List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5488373/publications.pdf Version: 2024-02-01

		81839	102432
216	6,142	39	66
papers	citations	h-index	g-index
237	237	237	5039
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A critical review of integrated urban water modelling – Urban drainage and beyond. Environmental Modelling and Software, 2014, 54, 88-107.	1.9	229
2	The role of inorganic carbon limitation in biological nitrogen removal of extremely ammonia concentrated wastewater. Water Research, 2003, 37, 1100-1110.	5.3	194
3	The Indus basin in the framework of current and future water resources management. Hydrology and Earth System Sciences, 2012, 16, 1063-1083.	1.9	166
4	Deterministic modelling of integrated urban drainage systems. Water Science and Technology, 2002, 45, 81-94.	1.2	157
5	Comparison of different uncertainty techniques in urban stormwater quantity and quality modelling. Water Research, 2012, 46, 2545-2558.	5.3	153
6	River water quality modelling: I. State of the art. Water Science and Technology, 1998, 38, 237-244.	1.2	149
7	Automated Creation of District Metered Area Boundaries in Water Distribution Systems. Journal of Water Resources Planning and Management - ASCE, 2013, 139, 184-190.	1.3	146
8	River Water Quality Model no. 1 (RWQM1): II. Biochemical process equations. Water Science and Technology, 2001, 43, 11-30.	1.2	129
9	First flush of dissolved compounds. Water Science and Technology, 1999, 39, 55-62.	1.2	118
10	Genetic algorithms in real time control applied to minimize transient pollution from urban wastewater systems. Water Research, 1999, 33, 1265-1277.	5.3	110
11	Comparison of Multi-Criteria Decision Support Methods for Integrated Rehabilitation Prioritization. Water (Switzerland), 2017, 9, 68.	1.2	106
12	Urban drainage redefined: from stormwater removal to integrated management. Water Science and Technology, 2001, 43, 61-68.	1.2	103
13	Pipe failure modelling for water distribution networks using boosted decision trees. Structure and Infrastructure Engineering, 2018, 14, 1402-1411.	2.0	97
14	Assessing uncertainties in urban drainage models. Physics and Chemistry of the Earth, 2012, 42-44, 3-10.	1.2	93
15	Performance and sensitivity analysis of stormwater models using a Bayesian approach and long-term high resolution data. Environmental Modelling and Software, 2011, 26, 1225-1239.	1.9	83
16	Viral variant-resolved wastewater surveillance of SARS-CoV-2 at national scale. Nature Biotechnology, 2022, 40, 1814-1822.	9.4	82
17	Sweating the assets – The role of instrumentation, control and automation in urban water systems. Water Research, 2019, 155, 381-402.	5.3	76
18	Model based hydropower gate operation for mitigation of CSO impacts by means of river base flow increase. Water Science and Technology, 2005, 52, 87-94.	1.2	74

