Kaimin Shih

List of Publications by Citations

Source: https://exaly.com/author-pdf/5487916/kaimin-shih-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 273
papers
 9,151
citations
 53
h-index
 84
g-index

 285
ext. papers
 11,172
ext. citations
 7.9
avg, IF
 6.72
L-index

#	Paper	IF	Citations
273	Sulfate Radical-Mediated Degradation of Sulfadiazine by CuFeO2 Rhombohedral Crystal-Catalyzed Peroxymonosulfate: Synergistic Effects and Mechanisms. <i>Environmental Science & Camp; Technology</i> , 2016 , 50, 3119-27	10.3	395
272	Assessing heavy metal pollution in the surface soils of a region that had undergone three decades of intense industrialization and urbanization. <i>Environmental Science and Pollution Research</i> , 2013 , 20, 6150-9	5.1	332
271	The partition behavior of perfluorooctanesulfonate (PFOS) and perfluorooctanesulfonamide (FOSA) on microplastics. <i>Chemosphere</i> , 2015 , 119, 841-847	8.4	237
270	Is Excess PbI2 Beneficial for Perovskite Solar Cell Performance?. <i>Advanced Energy Materials</i> , 2016 , 6, 1502206	21.8	226
269	Adsorption of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) on alumina: influence of solution pH and cations. <i>Water Research</i> , 2011 , 45, 2925-30	12.5	220
268	Oxidative degradation of propachlor by ferrous and copper ion activated persulfate. <i>Science of the Total Environment</i> , 2012 , 416, 507-12	10.2	207
267	Efficient degradation of sulfamethazine with CuCo2O4 spinel nanocatalysts for peroxymonosulfate activation. <i>Chemical Engineering Journal</i> , 2015 , 280, 514-524	14.7	185
266	Development of Nano-Sulfide Sorbent for Efficient Removal of Elemental Mercury from Coal Combustion Fuel Gas. <i>Environmental Science & Environmental S</i>	10.3	176
265	Co 3 O 4 /Co nanoparticles enclosed graphitic carbon as anode material for high performance Li-ion batteries. <i>Chemical Engineering Journal</i> , 2017 , 321, 495-501	14.7	143
264	Optimization of preparation procedure of liquid warm mix additive modified asphalt rubber. <i>Journal of Cleaner Production</i> , 2017 , 141, 336-345	10.3	134
263	SCR atmosphere induced reduction of oxidized mercury over CuO-CeO2/TiO2 catalyst. <i>Environmental Science & Environmental Scien</i>	10.3	129
262	Adsorption behavior of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) on boehmite. <i>Chemosphere</i> , 2012 , 89, 1009-14	8.4	128
261	Surface-bound sulfate radical-dominated degradation of 1,4-dioxane by alumina-supported palladium (Pd/AlO) catalyzed peroxymonosulfate. <i>Water Research</i> , 2017 , 120, 12-21	12.5	108
260	Tensile performance of sustainable Strain-Hardening Cementitious Composites with hybrid PVA and recycled PET fibers. <i>Cement and Concrete Research</i> , 2018 , 107, 110-123	10.3	106
259	Li3V(MoO4)3 as a novel electrode material with good lithium storage properties and improved initial coulombic efficiency. <i>Nano Energy</i> , 2018 , 44, 272-278	17.1	104
258	Facile synthesis of highly reactive and stable Fe-doped g-CN composites for peroxymonosulfate activation: A novel nonradical oxidation process. <i>Journal of Hazardous Materials</i> , 2018 , 354, 63-71	12.8	102
257	Adsorption of phosphorus by calcium-flour biochar: Isotherm, kinetic and transformation studies. <i>Chemosphere</i> , 2018 , 195, 666-672	8.4	101

(2012-2010)

