
Michael E Tschakovsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5488186/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Perceived mental strain dissociates from perceived physical strain during relative intensity submaximal exercise on ascent from low to high altitude. Physiological Reports, 2021, 9, e14934.	1.7	Ο
2	Greater postâ€contraction hyperaemia below vs . above heart level: the role of active vasodilatation vs . passive mechanical distension of arterioles. Journal of Physiology, 2020, 598, 85-99.	2.9	3
3	Assessment of resistance vessel function in human skeletal muscle: guidelines for experimental design, Doppler ultrasound, and pharmacology. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 318, H301-H325.	3.2	78
4	A novel gravity-induced blood flow restriction model augments ACC phosphorylation and <i>PGC-1α</i> mRNA in human skeletal muscle following aerobic exercise: a randomized crossover study. Applied Physiology, Nutrition and Metabolism, 2020, 45, 641-649.	1.9	21
5	A comparison of pain responses, hemodynamic reactivity and fibre type composition between Bergström and microbiopsy skeletal muscle biopsies. Current Research in Physiology, 2020, 3, 1-10.	1.7	9
6	Acute aerobic exercise impairs aspects of cognitive function at high altitude. Physiology and Behavior, 2020, 223, 112979.	2.1	11
7	Fatigue-independent alterations in muscle activation and effort perception during forearm exercise: role of local oxygen delivery. Journal of Applied Physiology, 2019, 127, 111-121.	2.5	11
8	Submaximal exercise cardiac output is increased by 4 weeks of sprint interval training in young healthy males with low initial Q̇-V̇O2: Importance of cardiac response phenotype. PLoS ONE, 2019, 14, e0195458.	2.5	4
9	The oxygen-conformer response and its contribution to task failure in exhaustive exercise. Journal of Applied Physiology, 2019, 126, 796-796.	2.5	3
10	High-intensity interval exercise impairs neuroelectric indices of reinforcement-learning. Physiology and Behavior, 2019, 198, 18-26.	2.1	7
11	Absence of compensatory vasodilation with perfusion pressure challenge in exercise: evidence for and implications of the noncompensator phenotype. Journal of Applied Physiology, 2018, 124, 374-387.	2.5	5
12	Hyper-Oxygenation Attenuates the Rapid Vasodilatory Response to Muscle Contraction and Compression. Frontiers in Physiology, 2018, 9, 1078.	2.8	11
13	Do interindividual differences in cardiac output during submaximal exercise explain differences in exercising muscle oxygenation and ratings of perceived exertion?. Physiological Reports, 2018, 6, e13570.	1.7	5
14	Exercise and circulating BDNF: Mechanisms of release and implications for the design of exercise interventions. Applied Physiology, Nutrition and Metabolism, 2018, 43, 1095-1104.	1.9	146
15	Exercise intolerance in Type 2 diabetes: is there a cardiovascular contribution?. Journal of Applied Physiology, 2018, 124, 1117-1139.	2.5	34
16	Contribution of central and peripheral adaptations to changes in maximal oxygen uptake following 4 weeks of sprint interval training. Applied Physiology, Nutrition and Metabolism, 2018, 43, 1059-1068.	1.9	38
17	Dietary nitrate supplementation and exercise tolerance in patients with heart failure with reduced ejection fraction. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2017, 312, R13-R22.	1.8	54
18	Characteristics and effectiveness of vasodilatory and pressor compensation for reduced relaxation time during rhythmic forearm contractions. Experimental Physiology, 2017, 102, 621-634.	2.0	5

#	Article	IF	CITATIONS
19	Dietary nitrate restores compensatory vasodilation and exercise capacity in response to a compromise in oxygen delivery in the noncompensator phenotype. Journal of Applied Physiology, 2017, 123, 594-605.	2.5	13
20	Oral <i>N</i> -acetylcysteine and exercise tolerance in mild chronic obstructive pulmonary disease. Journal of Applied Physiology, 2017, 122, 1351-1361.	2.5	12
21	Short-Duration Maximal and Long-Duration Submaximal Effort Forearm Exercise Achieve Elevations in Serum Brain-Derived Neurotrophic Factor. Frontiers in Physiology, 2017, 8, 746.	2.8	20