#	Article	IF	CITATIONS
19	Exploring critical pathways for urban water management to identify robust strategies under deep uncertainties. Water Research, 2014, 66, 374-389.	5.3	74
20	CITY DRAIN © – An open source approach for simulation of integrated urban drainage systems. Environmental Modelling and Software, 2007, 22, 1184-1195.	1.9	73
21	Assessing the impact of transitions from centralised to decentralised water solutions on existing infrastructures $\hat{a} \in \mathbb{C}^*$ Integrated city-scale analysis with VIBe. Water Research, 2013, 47, 7251-7263.	5.3	71
22	A simplified mixed-culture biofilm model. Water Research, 1999, 33, 2148-2162.	5.3	70
23	Towards a smart water city: A comprehensive review of applications, data requirements, and communication technologies for integrated management. Sustainable Cities and Society, 2022, 76, 103442.	5.1	67
24	Combining urine separation with waste design: an analysis using a stochastic model for urine production. Water Research, 2003, 37, 681-689.	5.3	66
25	Integrated Approaches in Urban Storm Drainage: Where Do We Stand?. Environmental Management, 2005, 35, 396-409.	1.2	65
26	Parallel flow routing in SWMM 5. Environmental Modelling and Software, 2014, 53, 27-34.	1.9	65
27	Stochastic modeling of total suspended solids (TSS) in urban areas during rain events. Water Research, 2005, 39, 4188-4196.	5.3	61
28	Impact of input data uncertainties on urban stormwater model parameters. Water Science and Technology, 2009, 60, 1545-1554.	1.2	59
29	Environmental impacts of urban snow management — The alpine case study of Innsbruck. Science of the Total Environment, 2007, 382, 286-294.	3.9	54
30	Mixing non-Newtonian flows in anaerobic digesters by impellers and pumped recirculation. Advances in Engineering Software, 2018, 115, 194-203.	1.8	53
31	Modelling transitions in urban water systems. Water Research, 2017, 126, 501-514.	5.3	52
32	Integrated rehabilitation planning of urban infrastructure systems using a street section priority model. Urban Water Journal, 2016, 13, 28-40.	1.0	51
33	Where to Find Water Pipes and Sewers?—On the Correlation of Infrastructure Networks in the Urban Environment. Water (Switzerland), 2017, 9, 146.	1.2	45
34	Setting up measuring campaigns for integrated wastewater modelling. Water Science and Technology, 1999, 39, 257-268.	1.2	44
35	On the potential of genetic algorithms in urban drainage modeling. Urban Water, 1999, 1, 79-89.	0.5	44
36	To what extent does climate change result in a shift in Alpine hydrology? A case study in the Austrian Alps. Hydrological Sciences Journal, 2012, 57, 103-117.	1.2	44

#	Article	IF	CITATIONS
37	A case independent approach on the impact of climate change effects on combined sewer system performance. Water Science and Technology, 2009, 60, 1555-1564.	1.2	43
38	An ISPH scheme for numerical simulation of multiphase flows with complex interfaces and high density ratios. Computers and Mathematics With Applications, 2018, 75, 2658-2677.	1.4	41
39	Problems of decision making for a sustainable development. Water Science and Technology, 1998, 38, 31-39.	1.2	39
40	River Water Quality Model no. 1 (RWQM1): I. Modelling approach. Water Science and Technology, 2001, 43, 1-9.	1.2	38
41	Assessment of CSO loads – based on UV/VIS-spectroscopy by means of different regression methods. Water Science and Technology, 2006, 54, 239-246.	1.2	38
42	Impact of snowmaking on alpine water resources management under present and climate change conditions. Water Science and Technology, 2009, 59, 1793-1801.	1.2	38
43	Cascade vulnerability for risk analysis of water infrastructure. Water Science and Technology, 2011, 64, 1885-1891.	1.2	38
44	Automatic generation of water distribution systems based on GIS data. Environmental Modelling and Software, 2013, 47, 138-147.	1.9	38
45	A planning algorithm for quantifying decentralised water management opportunities in urban environments. Water Science and Technology, 2013, 68, 1857-1865.	1.2	38
46	River Water Quality Model no. 1 (RWQM1): III. Biochemical submodel selection. Water Science and Technology, 2001, 43, 31-40.	1.2	37
47	Systematic generation of virtual networks for water supply. Water Resources Research, 2011, 47, .	1.7	37
48	Stormwater quality models: performance and sensitivity analysis. Water Science and Technology, 2010, 62, 837-843.	1.2	36
49	An agent-based approach for generating virtual sewer systems. Water Science and Technology, 2010, 62, 1090-1097.	1.2	35
50	GIS-based applications of sensitivity analysis for sewer models. Water Science and Technology, 2012, 65, 1215-1222.	1.2	35
51	Impacts of measured data uncertainty on urban stormwater models. Journal of Hydrology, 2014, 508, 28-42.	2.3	35
52	Real time control of wastewater systems. Journal of Hydraulic Research/De Recherches Hydrauliques, 1996, 34, 785-797.	0.7	34
53	Technical Note: Seasonality in alpine water resources management – a regional assessment. Hydrology and Earth System Sciences, 2008, 12, 91-100.	1.9	33
54	Importance of scenario analysis in urban development for urban water infrastructure planning and management. Computers, Environment and Urban Systems, 2018, 68, 9-16.	3.3	33