256	Hexavalent chromium removal from near natural water by copper-iron bimetallic particles. <i>Water Research</i> , 2010 , 44, 3101-8	12.5	99	
255	Metallurgy Inspired Formation of Homogeneous Al2O3 Coating Layer To Improve the Electrochemical Properties of LiNi0.8Co0.1Mn0.1O2 Cathode Material. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 10199-10205	8.3	96	
254	Accurate construction of a hierarchical nickel@obalt oxide multishell yolk@hell structure with large and ultrafast lithium storage capability. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 14996-15001	13	94	
253	Enhanced selective photocatalytic reduction of CO2 to CH4 over plasmonic Au modified g-C3N4 photocatalyst under UVII is light irradiation. <i>Applied Surface Science</i> , 2018 , 439, 552-559	6.7	93	
252	Perfluorochemicals in wastewater treatment plants and sediments in Hong Kong. <i>Environmental Pollution</i> , 2010 , 158, 1354-62	9.3	92	
251	Multiform Sulfur Adsorption Centers and Copper-Terminated Active Sites of Nano-CuS for Efficient Elemental Mercury Capture from Coal Combustion Flue Gas. <i>Langmuir</i> , 2018 , 34, 8739-8749	4	91	
250	Effect of temperature on oxidative transformation of perfluorooctanoic acid (PFOA) by persulfate activation in water. <i>Separation and Purification Technology</i> , 2012 , 91, 46-51	8.3	91	
249	Improving the electrochemical performance of lithium vanadium fluorophosphate cathode material: Focus on interfacial stability. <i>Journal of Power Sources</i> , 2016 , 329, 553-557	8.9	88	
248	Fabrication of Heterostructured g-C3N4/Ag-TiO2 Hybrid Photocatalyst with Enhanced Performance in Photocatalytic Conversion of CO2 Under Simulated Sunlight Irradiation. <i>Applied Surface Science</i> , 2017 , 402, 198-207	6.7	82	
247	Nickel stabilization efficiency of aluminate and ferrite spinels and their leaching behavior. <i>Environmental Science & Environmental &</i>	10.3	82	
246	CuOlleO2/TiO2 catalyst for simultaneous NO reduction and Hg0 oxidation at low temperatures. <i>Catalysis Science and Technology</i> , 2015 , 5, 5129-5138	5.5	81	
245	Effects of calcium and ferric ions on struvite precipitation: A new assessment based on quantitative X-ray diffraction analysis. <i>Water Research</i> , 2016 , 95, 310-8	12.5	81	
244	Recycling contaminated wood into eco-friendly particleboard using green cement and carbon dioxide curing. <i>Journal of Cleaner Production</i> , 2016 , 137, 861-870	10.3	80	
243	In situ embedment and growth of anhydrous and hydrated aluminum oxide particles on polyvinylidene fluoride (PVDF) membranes. <i>Journal of Membrane Science</i> , 2011 , 368, 134-143	9.6	78	
242	Spinel formation for stabilizing simulated nickel-laden sludge with aluminum-rich ceramic precursors. <i>Environmental Science & Environmental Science &</i>	10.3	77	
241	A MoS2 coating strategy to improve the comprehensive electrochemical performance of LiVPO4F. <i>Journal of Power Sources</i> , 2016 , 315, 294-301	8.9	77	
240	Ultrasound assisted zero valent iron corrosion for peroxymonosulfate activation for Rhodamine-B degradation. <i>Chemosphere</i> , 2019 , 228, 412-417	8.4	76	
239	Dechlorinating transformation of propachlor through nucleophilic substitution by dithionite on the surface of alumina. <i>Journal of Soils and Sediments</i> , 2012 , 12, 724-733	3.4	76	

238	Value-added recycling of construction waste wood into noise and thermal insulating cement-bonded particleboards. <i>Construction and Building Materials</i> , 2016 , 125, 316-325	6.7	74
237	Magnetic Rattle-Type Fe3O4@CuS Nanoparticles as Recyclable Sorbents for Mercury Capture from Coal Combustion Flue Gas. <i>ACS Applied Nano Materials</i> , 2018 , 1, 4726-4736	5.6	72
236	Copper-promoted circumneutral activation of H2O2 by magnetic CuFe2O4 spinel nanoparticles: Mechanism, stoichiometric efficiency, and pathway of degrading sulfanilamide. <i>Chemosphere</i> , 2016 , 154, 573-582	8.4	63
235	Matrix design for waterproof Engineered Cementitious Composites (ECCs). <i>Construction and Building Materials</i> , 2017 , 139, 438-446	6.7	62
234	Effect of Nitrogen Oxides on Elemental Mercury Removal by Nanosized Mineral Sulfide. <i>Environmental Science & Environmental Sc</i>	10.3	62
233	Rapid Selective Circumneutral Degradation of Phenolic Pollutants Using Peroxymonosulfate-Iodide Metal-Free Oxidation: Role of Iodine Atoms. <i>Environmental Science & Environmental Science & Environme</i>	3 ¹ 20 ^{.3}	61
232	Carbothermal reduction for preparing nZVI/BC to extract uranium: Insight into the iron species dependent uranium adsorption behavior. <i>Journal of Cleaner Production</i> , 2019 , 239, 117873	10.3	60
231	Synergy of CuO and CeO2 combination for mercury oxidation under low-temperature selective catalytic reduction atmosphere. <i>International Journal of Coal Geology</i> , 2017 , 170, 69-76	5.5	60
230	Degradation of contaminants by Cu-activated molecular oxygen in aqueous solutions: Evidence for cupryl species (Cu). <i>Journal of Hazardous Materials</i> , 2017 , 331, 81-87	12.8	59
229	A novel thin-film nano-templated composite membrane with in situ silver nanoparticles loading: Separation performance enhancement and implications. <i>Journal of Membrane Science</i> , 2017 , 544, 351-3	58 ⁶	58
228	Biostimulation of indigenous microbial communities for anaerobic transformation of pentachlorophenol in paddy soils of southern China. <i>Journal of Agricultural and Food Chemistry</i> , 2012 , 60, 2967-75	5.7	57
227	CO(2)-driven ocean acidification alters and weakens integrity of the calcareous tubes produced by the serpulid tubeworm, Hydroides elegans. <i>PLoS ONE</i> , 2012 , 7, e42718	3.7	56
226	Formation of copper aluminate spinel and cuprous aluminate delafossite to thermally stabilize simulated copper-laden sludge. <i>Journal of Hazardous Materials</i> , 2010 , 181, 399-404	12.8	56
225	Uranium extraction using hydroxyapatite recovered from phosphorus containing wastewater. Journal of Hazardous Materials, 2020 , 382, 120784	12.8	56
224	Mineralization behavior of fluorine in perfluorooctanesulfonate (PFOS) during thermal treatment of lime-conditioned sludge. <i>Environmental Science & Environmental & Environme</i>	10.3	54
223	Fe(II)-induced phase transformation of ferrihydrite: The inhibition effects and stabilization of divalent metal cations. <i>Chemical Geology</i> , 2016 , 444, 110-119	4.2	54
222	Promotional effect of CuO loading on the catalytic activity and SO2 resistance of MnOx/TiO2 catalyst for simultaneous NO reduction and Hg0 oxidation. <i>Fuel</i> , 2018 , 227, 79-88	7.1	53
221	Copper stabilization via spinel formation during the sintering of simulated copper-laden sludge with aluminum-rich ceramic precursors. <i>Environmental Science & Environmental </i>	10.3	53