22	Neurotrophic growth factor responses to lower body resistance training in older adults. Applied Physiology, Nutrition and Metabolism, 2016, 41, 315-323.	1.9	32
23	Independent effect of type 2 diabetes beyond characteristic comorbidities and medications on immediate but not continued knee extensor exercise hyperemia. Journal of Applied Physiology, 2015, 119, 202-212.	2.5	11
24	Lack of independent effect of type 2 diabetes beyond characteristic comorbidities and medications on small muscle mass exercising muscle blood flow and exercise tolerance. Physiological Reports, 2015, 3, e12487.	1.7	4
25	The Single-Bout Forearm Critical Force Test: A New Method to Establish Forearm Aerobic Metabolic Exercise Intensity and Capacity. PLoS ONE, 2014, 9, e93481.	2.5	28
26	Redundant Vasodilator Pathways Underlying Radial Artery Flow-Mediated Dilation Are Preserved in Healthy Aging. Journal of Aging Research, 2014, 2014, 1-8.	0.9	2
27	Individual susceptibility to hypoperfusion and reductions in exercise performance when perfusion pressure is reduced: evidence for vasodilator phenotypes. Journal of Applied Physiology, 2014, 117, 392-405.	2.5	10
28	Does oxygen delivery explain interindividual variation in forearm critical impulse?. Physiological Reports, 2014, 2, e12203.	1.7	8
29	Reducing the volume of sprint interval training does not diminish maximal and submaximal performance gains in healthy men. European Journal of Applied Physiology, 2014, 114, 2427-2436.	2.5	43
30	ls It or Isn't It Oxygen Delivery? The Debate Over What Limits Oxygen Uptake Kinetics Continues. Exercise and Sport Sciences Reviews, 2014, 42, 2-3.	3.0	0
31	Letter to the editor: "Deconstructing the dogma of sympathetic restraint and its role in the cardiovascular response to exercise― American Journal of Physiology - Heart and Circulatory Physiology, 2014, 306, H462-H463.	3.2	1
32	Persistence of functional sympatholysis post-exercise in human skeletal muscle. Frontiers in Physiology, 2013, 4, 131.	2.8	14
33	Neurotrophic growth factor response to lower body resistance training in older adults. FASEB Journal, 2013, 27, 934.4.	0.5	0
34	Sensitivity of forearm critical power to acute manipulation of perfusion pressure. FASEB Journal, 2013, 27, 1125.4.	0.5	0
35	Individual vasodilatory response heterogeneity during progressive forearm exercise: evidence for vasodilator phenotypes. FASEB Journal, 2013, 27, 1125.6.	0.5	0
36	Heterogeneous Vasodilator Pathways Underlying Flow Mediated Dilation are Preserved in Healthy Aging. FASEB Journal, 2013, 27, 1125.1.	0.5	0

#	Article	IF	CITATIONS
37	Interâ€individual differences in rapid vasodilation in older males with and without type 2 diabetes. FASEB Journal, 2012, 26, 860.14.	0.5	0
38	The effects of a 5 second bend over maneuver on cerebral perfusion and autoregulation upon standing from squat. FASEB Journal, 2012, 26, 685.3.	0.5	0
39	Lower body muscle tensing is an effective countermeasure to initial orthostatic hypotension induced cerebral hypoâ€perfusion upon standing from a squatted position. FASEB Journal, 2012, 26, 685.32.	0.5	Ο
40	Lower limb-localized vascular phenomena explain initial orthostatic hypotension upon standing from squat. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H2102-H2112.	3.2	19
41	Assessment of flow-mediated dilation in humans: a methodological and physiological guideline. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H2-H12.	3.2	1,126
42	Interâ€individual differences in coupling oxygen delivery to exercising muscle metabolic demand. FASEB Journal, 2011, 25, 1023.2.	0.5	0
43	Interâ€individual oxygen delivery differences strongly influence estimated critical power in an all out exercise test. FASEB Journal, 2011, 25, 1023.3.	0.5	0
44	Interâ€individual differences in coupling oxygen delivery to demand during a progressive exercise test. FASEB Journal, 2011, 25, 1023.5.	0.5	0
45	Challenging O2 delivery: metabolism coupling in small muscle mass exercise. FASEB Journal, 2011, 25, 1023.4.	O.5	0