#	Article	IF	CITATIONS
55	A multi-layer cellular automata approach for algorithmic generation of virtual case studies: VIBe. Water Science and Technology, 2010, 61, 37-45.	1.2	32
56	Modelling Interactions Between Lot-Scale Decentralised Water Infrastructure and Urban Form – a Case Study on Infiltration Systems. Water Resources Management, 2013, 27, 4845-4863.	1.9	32
57	Identifying weak points of urban drainage systems by means of VulNetUD. Water Science and Technology, 2009, 60, 2507-2513.	1.2	31
58	Greenhouse gas emissions from integrated urban drainage systems: Where do we stand?. Journal of Hydrology, 2018, 559, 307-314.	2.3	31
59	Integrated urban water management with micro storages developed as an IoT-based solution – The smart rain barrel. Environmental Modelling and Software, 2021, 139, 105028.	1.9	31
60	Are extreme rainfall intensities more frequent? Analysis of trends in rainfall patterns relevant to urban drainage systems. Water Science and Technology, 2009, 59, 1769-1776.	1.2	30
61	Controllability analysis as a pre-selection method for sensor placement in water distribution systems. Water Research, 2013, 47, 6097-6108.	5.3	30
62	Impact of a Changing Environment on Drainage System Performance. Procedia Engineering, 2014, 70, 943-950.	1.2	30
63	Enhancement of limited water supply network data for deterioration modelling and determination of rehabilitation rate. Structure and Infrastructure Engineering, 2016, 12, 366-380.	2.0	30
64	Future trajectories of urban drainage systems: A simple exploratory modeling approach for assessing socio-technical transitions. Science of the Total Environment, 2019, 651, 1709-1719.	3.9	29
65	A stochastic approach for automatic generation of urban drainage systems. Water Science and Technology, 2009, 59, 1137-1143.	1.2	28
66	Lost in calibration: why people still do not calibrate their models, and why they still should – a case study from urban drainage modelling. Water Science and Technology, 2016, 74, 2337-2348.	1.2	28
67	Improving sustainability of urban drainage systems for climate change adaptation using best management practices: a case study of Tehran, Iran. Hydrological Sciences Journal, 2019, 64, 381-404.	1.2	28
68	The European Water Framework Directive: Water Quality Classification and Implications to Engineering Planning. Environmental Management, 2005, 35, 517-525.	1.2	27
69	Optimization of measurement campaigns for calibration of a conceptual sewer model. Water Science and Technology, 2009, 59, 1523-1530.	1.2	27
70	Replace contamination, not the pipes. Science, 2014, 345, 734-735.	6.0	27
71	Methodological proposal to assess the water footprint accounting of direct water use at an urban level: A case study of the Municipality of Vicenza. Ecological Indicators, 2016, 69, 165-175.	2.6	27
72	On the sensitivity of geospatial low impact development locations to the centralized sewer network. Water Science and Technology, 2018, 77, 1851-1860.	1.2	27