220	A metal-free method of generating sulfate radicals through direct interaction of hydroxylamine and peroxymonosulfate: Mechanisms, kinetics, and implications. <i>Chemical Engineering Journal</i> , 2017 , 330, 906-913	14.7	50	
219	Phosphorus recovery through adsorption by layered double hydroxide nano-composites and transfer into a struvite-like fertilizer. <i>Water Research</i> , 2018 , 145, 721-730	12.5	50	
218	Binding of Mercury Species and Typical Flue Gas Components on ZnS(110). <i>Energy & amp; Fuels</i> , 2017 , 31, 5355-5362	4.1	49	
217	Degradation of 1,4-dioxane via controlled generation of radicals by pyrite-activated oxidants: Synergistic effects, role of disulfides, and activation sites. <i>Chemical Engineering Journal</i> , 2018 , 336, 416-	4267	49	
216	Copper aluminate spinel in the stabilization and detoxification of simulated copper-laden sludge. <i>Chemosphere</i> , 2010 , 80, 375-80	8.4	49	
215	Copper slag as a catalyst for mercury oxidation in coal combustion flue gas. <i>Waste Management</i> , 2018 , 74, 253-259	8.6	49	
214	Zinc stabilization efficiency of aluminate spinel structure and its leaching behavior. <i>Environmental Science & Environmental </i>	10.3	48	
213	Red mud powders as low-cost and efficient catalysts for persulfate activation: Pathways and reusability of mineralizing sulfadiazine. <i>Separation and Purification Technology</i> , 2016 , 167, 136-145	8.3	48	
212	Recycling polyethylene terephthalate wastes as short fibers in Strain-Hardening Cementitious Composites (SHCC). <i>Journal of Hazardous Materials</i> , 2018 , 357, 40-52	12.8	48	
211	Enhanced bioleaching efficiency of copper from waste printed circuit board driven by nitrogen-doped carbon nanotubes modified electrode. <i>Chemical Engineering Journal</i> , 2017 , 324, 122-129	9 ^{14.7}	47	
210	Activation of Persulfates Using Siderite as a Source of Ferrous Ions: Sulfate Radical Production, Stoichiometric Efficiency, and Implications. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 3624-36	8 ₁ 3	47	
209	Nickel aluminate spinel formation during sintering of simulated Ni-laden sludge and kaolinite. <i>Journal of the European Ceramic Society</i> , 2007 , 27, 91-99	6	47	
208	Effectiveness and Mechanisms of Defluorination of Perfluorinated Alkyl Substances by Calcium Compounds during Waste Thermal Treatment. <i>Environmental Science & Environmental </i>	- 8 6·3	46	
207	Sorption performance and mechanism of a sludge-derived char as porous carbon-based hybrid adsorbent for benzene derivatives in aqueous solution. <i>Journal of Hazardous Materials</i> , 2014 , 274, 205-1	12.8	45	
206	Enhanced phosphorus availability and heavy metal removal by chlorination during sewage sludge pyrolysis. <i>Journal of Hazardous Materials</i> , 2020 , 382, 121110	12.8	45	
205	Adsorption of perfluorinated compounds on thin-film composite polyamide membranes. <i>Journal of Applied Polymer Science</i> , 2012 , 124, 1042-1049	2.9	44	
204	Palladium-indium catalyzed reduction of N-nitrosodimethylamine: indium as a promoter metal. <i>Environmental Science & Environmental Science & Environme</i>	10.3	44	
203	Role of Sulfur Trioxide (SO) in Gas-Phase Elemental Mercury Immobilization by Mineral Sulfide. <i>Environmental Science & Description (Solution Science Comp.)</i> Technology, 2019 , 53, 3250-3257	10.3	43	

