Zhongqiu Hua

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5488148/publications.pdf Version: 2024-02-01

<u> 7номсош Нил</u>

#	Article	lF	CITATIONS
1	WO ₃ Nanolamella Gas Sensor: Porosity Control Using SnO ₂ Nanoparticles for Enhanced NO ₂ Sensing. Langmuir, 2014, 30, 2571-2579.	3.5	160
2	A theoretical investigation of the power-law response of metal oxide semiconductor gas sensors Ι: Schottky barrier control. Sensors and Actuators B: Chemical, 2018, 255, 1911-1919.	7.8	85
3	Modified impregnation synthesis of Ru-loaded WO3 nanoparticles for acetone sensing. Sensors and Actuators B: Chemical, 2018, 265, 249-256.	7.8	77
4	A theoretical investigation of the power-law response of metal oxide semiconductor gas sensors ΙI: Size and shape effects. Sensors and Actuators B: Chemical, 2018, 255, 3541-3549.	7.8	57
5	High-performance photodetectors based on two-dimensional tin(<scp>ii</scp>) sulfide (SnS) nanoflakes. Journal of Materials Chemistry C, 2018, 6, 10036-10041.	5.5	54
6	Selective detection of methanol by zeolite/Pd-WO3 gas sensors. Sensors and Actuators B: Chemical, 2018, 273, 1291-1299.	7.8	48
7	Triazine-Based Two-Dimensional Organic Polymer for Selective NO ₂ Sensing with Excellent Performance. ACS Applied Materials & Interfaces, 2020, 12, 3919-3927.	8.0	48
8	Efficient NH ₃ Detection Based on MOS Sensors Coupled with Catalytic Conversion. ACS Sensors, 2020, 5, 1838-1848.	7.8	42
9	Power-law response of metal oxide semiconductor gas sensors to oxygen in presence of reducing gases. Sensors and Actuators B: Chemical, 2018, 267, 510-518.	7.8	39
10	An investigation on NO2 sensing mechanism and shielding behavior of WO3 nanosheets. Sensors and Actuators B: Chemical, 2018, 259, 250-257.	7.8	39
11	Highly sensitive and selective room-temperature nitrogen dioxide sensors based on porous graphene. Sensors and Actuators B: Chemical, 2018, 275, 78-85.	7.8	39
12	Selective detection of methane by HZSM-5 zeolite/Pd-SnO2 gas sensors. Sensors and Actuators B: Chemical, 2020, 321, 128567.	7.8	36
13	Humidity compensation based on power-law response for MOS sensors to VOCs. Sensors and Actuators B: Chemical, 2021, 334, 129601.	7.8	33
14	High sensitive gas sensor based on Pd-loaded WO3 nanolamellae. Thin Solid Films, 2013, 548, 677-682.	1.8	31
15	Porous Co3O4 nanocrystals derived by metal-organic frameworks on reduced graphene oxide for efficient room-temperature NO2 sensing properties. Journal of Alloys and Compounds, 2021, 856, 158199.	5.5	30
16	Selective detection of methane by Pd-In2O3 sensors with a catalyst filter film. Sensors and Actuators B: Chemical, 2021, 328, 129030.	7.8	25
17	H2 Sensing Mechanism of Pd-Loaded WO3 Nanoparticle Gas Sensors. Chemistry Letters, 2014, 43, 1435-1437.	1.3	23
18	Hydrogen sensing mechanism of Ru-loaded WO3 nanosheets. Sensors and Actuators B: Chemical, 2020, 304, 127339.	7.8	23

Zhongqiu Hua

#	Article	IF	CITATIONS
19	A new sensing material design based on chemically passivated phosphorene/porous two-dimensional polymer: Highly sensitive and selective detection of NO2. Sensors and Actuators B: Chemical, 2021, 329, 129233.	7.8	22
20	Acetone Sensing Properties and Mechanism of Rh-Loaded WO3 Nanosheets. Frontiers in Chemistry, 2018, 6, 385.	3.6	21
21	A selective methane gas sensor based on metal oxide semiconductor equipped with an on-chip microfilter. Sensors and Actuators B: Chemical, 2022, 359, 131557.	7.8	21
22	NH3 sensing properties and mechanism of Ru-loaded WO3 nanosheets. Journal of Materials Science: Materials in Electronics, 2018, 29, 11336-11344.	2.2	19
23	Modified Impregnation Synthesis of Fe-loaded WO ₃ Nanosheets and the Gas-sensing Properties. Chemistry Letters, 2017, 46, 1353-1356.	1.3	14
24	NO2 Sensing Properties of Cr2WO6 Gas Sensor in Air and N2 Atmospheres. Frontiers in Chemistry, 2019, 7, 907.	3.6	14
25	Gas sensing investigation on anthraquinone nanowire decorated phosphorene: Enhanced stability in conjunction with superior sensitivity. Chemical Engineering Journal, 2020, 394, 124933.	12.7	14
26	A selective methane gas sensor with printed catalytic films as active filters. Sensors and Actuators B: Chemical, 2021, 347, 130603.	7.8	14
27	Amperometric hydrogen gas sensor based on Pt/C/Nafion electrode and ionic electrolyte. Sensors and Actuators B: Chemical, 2022, 367, 132137.	7.8	14
28	Development of a Low-Cost Portable Electronic Nose for Cigarette Brands Identification. Sensors, 2020, 20, 4239.	3.8	13
29	Surface Modification of Pt-loaded WO ₃ Nanosheets for Acetone Sensing Application. Chemistry Letters, 2018, 47, 167-170.	1.3	12
30	Electronic Nose Based on Temperature Modulation of MOS Sensors for Recognition of Excessive Methanol in Liquors. ACS Omega, 2021, 6, 30598-30606.	3.5	10
31	A low cost and high performance NH3 detection system for a harsh agricultural environment. Sensors and Actuators B: Chemical, 2022, 361, 131675.	7.8	9
32	NH ₃ Sensing Properties with Cr-loaded WO ₃ Nanosheets. Chemistry Letters, 2020, 49, 1421-1425.	1.3	8
33	Design and optimization of heating plate for metal oxide semiconductor gas sensor. Microsystem Technologies, 2019, 25, 3511-3519.	2.0	5
34	Investigation on acetone sensing properties and mechanism of p-type Cr2WO6 nanoparticles. Journal of Materials Science: Materials in Electronics, 2020, 31, 3899-3909.	2.2	5
35	Practical and Efficient: A Pocket-Sized Device Enabling Detection of Formaldehyde Adulteration in Vegetables. ACS Omega, 2022, 7, 160-167.	3.5	5
36	A low temperature catalytic-type combustible gas sensor based on Pt supported zeolite catalyst films. Journal of Materials Science, 2021, 56, 4666-4676.	3.7	4

#	Article	IF	CITATIONS
37	Amperometric Hydrogen Sensor Based on Solid Polymer Electrolyte and Titanium Foam Electrode. ACS Omega, 2022, 7, 24895-24902.	3.5	2
38	Surface modification of WO3 nanoparticles with Pt and Ru for VOCs sensors. Chinese Journal of Analytical Chemistry, 2022, 50, 100143.	1.7	1