#	Article	IF	CITATIONS
73	gpuSPHASE—A shared memory caching implementation for 2D SPH using CUDA. Computer Physics Communications, 2017, 213, 165-180.	3.0	26
74	Integrated design and analysis of drainage systems, including sewers, treatment plant and receiving waters. Journal of Hydraulic Research/De Recherches Hydrauliques, 1996, 34, 815-826.	0.7	25
75	Combined sewer system versus separate system – a comparison of ecological and economical performance indicators. Water Science and Technology, 2007, 55, 255-264.	1.2	25
76	Neighbour lists for smoothed particle hydrodynamics on GPUs. Computer Physics Communications, 2018, 225, 140-148.	3.0	25
77	Stochastic approach for performance evaluation regarding water distribution systems. Water Science and Technology, 2007, 56, 29-36.	1.2	24
78	Nowcasting of rainfall and of combined sewage flow in urban drainage systems. Water Science and Technology, 2009, 59, 1145-1151.	1.2	24
79	A fully Lagrangian computational model for the integration of mixing and biochemical reactions in anaerobic digestion. Computers and Fluids, 2019, 181, 224-235.	1.3	24
80	Data filtering methods for SARS-CoV-2 wastewater surveillance. Water Science and Technology, 2021, 84, 1324-1339.	1.2	24
81	The Cauvery river basin in Southern India: major challenges and possible solutions in the 21st century. Water Science and Technology, 2011, 64, 122-131.	1.2	23
82	Modelling the urban water cycle as an integrated part of the city: a review. Water Science and Technology, 2014, 70, 1857-1872.	1.2	23
83	Stationary vs non-stationary modelling of flood frequency distribution across northwest England. Hydrological Sciences Journal, 2021, 66, 729-744.	1.2	23
84	Quest for Optimal Regression Models in SARS-CoV-2 Wastewater Based Epidemiology. International Journal of Environmental Research and Public Health, 2021, 18, 10778.	1.2	23
85	Correlation of combined sewer overflow reduction due to real-time control and resulting effect on the oxygen concentration in the river. Water Science and Technology, 1998, 37, 69-76.	1.2	22
86	Performance of infiltration swales with regard to operation in winter times in an Alpine region. Water Science and Technology, 2011, 63, 2658-2665.	1.2	22
87	A rapid fine-scale approach to modelling urban bioclimatic conditions. Science of the Total Environment, 2021, 756, 143732.	3.9	22
88	Impact of an extreme dry and hot summer on water supply security in an alpine region. Water Science and Technology, 2009, 59, 469-477.	1.2	21
89	Modelling cities and water infrastructure dynamics. Proceedings of the Institution of Civil Engineers: Engineering Sustainability, 2013, 166, 301-308.	0.4	21
90	Dynamics in Urban Development, Population Growth and their Influences on Urban Water Infrastructure. Procedia Engineering, 2014, 70, 1147-1156.	1.2	21

#	Article	IF	CITATIONS
91	Quest for a New Solver for EPANET 2. Journal of Water Resources Planning and Management - ASCE, 2016, 142, .	1.3	21
92	Speedup of water distribution simulation by domain decomposition. Environmental Modelling and Software, 2014, 52, 253-263.	1.9	20
93	On the Reynolds number sensitivity of smoothed particle hydrodynamics. Journal of Hydraulic Research/De Recherches Hydrauliques, 2014, 52, 824-835.	0.7	20
94	Investigating Transitions of Centralized Water Infrastructure to Decentralized Solutions – An Integrated Approach. Procedia Engineering, 2014, 70, 1549-1557.	1.2	20
95	Optimizing Small Hydropower Systems in Water Distribution Systems Based on Long-Time-Series Simulation and Future Scenarios. Journal of Water Resources Planning and Management - ASCE, 2015, 141, .	1.3	20
96	Info-Gap robustness pathway method for transitioning of urban drainage systems under deep uncertainties. Water Science and Technology, 2017, 76, 1272-1281.	1.2	20
97	pH-controlled reject-water-treatment. Water Science and Technology, 1998, 37, 165-172.	1.2	20
98	Spanning Tree-Based Algorithm for Generating Water Distribution Network Sets by Using Street Network Data Sets. , 2014, , .		19
99	Adaptation of sewer networks using integrated rehabilitation management. Water Science and Technology, 2014, 70, 1847-1856.	1.2	19
100	An application of Austrian legal requirements for CSO emissions. Water Science and Technology, 2011, 64, 1081-1088.	1.2	18
101	Integrated planning of rehabilitation strategies for sewers. Water Science and Technology, 2013, 68, 176-183.	1.2	18
102	Investigating the interactions of decentralized and centralized wastewater heat recovery systems. Water Science and Technology, 2017, 75, 1243-1250.	1.2	18
103	Morphogenesis of Urban Water Distribution Networks: A Spatiotemporal Planning Approach for Cost-Efficient and Reliable Supply. Entropy, 2018, 20, 708.	1.1	18
104	From water footprint to climate change adaptation: Capacity development with teenagers to save water. Land Use Policy, 2019, 80, 456-463.	2.5	18
105	Detection and abundance of SARS-CoV-2 in wastewater in Liechtenstein, and the estimation of prevalence and impact of the B.1.1.7 variant. Journal of Water and Health, 2022, 20, 114-125.	1.1	18
106	Integrating hydrodynamics and biokinetics in wastewater treatment modelling by using smoothed particle hydrodynamics. Computers and Chemical Engineering, 2017, 99, 1-12.	2.0	17
107	Suitability of CSO performance indicators for compliance with ambient water quality targets. Urban Water Journal, 2008, 5, 43-49.	1.0	16
108	Dynamic virtual infrastructure benchmarking: DynaVIBe. Water Science and Technology: Water Supply, 2010, 10, 600-609.	1.0	16