202	Facile synthesis of morphology and size-controlled Fe2O3 and Fe3O4 nano-and microstructures by hydrothermal/solvothermal process: The roles of reaction medium and urea dose. <i>Ceramics International</i> , 2016 , 42, 14793-14804	5.1	43
201	A short-range ordered-disordered transition of a NiOOH/Ni(OH)2 pair induces switchable wettability. <i>Nanoscale</i> , 2014 , 6, 15309-15	7.7	42
200	Elemental mercury oxidation over manganese oxide octahedral molecular sieve catalyst at low flue gas temperature. <i>Chemical Engineering Journal</i> , 2019 , 356, 142-150	14.7	42
199	Effect of humic acid on the sorption of perfluorooctane sulfonate (PFOS) and perfluorobutane sulfonate (PFBS) on boehmite. <i>Chemosphere</i> , 2015 , 118, 213-8	8.4	41
198	Nanosized Copper Selenide Functionalized Zeolitic Imidazolate Framework-8 (CuSe/ZIF-8) for Efficient Immobilization of Gas-Phase Elemental Mercury. <i>Advanced Functional Materials</i> , 2019 , 29, 1807	1 5 6	40
197	Copper stabilization in beneficial use of waterworks sludge and copper-laden electroplating sludge for ceramic materials. <i>Waste Management</i> , 2014 , 34, 1085-91	8.6	40
196	Accuracy and application of quantitative X-ray diffraction on the precipitation of struvite product. <i>Water Research</i> , 2016 , 90, 9-14	12.5	39
195	Detoxification and immobilization of chromite ore processing residue in spinel-based glass-ceramic. Journal of Hazardous Materials, 2017 , 321, 449-455	12.8	37
194	Enhanced activity of AgMgOTiO2 catalyst for photocatalytic conversion of CO2 and H2O into CH4. <i>International Journal of Hydrogen Energy</i> , 2016 , 41, 8479-8488	6.7	37
193	Double-Barrier mechanism for chromium immobilization: A quantitative study of crystallization and leachability. <i>Journal of Hazardous Materials</i> , 2016 , 311, 246-53	12.8	36
192	Nano-rod Ca-decorated sludge derived carbon for removal of phosphorus. <i>Environmental Pollution</i> , 2018 , 233, 698-705	9.3	36
191	Quantitative X-ray Diffraction (QXRD) analysis for revealing thermal transformations of red mud. <i>Chemosphere</i> , 2015 , 131, 171-7	8.4	35
190	Cadmium Stabilization Efficiency and Leachability by CdAl4O7 Monoclinic Structure. <i>Environmental Science & Environmental Scie</i>	10.3	35
189	Insights into the selective hydrogenation of levulinic acid to Evalerolactone using supported monoand bimetallic catalysts. <i>Journal of Molecular Catalysis A</i> , 2016 , 417, 145-152		35
188	Oxidative decomposition of perfluorooctanesulfonate in water by permanganate. <i>Separation and Purification Technology</i> , 2012 , 87, 95-100	8.3	35
187	Coexistence of enhanced Hg0 oxidation and induced Hg2+ reduction on CuO/TiO2 catalyst in the presence of NO and NH3. <i>Chemical Engineering Journal</i> , 2017 , 330, 1248-1254	14.7	35
186	Dual Roles of Nano-Sulfide in Efficient Removal of Elemental Mercury from Coal Combustion Flue Gas within a Wide Temperature Range. <i>Environmental Science & Environmental Sci</i>	10.3	35
185	Yttrium-doped iron oxide magnetic adsorbent for enhancement in arsenic removal and ease in separation after applications. <i>Journal of Colloid and Interface Science</i> , 2018 , 521, 252-260	9.3	34

(2018-2012)

184	Influence of support structure on the permeation behavior of polyetherimide-derived carbon molecular sieve composite membrane. <i>Journal of Membrane Science</i> , 2012 , 405-406, 250-260	9.6	34
183	CuO-promoted degradation of sulfamethoxazole by FeO-catalyzed peroxymonosulfate under circumneutral conditions: synergistic effect, Cu/Fe ratios, and mechanisms. <i>Environmental Technology (United Kingdom)</i> , 2018 , 39, 1-11	2.6	33
182	Degradation mechanisms of ofloxacin and cefazolin using peroxymonosulfate activated by reduced graphene oxide-CoFe2O4 composites. <i>Chemical Engineering Journal</i> , 2020 , 383, 123056	14.7	33
181	Peroxymonosulfate activation through LED-induced ZnFe2O4 for levofloxacin degradation. <i>Chemical Engineering Journal</i> , 2021 , 417, 129225	14.7	33
180	Catalytic effect of graphene in bioleaching copper from waste printed circuit boards by Acidithiobacillus ferrooxidans. <i>Hydrometallurgy</i> , 2017 , 171, 172-178	4	32
179	Adsorption and Thermal Stabilization of Pb2+ and Cu2+ by Zeolite. <i>Industrial & amp; Engineering Chemistry Research</i> , 2016 , 55, 8767-8773	3.9	32
178	Amorphous Molybdenum Selenide Nanosheet as an Efficient Trap for the Permanent Sequestration of Vapor-Phase Elemental Mercury. <i>Advanced Science</i> , 2019 , 6, 1901410	13.6	31
177	Lead glass-ceramics produced from the beneficial use of waterworks sludge. <i>Water Research</i> , 2013 , 47, 1353-60	12.5	31
176	Factors and mechanisms that influence the reactivity of trivalent copper: A novel oxidant for selective degradation of antibiotics. <i>Water Research</i> , 2019 , 149, 1-8	12.5	31
175	Extraction of metallic lead from cathode ray tube (CRT) funnel glass by thermal reduction with metallic iron. <i>Environmental Science & Environmental S</i>	10.3	30
174	Influence of cations on the partition behavior of perfluoroheptanoate (PFHpA) and perfluorohexanesulfonate (PFHxS) on wastewater sludge. <i>Chemosphere</i> , 2015 , 131, 178-83	8.4	29
173	Ferric iron enhanced chloramphenicol oxidation in pyrite (FeS2) induced Fenton-like reactions. <i>Separation and Purification Technology</i> , 2015 , 154, 60-67	8.3	29
172	Green and facile synthesis of cobalt-based metal-organic frameworks for the efficient removal of Congo red from aqueous solution. <i>Journal of Colloid and Interface Science</i> , 2020 , 578, 500-509	9.3	29
171	Selenide functionalized natural mineral sulfides as efficient sorbents for elemental mercury capture from coal combustion flue gas. <i>Chemical Engineering Journal</i> , 2020 , 398, 125611	14.7	28
170	NH3 inhibits mercury oxidation over low-temperature MnOx/TiO2 SCR catalyst. <i>Fuel Processing Technology</i> , 2018 , 176, 124-130	7.2	27
169	Solvent-free hydrothermal synthesis of gamma-aluminum oxide nanoparticles with selective adsorption of Congo red. <i>Journal of Colloid and Interface Science</i> , 2019 , 536, 180-188	9.3	27
168	Surface polarity control in ZnO films deposited by pulsed laser deposition. <i>Applied Surface Science</i> , 2019 , 483, 1129-1135	6.7	26
167	Incorporation of Cadmium and Nickel into Ferrite Spinel Solid Solution: X-ray Diffraction and X-ray Absorption Fine Structure Analyses. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	26