46	Influence of Combined Nitric Oxide and Prostaglandin Inhibition on Contractionâ€induced Rapid Vasodilation. FASEB Journal, 2011, 25, 1108.13.	0.5	0
47	Massage Impairs Postexercise Muscle Blood Flow and "Lactic Acid" Removal. Medicine and Science in Sports and Exercise, 2010, 42, 1062-1071.	0.4	48
48	ls Oxygen Consumption and Oxygen Delivery During Leg Exercise Compromised in Type II Diabetes?. Medicine and Science in Sports and Exercise, 2010, 42, 242.	0.4	2
49	Is the Response Capacity of Rapid Vasodilation Mechanism(s) at Exercise Onset Sensitive to Exercise Training?. Medicine and Science in Sports and Exercise, 2010, 42, 313.	0.4	1
50	The shear stress of keeping cool: why being in the â€~hot seat' might actually be good for your blood vessels. Journal of Physiology, 2010, 588, 1805-1805.	2.9	2
51	Nitric oxide and muscle blood flow in exercise. Applied Physiology, Nutrition and Metabolism, 2008, 33, 151-160.	1.9	59
52	Introduction to proceedings from the 2005 CSEP symposium "Exercise and the endothelium― Applied Physiology, Nutrition and Metabolism, 2008, 33, 149-150.	1.9	2
53	Rapid Vascular Responses to Muscle Contraction. Exercise and Sport Sciences Reviews, 2008, 36, 25-29.	3.0	38
54	Flow mediated dilation response to oscillatory vs. steady shear: evidence for the transduction of the mean shear stimulus. FASEB Journal, 2008, 22, .	0.5	0

#	Article	IF	CITATIONS
55	Vasoregulatory mechanism response speed to step increases or decreases in exercise from steady state. FASEB Journal, 2008, 22, 967.9.	0.5	0
56	Do vasoregulatory mechanisms in exercising human muscle compensate for changes in arterial perfusion pressure?. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H2928-H2936.	3.2	22
57	Initial orthostatic hypotension: review of a forgotten condition. Clinical Science, 2007, 112, 157-165.	4.3	319
58	Peak vs. total reactive hyperemia: which determines the magnitude of flow-mediated dilation?. Journal of Applied Physiology, 2007, 102, 1510-1519.	2.5	255
59	Muscle Blood-Flow Dynamics at Exercise Onset. Medicine and Science in Sports and Exercise, 2006, 38, 1811-1818.	0.4	28
60	Metabolic and Vascular Limb Differences Affected by Exercise, Gender, Age, and Disease. Medicine and Science in Sports and Exercise, 2006, 38, 1792-1796.	0.4	97
61	Rapid vasoregulatory mechanisms in exercising human skeletal muscle: dynamic response to repeated changes in contraction intensity. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H1065-H1073.	3.2	12
62	Counterpoint: Flow-mediated dilation does not reflect nitric oxide-mediated endothelial function. Journal of Applied Physiology, 2005, 99, 1235-1237.	2.5	56
63	Dynamic response characteristics of local muscle blood flow regulatory mechanisms in human forearm exercise. Journal of Applied Physiology, 2005, 98, 1286-1296.	2.5	47
64	Impact of combined NO and PG blockade on rapid vasodilation in a forearm mild-to-moderate exercise transition in humans. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H214-H220.	3.2	37
65	Evidence for a rapid vasodilatory contribution to immediate hyperemia in rest-to-mild and mild-to-moderate forearm exercise transitions in humans. Journal of Applied Physiology, 2004, 97, 1143-1151.	2.5	44
66	Immediate exercise hyperemia: contributions of the muscle pump vs. rapid vasodilation. Journal of Applied Physiology, 2004, 97, 739-747.	2.5	154
67	Is sympathetic neural vasoconstriction blunted in the vascular bed of exercising human muscle?. Journal of Physiology, 2002, 541, 623-635.	2.9	152
68	Peripheral circulatory factors limit rate of increase in muscle O ₂ uptake at onset of heavy exercise. Journal of Applied Physiology, 2001, 90, 83-89.	2.5	55
69	Muscle chemoreflex elevates muscle blood flow and O2 uptake at exercise onset in nonischemic human forearm. Journal of Applied Physiology, 2001, 91, 2010-2016.	2.5	31
70	Cardiovascular dynamics at the onset of exercise. Medicine and Science in Sports and Exercise, 1999, 31, 1005-1010.	0.4	20
71	Alveolar oxygen uptake and femoral artery blood flow dynamics in upright and supine leg exercise in humans. Journal of Applied Physiology, 1998, 85, 1622-1628.	2.5	162