WOLFGANG RAUCH

#	Article	IF	CITATIONS
109	Decision Support for Adaptation Planning of Urban Drainage Systems. Journal of Water Resources Planning and Management - ASCE, 2017, 143, .	1.3	16
110	Smart Rain Barrels: Advanced LID Management Through Measurement and Control. Green Energy and Technology, 2019, , 777-782.	0.4	16
111	Local infiltration devices at parking sites – Experimental assessment of temporal changes in hydraulic and contaminant removal capacity. Water Science and Technology, 2007, 55, 193-200.	1.2	15
112	Determining the spill flow discharge of combined sewer overflows using rating curves based on computational fluid dynamics instead of the standard weir equation. Water Science and Technology, 2009, 60, 3035-3043.	1.2	15
113	GIS Based Applications of Sensitivity Analysis for Water Distribution Models. , 2011, , .		15
114	Designing and implementing a multi-core capable integrated urban drainage modelling Toolkit:Lessons from CityDrain3. Advances in Engineering Software, 2016, 100, 277-289.	1.8	15
115	REBEKA––a software tool for planning urban drainage on the basis of predicted impacts on receiving waters. Urban Water, 2002, 4, 355-361.	0.5	14
116	Sediment and pollutant load modelling using an integrated urban drainage modelling toolbox: an application of City Drain. Water Science and Technology, 2010, 61, 2273-2282.	1.2	13
117	Spatial risk assessment for critical network infrastructure using sensitivity analysis. Frontiers of Earth Science, 2011, 5, 414-420.	0.9	13
118	Comparison of two model based approaches for areal rainfall estimation in urban hydrology. Journal of Hydrology, 2014, 511, 880-890.	2.3	13
119	Effects of Urban Forms on Separate Drainage Systems: A Virtual City Perspective. Water (Switzerland), 2019, 11, 758.	1.2	13
120	Requirements for integrated wastewater models - driven by receiving water objectives. Water Science and Technology, 1998, 38, 97-104.	1.2	12
121	Graph-based approach for generating virtual water distribution systems in the software VIBe. Water Science and Technology: Water Supply, 2010, 10, 923-932.	1.0	12
122	Rasterised Water Demands: Methodology for Their Assessment and Possible Applications. Water Resources Management, 2011, 25, 3301-3320.	1.9	12
123	The importance of the treatment plant performance during rain to acute water pollution. Water Science and Technology, 1996, 34, 1-8.	1.2	11
124	Environmental engineering education - summary report of the 1st European Seminar. Water Science and Technology, 2000, 41, 1-7.	1.2	11
125	Estimating inflow to a combined sewer overflow structure with storage tank in real time: evaluation of different approaches. Water Science and Technology, 2014, 70, 1143-1151.	1.2	11
126	A dynamic urban development model designed for purposes in the field of urban water management. Journal of Hydroinformatics, 2015, 17, 390-403.	1.1	11