166	Effects of flue-gas parameters on low temperature NO reduction over a Cu-promoted CeO2IIiO2 catalyst. <i>Fuel</i> , 2015 , 159, 876-882	7.1	24
165	Hydrothermally synthesized CuxO as a catalyst for CO oxidation. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 3627-3632	13	24
164	The influence of cobalt doping on photocatalytic nano-titania: Crystal chemistry and amorphicity. Journal of Solid State Chemistry, 2007 , 180, 2905-2915	3.3	24
163	Continuous-Flow Synthesis of Supported Magnetic Iron Oxide Nanoparticles for Efficient Isoeugenol Conversion into Vanillin. <i>ChemSusChem</i> , 2018 , 11, 389-396	8.3	24
162	Copper sludge from printed circuit board production/recycling for ceramic materials: a quantitative analysis of copper transformation and immobilization. <i>Environmental Science & Environmental Scien</i>	10.3	23
161	Influence of calcium hydroxide on the fate of perfluorooctanesulfonate under thermal conditions. <i>Journal of Hazardous Materials</i> , 2011 , 192, 1067-71	12.8	23
160	Activation of peroxymonosulfate by Fe0@Fe3O4 core-shell nanowires for sulfate radical generation: Electron transfer and transformation products. <i>Separation and Purification Technology</i> , 2020 , 247, 116942	8.3	22
159	Solvent-Switching Gelation and Orange-Red Emission of Ultrasmall Copper Nanoclusters. <i>ChemPhysChem</i> , 2016 , 17, 225-31	3.2	22
158	Molybdenum Disulfide-Coated Lithium Vanadium Fluorophosphate Anode: Experiments and First-Principles Calculations. <i>ChemSusChem</i> , 2016 , 9, 2122-8	8.3	22
157	Synergistic effect of HCl and NO in elemental mercury catalytic oxidation over La2O3-TiO2 catalyst. <i>Fuel</i> , 2018 , 215, 232-238	7.1	21
156	Cave-embedded porous Mn2O3 hollow microsphere as anode material for lithium ion batteries. <i>Electrochimica Acta</i> , 2017 , 247, 795-802	6.7	21
155	Development of selenized magnetite (Fe3O4\(\mathbb{R}\)Sey) as an efficient and recyclable trap for elemental mercury sequestration from coal combustion flue gas. <i>Chemical Engineering Journal</i> , 2020 , 394, 125022	14.7	20
154	Effect of Plasma Treatment on Native Defects and Photocatalytic Activities of Zinc Oxide Tetrapods. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 22760-22767	3.8	20
153	In situ synthesis of CuxO/SnOx@CNT and CuxO/SnOx@SnOICNT nanocomposite anodes for lithium ion batteries by a simple chemical treatment process. <i>ACS Applied Materials & amp; Interfaces</i> , 2014 , 6, 13478-86	9.5	20
152	Insights into the Microwave-Assisted Mild Deconstruction of Lignin Feedstocks Using NiO-Containing ZSM-5 Zeolites. <i>ACS Sustainable Chemistry and Engineering</i> , 2016 , 4, 4305-4313	8.3	19
151	Effect of molybdenum substitution on electrochemical performance of Li[Li0.2Mn0.54Co0.13Ni0.13]O2 cathode material. <i>Ceramics International</i> , 2017 , 43, 14836-14841	5.1	19
150	Lead removal from water - dependence on the form of carbon and surface functionalization <i>RSC Advances</i> , 2018 , 8, 18355-18362	3.7	19
149	The effect of surface treatments on dental zirconia: An analysis of biaxial flexural strength, surface roughness and phase transformation. <i>Journal of Dentistry</i> , 2018 , 75, 65-73	4.8	19

