39, 257-268.	1.2	44
200	First flush of dissolved compounds. Water Science and Technology, 1999, 39, 55-62.	1.2	118
201	On the potential of genetic algorithms in urban drainage modeling. Urban Water, 1999, 1, 79-89.	0.5	44
202	Optimal design and real time control of the integrated urban run-off system. Hydrobiologia, 1999, 410, 177-184.	1.0	10
203	Genetic algorithms in real time control applied to minimize transient pollution from urban wastewater systems. Water Research, 1999, 33, 1265-1277.	5. 3	110
204	A simplified mixed-culture biofilm model. Water Research, 1999, 33, 2148-2162.	5.3	70
205	Optimal design and real time control of the integrated urban run-off system. , 1999, , 177-184.		4
206	River water quality modelling: I. State of the art. Water Science and Technology, 1998, 38, 237-244.	1.2	149
207	Problems of decision making for a sustainable development. Water Science and Technology, 1998, 38, 31-39.	1.2	39
208	Requirements for integrated wastewater models - driven by receiving water objectives. Water Science and Technology, 1998, 38, 97-104.	1.2	12
209	Correlation of combined sewer overflow reduction due to real-time control and resulting effect on the oxygen concentration in the river. Water Science and Technology, 1998, 37, 69-76.	1.2	22
210	Modelling benthic activity in shallow eutrophic rivers. Water Science and Technology, 1998, 37, 129-137.	1.2	3
211	pH-controlled reject-water-treatment. Water Science and Technology, 1998, 37, 165-172.	1.2	20
212	Acute pollution of recipients in urban areas. Water Science and Technology, 1997, 36, 179-184.	1.2	4
213	Terminology and methodology in modelling for water quality management - a discussion starter. Water Science and Technology, 1997, 36, 157-168.	1.2	4
214	Real time control of wastewater systems. Journal of Hydraulic Research/De Recherches Hydrauliques, 1996, 34, 785-797.	0.7	34
215	The importance of the treatment plant performance during rain to acute water pollution. Water Science and Technology, 1996, 34, 1-8.	1.2	11
216	Integrated design and analysis of drainage systems, including sewers, treatment plant and receiving waters. Journal of Hydraulic Research/De Recherches Hydrauliques, 1996, 34, 815-826.	0.7	25