#	Article	IF	CITATIONS
127	Wastewater treatment modelling with smoothed particle hydrodynamics. Environmental Modelling and Software, 2016, 75, 206-211.	1.9	11
128	Evolution of Complex Network Topologies in Urban Water Infrastructure. , 2017, , .		11
129	Enabling Efficient and Sustainable Transitions of Water Distribution Systems under Network Structure Uncertainty. Water (Switzerland), 2017, 9, 715.	1.2	11
130	Design and optimization of small hydropower systems in water distribution networks under consideration of rehabilitation measures. Urban Water Journal, 2018, 15, 183-191.	1.0	11
131	Conceptual Urban Water Balance Model for Water Policy Testing: An Approach for Large Scale Investigation. Sustainability, 2018, 10, 716.	1.6	11
132	Revealing the Challenges of Smart Rainwater Harvesting for Integrated and Digital Resilience of Urban Water Infrastructure. Water (Switzerland), 2021, 13, 1902.	1.2	11
133	Optimal design and real time control of the integrated urban run-off system. Hydrobiologia, 1999, 410, 177-184.	1.0	10
134	Implications of long-term stormwater quality modelling for design of combined sewer infrastructure. Urban Water Journal, 2011, 8, 155-166.	1.0	10
135	Failure Propagation for Large-Diameter Transmission Water Mains Using Dynamic Failure Risk Index. , 2012, , .		10
136	Assessing the efficiency of different CSO positions based on network graph characteristics. Water Science and Technology, 2013, 67, 1574-1580.	1.2	10
137	The application of a Web-geographic information system for improving urban water cycle modelling. Water Science and Technology, 2014, 70, 1838-1846.	1.2	10
138	Integrated hydraulic modelling of water supply and urban drainage networks for assessment of decentralized options. Water Science and Technology, 2014, 70, 1817-1824.	1.2	10
139	What can we learn from a 500-year event? Experiences from urban drainage in Austria. Water Science and Technology, 2018, 77, 2146-2154.	1.2	10
140	Virtual reality in urban water management: communicating urban flooding with particle-based CFD simulations. Water Science and Technology, 2018, 77, 518-524.	1.2	10
141	Impacts of urban development on urban water management – Limits of predictability. Computers, Environment and Urban Systems, 2020, 84, 101546.	3.3	10
142	Efficient integration of IoT-based micro storages to improve urban drainage performance through advanced control strategies. Water Science and Technology, 2021, 83, 2678-2690.	1.2	10
143	Parallel computing in conceptual sewer simulations. Water Science and Technology, 2010, 61, 283-291.	1.2	9
144	Development of an urban drainage safety plan concept based on spatial risk assessment. Structure and Infrastructure Engineering, 2015, 11, 918-928.	2.0	9

#	Article	IF	CITATIONS
145	On the effect of spatial variances in historical rainfall time series to CSO performance evaluation. Water Science and Technology, 2006, 54, 25-31.	1.2	8
146	Identifying Hydropower Potential in Water Distribution Systems of Alpine Regions. , 2012, , .		8
147	Modeling Dynamic Expansion of Water Distribution Systems for New Urban Developments. , 2012, , .		8
148	Performance improvement with parallel numerical model simulations in the field of urban water management. Journal of Hydroinformatics, 2014, 16, 477-486.	1.1	8
149	Modelling aerated flows with smoothed particle hydrodynamics. Journal of Hydroinformatics, 2015, 17, 493-504.	1.1	8
150	The Impacts of Spatially Variable Demand Patterns on Water Distribution System Design and Operation. Water (Switzerland), 2019, 11, 567.	1.2	8
151	gpuSPHASE—A shared memory caching implementation for 2D SPH using CUDA (new version) Tj ETQq1	1 0.784314 r 3.0	gBT /gverlock 1
152	On the effect of biogas bubbles in anaerobic digester mixing. Biochemical Engineering Journal, 2021, 173, 108088.	1.8	8
153	On the issue of trend and noise in the estimation of extreme rainfall properties. Water Science and Technology, 2006, 54, 17-24.	1.2	7
154	Design and Optimization of Small Hydropower Systems in Water Distribution Networks Based on 10-Years Simulation with Epanet2. Procedia Engineering, 2014, 89, 533-539.	1.2	7
155	Improving Incomplete Water Distribution System Data. Procedia Engineering, 2014, 70, 1055-1062.	1.2	7
156	A Heuristic Method for Measurement Site Selection in Sewer Systems. Water (Switzerland), 2018, 10, 122.	1.2	7
157	Data modelling recipes for SARS-CoV-2 wastewater-based epidemiology. Environmental Research, 2022, 214, 113809.	3.7	7
158	Challenges in the implementation of the Water Framework Directive: case study of the alpine River Drau, Austria. Water Science and Technology, 2005, 52, 243-250.	1.2	6
159	Urine separation as part of a real-time control strategy. Urban Water Journal, 2007, 4, 233-240.	1.0	6
160	Increase of River Base Flow by Hydropower Gate Operation for Mitigation of CSO Impacts – Potential and Limitations. Water Resources Management, 2007, 21, 1487-1503.	1.9	6
161	Potential impact of natural hazards on water supply systems in Alpine regions. Water Practice and Technology, 2008, 3, .	1.0	6
162	WDS Designer—A Tool Algorithmic Generation of Water Distribution Systems based on GIS Data. , 2010, , .		6