148	Adsorption Behavior of Perfluorochemicals (PFCs) on Boehmite: Influence of Solution Chemistry. Procedia Environmental Sciences, 2013 , 18, 106-113		18	
147	Highly efficient and recyclable graphene oxide-magnetite composites for isatin mineralization. Journal of Alloys and Compounds, 2017 , 725, 302-309	5.7	18	
146	Phase transformation and its role in stabilizing simulated lead-laden sludge in aluminum-rich ceramics. <i>Water Research</i> , 2011 , 45, 5123-9	12.5	18	
145	Recovery of phosphorus rich krill shell biowaste for uranium immobilization: A study of sorption behavior, surface reaction, and phase transformation. <i>Environmental Pollution</i> , 2018 , 243, 630-636	9.3	18	
144	Formation of lead-aluminate ceramics: Reaction mechanisms in immobilizing the simulated lead sludge. <i>Chemosphere</i> , 2015 , 138, 156-63	8.4	17	
143	Cubic and tetragonal ferrite crystal structures for copper ion immobilization in an iron-rich ceramic matrix. <i>RSC Advances</i> , 2016 , 6, 28579-28585	3.7	17	
142	Photocatalytic hydrogen generation from water under visible light using core/shell nano-catalysts. Water Science and Technology, 2010 , 61, 2303-8	2.2	17	
141	Quantification of the lateral detachment force for bacterial cells using atomic force microscope and centrifugation. <i>Ultramicroscopy</i> , 2011 , 111, 131-9	3.1	17	
140	Fabrication of reactive flat-sheet ceramic membranes for oxidative degradation of ofloxacin by peroxymonosulfate. <i>Journal of Membrane Science</i> , 2020 , 611, 118302	9.6	16	
139	Synthesis of submicron lead oxide particles from the simulated spent lead paste for battery anodes. <i>Journal of Alloys and Compounds</i> , 2017 , 690, 101-107	5.7	16	
138	Weakening mechanisms of the serpulid tube in a high-CO2 world. <i>Environmental Science & Environmental Science & Technology</i> , 2014 , 48, 14158-67	10.3	16	
137	Phase transformation during the sintering of Falumina and the simulated Ni-laden waste sludge. <i>Ceramics International</i> , 2012 , 38, 1879-1886	5.1	16	
136	Temperature dependent effects of elevated CO2 on shell composition and mechanical properties of Hydroides elegans: insights from a multiple stressor experiment. <i>PLoS ONE</i> , 2013 , 8, e78945	3.7	16	
135	Environmental-friendly preparation of Nito layered double hydroxide (LDH) hierarchical nanoarrays for efficient removing uranium (VI). <i>Journal of Cleaner Production</i> , 2021 , 308, 127384	10.3	16	
134	Amorphous molybdenum selenide intercalated magnetite as a recyclable trap for the effective sequestration of elemental mercury. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 14955-14965	13	16	
133	Study on the pyrolysis products of two different hardwood lignins in the presence of NiO contained-zeolites. <i>Biomass and Bioenergy</i> , 2017 , 103, 29-34	5.3	15	
132	Crystal Structures of Al-Nd Codoped Zirconolite Derived from Glass Matrix and Powder Sintering. <i>Inorganic Chemistry</i> , 2015 , 54, 7353-61	5.1	15	
131	Removal of perfluoroalkyl sulfonates (PFAS) from aqueous solution using permanently confined micelle arrays (PCMAs). <i>Separation and Purification Technology</i> , 2014 , 138, 7-12	8.3	15	