#	Article	IF	CITATIONS
163	Stormwater in urban areas. Water Research, 2012, 46, 6588.	5.3	6
164	A Bayesian method for missing rainfall estimation using a conceptual rainfall–runoff model. Hydrological Sciences Journal, 2017, 62, 2456-2468.	1.2	6
165	Groundbreaking papers in Water Research 1967–2006. Water Research, 2006, 40, 3149-3149.	5.3	5
166	Application of a Stochastic Test Case Generation for Water Distribution Systems. , 2011, , .		5
167	Influence of Network Properties and Model Purpose on the Level of Skeletonization. , 2011, , .		5
168	A software-based sensor for combined sewer overflows. Water Science and Technology, 2012, 66, 1475-1482.	1.2	5
169	Urban water management to increase sustainability of cities. Water Research, 2013, 47, 7149.	5.3	5
170	Simplifying impact of urban development on sewer systems. Water Science and Technology, 2014, 70, 1808-1816.	1.2	5
171	Editorial: Modeling the urban water cycle as part of the city. Water Science and Technology, 2014, 70, 1717-1720.	1.2	5
172	An Insight to the Cornucopia of Possibilities in Calibration Data Collection. Water Resources Management, 2019, 33, 1629-1645.	1.9	5
173	Accelerating Surface Tension Calculation in SPH via Particle Classification and Monte Carlo Integration. Computers, 2020, 9, 23.	2.1	5
174	CFD Modeling of a Stirred Anaerobic Digestion Tank for Evaluating Energy Consumption through Mixing. Water (Switzerland), 2021, 13, 1629.	1.2	5
175	How Many Network Sources are Enough?. , 2010, , .		4
176	Influence of characteristics on combined sewer performance. Water Science and Technology, 2012, 66, 1052-1060.	1.2	4
177	Identifying Multi Utility Network Similarities. , 2012, , .		4
178	Assessing Model Structure Uncertainties in Water Distribution Models. , 2014, , .		4
179	Prioritization of Rehabilitation Areas for Urban Water Infrastructure. A Case Study. Procedia Engineering, 2014, 89, 811-816.	1.2	4
180	Case study on the use of a combined system as an intermediate solution in Brazil: cost estimate. Water and Environment Journal, 2017, 31, 478-485.	1.0	4