130	Thermodynamics of NiAl2O4NiFe2O4 Spinel Solid Solutions. <i>Journal of the American Ceramic Society</i> , 2012 , 95, 423-430	3.8	15
129	Synthesis of FC-supported Fe through a carbothermal process for immobilizing uranium. <i>Journal of Hazardous Materials</i> , 2018 , 357, 168-174	12.8	15
128	Producing sawdust derived activated carbon by co-calcinations with limestone for enhanced Acid Orange II adsorption. <i>Journal of Cleaner Production</i> , 2017 , 168, 22-29	10.3	14
127	Removal of perfluorooctane sulfonate by a gravity-driven membrane: Filtration performance and regeneration behavior. <i>Separation and Purification Technology</i> , 2017 , 174, 136-144	8.3	14
126	Thermal detoxification of hazardous metal sludge by applied electromagnetic energy. <i>Chemosphere</i> , 2008 , 71, 1693-700	8.4	14
125	Nonradical degradation of microorganic pollutants by magnetic N-doped graphitic carbon: A complement to the unactivated peroxymonosulfate. <i>Chemical Engineering Journal</i> , 2020 , 392, 123724	14.7	14
124	Alumina polymorphs affect the metal immobilization effect when beneficially using copper-bearing industrial sludge for ceramics. <i>Chemosphere</i> , 2014 , 117, 575-81	8.4	13
123	Nano-indentation on nickel aluminate spinel and the influence of acid and alkaline attacks on the spinel surface. <i>Ceramics International</i> , 2012 , 38, 3121-3128	5.1	13
122	Metal stabilization mechanism of incorporating lead-bearing sludge in kaolinite-based ceramics. <i>Chemosphere</i> , 2012 , 86, 817-21	8.4	13
121	Prolonged toxicity characteristic leaching procedure for nickel and copper aluminates. <i>Journal of Environmental Monitoring</i> , 2011 , 13, 829-35		13
120	Mineralization of perfluorooctanesulfonate (PFOS) and perfluorodecanoate (PFDA) from aqueous solution by porous hexagonal boron nitride: adsorption followed by simultaneous thermal decomposition and regeneration. <i>RSC Advances</i> , 2016 , 6, 113773-113780	3.7	13
119	Combined Quantitative X-ray Diffraction, Scanning Electron Microscopy, and Transmission Electron Microscopy Investigations of Crystal Evolution in CaOAl2O3BiO2IIiO2IIrO2IId2O3IIa2O System. Crystal Growth and Design, 2017, 17, 1079-1087	3.5	12
118	Transformation of hazardous lead into lead ferrite ceramics: Crystal structures and their role in lead leaching. <i>Journal of Hazardous Materials</i> , 2017 , 336, 139-145	12.8	12
117	Signal-amplification and real-time fluorescence anisotropy detection of apyrase by carbon nanoparticle. <i>Materials Science and Engineering C</i> , 2014 , 38, 206-11	8.3	12
116	Sulfate radical-induced destruction of emerging contaminants using traces of cobalt ions as catalysts. <i>Chemosphere</i> , 2020 , 256, 127061	8.4	12
115	Toward an Understanding of Fundamentals Governing the Elemental Mercury Sequestration by Metal Chalcogenides. <i>Environmental Science & Environmental &</i>	10.3	12
114	Highly crystalline lithium chloride-intercalated graphitic carbon nitride hollow nanotubes for effective lead removal. <i>Environmental Science: Nano</i> , 2019 , 6, 3324-3335	7.1	12
113	Imparting water repellency in completely decomposed granite with Tung oil. <i>Journal of Cleaner Production</i> , 2019 , 230, 1316-1328	10.3	11

112	Stabilization Mechanisms and Reaction Sequences for Sintering Simulated Copper-Laden Sludge with Alumina. <i>ACS Sustainable Chemistry and Engineering</i> , 2013 , 1, 1239-1245	8.3	11
111	Graphene-oxide-wrapped ZnMnO as a high performance lithium-ion battery anode. <i>Nanotechnology</i> , 2017 , 28, 455401	3.4	11
110	Formation and leaching behavior of ferrite spinel for cadmium stabilization. <i>Chemical Engineering Science</i> , 2017 , 158, 287-293	4.4	11
109	An alumina stabilized graphene oxide wrapped SnO2 hollow sphere LIB anode with improved lithium storage. <i>RSC Advances</i> , 2015 , 5, 100783-100789	3.7	11
108	Synthesis of FeO-nanowires/NiCo 2 O 4 -nanosheets core/shell heterostructure as free-standing electrode with enhanced lithium storage properties. <i>Ceramics International</i> , 2016 , 42, 15099-15103	5.1	11
107	Effects of ionic radius on phase evolution in Ln-Al co-doped Ca1-xLnxZrTi2-xAlxO7 (Ln = La, Nd, Gd, Ho, Yb) solid solutions. <i>Ceramics International</i> , 2018 , 44, 15124-15132	5.1	11
106	Spent Coffee Grounds-Templated Magnetic Nanocatalysts for Mild Oxidations. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 17030-17038	8.3	10
105	Evaluation on the stabilization of Zn/Ni/Cu in spinel forms: Low-cost red mud as an effective precursor. <i>Environmental Pollution</i> , 2019 , 249, 144-151	9.3	10
104	Mechanisms of zinc incorporation in aluminosilicate crystalline structures and the leaching behaviour of product phases. <i>Environmental Technology (United Kingdom)</i> , 2015 , 36, 2977-86	2.6	10
103	Quantification of the Partitioning Ratio of Minor Actinide Surrogates between Zirconolite and Glass in Glass-Ceramic for Nuclear Waste Disposal. <i>Inorganic Chemistry</i> , 2017 , 56, 9913-9921	5.1	10
102	Incorporating Simulated Zinc Ash by Kaolinite- and Sludge-based Ceramics: Phase Transformation and Product Leachability. <i>Chinese Journal of Chemical Engineering</i> , 2012 , 20, 411-416	3.2	10
101	Copper catalysts prepared via microwave-heated polyol process for preferential oxidation of CO in H2-rich streams. <i>International Journal of Hydrogen Energy</i> , 2013 , 38, 100-108	6.7	10
100	Annealing-Induced Antibacterial Activity in TiO2 under Ambient Light. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 24060-24068	3.8	9
99	Secondary effluent purification towards reclaimed water production through the hybrid post-coagulation and membrane distillation technology: A preliminary test. <i>Journal of Cleaner Production</i> , 2020 , 271, 121797	10.3	9
98	Unraveling the Structure of the Poly(triazine imide)/LiCl Photocatalyst: Cooperation of Facile Syntheses and a Low-Temperature Synchrotron Approach. <i>Inorganic Chemistry</i> , 2019 , 58, 15880-15888	5.1	9
97	The effects of salinity and temperature on phase transformation of copper-laden sludge. <i>Journal of Hazardous Materials</i> , 2013 , 244-245, 501-6	12.8	9
96	Synthesis of Lead-Free Perovskite Films by Combinatorial Evaporation: Fast Processes for Screening Different Precursor Combinations. <i>Chemistry of Materials</i> , 2017 , 29, 9946-9953	9.6	9
95	Insight into flower-like greigite-based peroxydisulfate activation for effective bisphenol a abatement: Performance and electron transfer mechanism. <i>Chemical Engineering Journal</i> , 2020 , 391, 123558	14.7	9