WOLFGANG RAUCH

1

#	Article	IF	CITATIONS
181	Scientific Computing in Urban Water Management. , 2014, , 173-193.		4
182	Acute pollution of recipients in urban areas. Water Science and Technology, 1997, 36, 179-184.	1.2	4
183	Terminology and methodology in modelling for water quality management - a discussion starter. Water Science and Technology, 1997, 36, 157-168.	1.2	4
184	Optimal design and real time control of the integrated urban run-off system. , 1999, , 177-184.		4
185	A Hydrological Response Analysis Considering Climatic Variability: Case Study of Hunza Catchment. Engineering, Technology & Applied Science Research, 2018, 8, 2981-2984.	0.8	4
186	Deterministic modelling of integrated urban drainage systems. Water Science and Technology, 2002, 45, 81-94.	1.2	4
187	Influence of climate change on the water resources in an alpine region. Water Science and Technology, 2008, 58, 839-846.	1.2	3
188	Identifiability analysis in conceptual sewer modelling. Water Science and Technology, 2012, 66, 1467-1474.	1.2	3
189	Long Time Simulations and Analysis of Future Scenarios for Design and Benefit Cost Analysis of Small Hydropower in Water Distribution Systems. , 2014, , .		3
190	Modelling benthic activity in shallow eutrophic rivers. Water Science and Technology, 1998, 37, 129-137.	1.2	3
191	2D SPH simulation of an anaerobic digester. Computational Particle Mechanics, 2022, 9, 1073-1083.	1.5	3
192	Waste sludge disposal in extreme alpine environments. Waste Management and Research, 2000, 18, 33-40.	2.2	2
193	Probabilistic Modeling as a New Planning Approach to Stormwater Management. , 2002, , 1.		2
194	Empirical Equation for Spacing of Ground Water Heat Pump Systems. , 2010, , .		2
195	Integrated Rehabilitation Management by Prioritization of Rehabilitation Areas for Small and Medium Sized Municipalities. , 2015, , .		2
196	On the effect of the inlet configuration for anaerobic digester mixing. Bioprocess and Biosystems Engineering, 2021, 44, 2455-2468.	1.7	2
197	SPHASE—Smoothed Particle Hydrodynamics in Wastewater Treatment. , 2016, , .		2

198 The Role of Exposure in Risk Analysis for Critical Water Infrastructure. , 2011, , .

#	Article	IF	CITATIONS
199	Stability of Traditional Urban Water Systems – Integrated Assessment of Transitions Scenarios. Procedia Engineering, 2014, 89, 727-733.	1.2	1
200	What Can We Learn from Historical Water Network Transition?. , 2015, , .		1
201	Modelling of moving bed biofilm membrane reactors (MBBMR) for on-site greywater treatment. Water Science and Technology, 2015, 71, 1180-1188.	1.2	1
202	Model-Based Upscaling of the IoT-Based Smart Rain Barrel—An Integrated Analysis of the Urban Water Cycle. , 2021, , .		1
203	Integrated Urban Water Systems (IUWS) - an international postgraduate course. Water Science and Technology, 2000, 41, 67-74.	1.2	1
204	Austrian Activities in Protecting Critical Water Infrastructure. , 2014, , 343-373.		1
205	Quantifying the UDS Hydraulic and Social Resilience to Flooding: An Index-Based Approach vs. a Parameter-Based MCDM Method. Water (Switzerland), 2022, 14, 2007.	1.2	1
206	Nutzung der Geothermie. Osterreichische Wasser- Und Abfallwirtschaft, 2010, 62, A23-A24.	0.3	0
207	Geothermal Energy in a Central European Perspective $\hat{a} \in \mathbb{C}$ Challenges and Opportunities. , 2011, , .		О
208	Spatial Distributed Risk Assessment for Urban Water Infrastructure. , 2011, , 119-134.		0
209	Analysis of Hydraulic and Combined Sewer Overflow Performance Indicators. , 2012, , .		Ο
210	Stochastic Performance Assessment and Optimization Strategies of the Water Supply Network Transition of Kiruna During City Relocation. , 2015, , .		0
211	An Integrated Approach to Identify the Most Efficient Solutions for the Landfill Leachate Problem. , 2016, , .		0
212	Design of Interacting Small Hydropower Systems in Water Distribution Networks under the Consideration of Demand Uncertainties and Rehabilitation Measures. , 2016, , .		0
213	Co-VergÃ ¤ ung auf kommunalen Abwasserbehandlungsanlagen. Osterreichische Wasser- Und Abfallwirtschaft, 2017, 69, 367-368.	0.3	0
214	Digitalisierung in der Siedlungswasserwirtschaft. Osterreichische Wasser- Und Abfallwirtschaft, 2019, 71, 335-336.	0.3	0
215	WRSS: An Object-Oriented R Package for Large-Scale Water Resources Operation. Water (Switzerland), 2021, 13, 3037.	1.2	0
216	Evaluating the Digital Resilience of Urban Water Infrastructure Retrofitted with Smart Rainwater Harvesting. , 2022, , .		0