94	Cadmium stabilization via silicates formation: Efficiency, reaction routes and leaching behavior of products. <i>Environmental Pollution</i> , 2018 , 239, 571-578	9.3	8
93	Facile synthesis, characterization, and electrochemical performance of multi-scale AgVO3 particles. <i>Journal of Alloys and Compounds</i> , 2016 , 674, 56-62	5.7	8
92	Simulation of agglomeration/defluidization inhibition process in aluminumBodium system by experimental and thermodynamic approaches. <i>Powder Technology</i> , 2012 , 224, 395-403	5.2	8
91	Evidence of compositional and ultrastructural shifts during the development of calcareous tubes in the biofouling tubeworm, Hydroides elegans. <i>Journal of Structural Biology</i> , 2015 , 189, 230-7	3.4	8
90	The Crystallization of Struvite and Its Analog (K-Struvite) From Waste Streams for Nutrient Recycling 2016 , 665-686		8
89	Accelerated phosphorus recovery from aqueous solution onto decorated sewage sludge carbon. <i>Scientific Reports</i> , 2018 , 8, 13421	4.9	8
88	Effectiveness of municipal sewage sludge (MSS) ash application on the stabilization of Pb-Zn sludge from mining activities. <i>Journal of Cleaner Production</i> , 2017 , 151, 145-151	10.3	7
87	Combined Fe2O3 and CaCO3 Additives To Enhance the Immobilization of Pb in Cathode Ray Tube Funnel Glass. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 3669-3675	8.3	7
86	Noncovalent assembly of carbon nanoparticles and aptamer for sensitive detection of ATP. <i>RSC Advances</i> , 2014 , 4, 38199-38205	3.7	7
85	Fukushima: The current situation and future plans 2013 , 744-776e		7
84	Kinetics and mechanism of propachlor reductive transformation through nucleophilic substitution by dithionite. <i>Chemosphere</i> , 2011 , 85, 1438-43	8.4	7
83	Temperature and salinity jointly drive the toxicity of zinc oxide nanoparticles: a challenge to environmental risk assessment under global climate change. <i>Environmental Science: Nano</i> , 2020 , 7, 2995	5 - 3606	7
82	Activation of peroxymonosulfate by molybdenum disulfide-mediated traces of Fe(III) for sulfadiazine degradation. <i>Chemosphere</i> , 2021 , 283, 131212	8.4	7
81	Template-free synthesis of hierarchical hollow V2O5 microspheres with highly stable lithium storage capacity. <i>RSC Advances</i> , 2017 , 7, 2480-2485	3.7	6
80	Stabilizing cadmium into aluminate and ferrite structures: Effectiveness and leaching behavior. Journal of Environmental Management, 2017 , 187, 340-346	7.9	6
79	Lead extraction from Cathode Ray Tube (CRT) funnel glass: Reaction mechanisms in thermal reduction with addition of carbon (C). <i>Waste Management</i> , 2018 , 76, 671-678	8.6	6
78	Thermally induced phase transformation of pearl powder. <i>Materials Science and Engineering C</i> , 2013 , 33, 2046-9	8.3	6
77	Density Functional Theory Study of Elemental Mercury Immobilization on CuSe(001) Surface: Reaction Pathway and Effect of Typical Flue Gas Components. <i>Industrial & Description on CuSe(001)</i> Sp. 13603-13612	3.9	6

(2020-2020)

76	Synchrotron x-ray spectroscopy investigation of the Ca1⊠LnxZrTi2⊠(Al, Fe)xO7 zirconolite ceramics (Ln⊞La, Nd, Gd, Ho, Yb). <i>Journal of the American Ceramic Society</i> , 2020 , 103, 1463-1475	3.8	6
75	Mini-Sized Carbon Nitride Nanosheets with Double Excitation- and pH-Dependent Fluorescence Behaviors for Two-Photon Cell Imaging. <i>Chemistry - an Asian Journal</i> , 2017 , 12, 835-840	4.5	5
74	Crystallization pathways in glass-ceramics by sintering cathode ray tube (CRT) glass with kaolin-based precursors. <i>Journal of the European Ceramic Society</i> , 2018 , 38, 5184-5191	6	5
73	In situ synthesis of TiO2(B) nanotube/nanoparticle composite anode materials for lithium ion batteries. <i>Nanotechnology</i> , 2015 , 26, 425403	3.4	5
72	Beneficial metal stabilization mechanisms using simulated sludge incineration ash for ceramic products. <i>Journal of Chemical Technology and Biotechnology</i> , 2014 , 89, 536-543	3.5	5
71	Enantioselective degradation and unidirectional chiral inversion of 2-phenylbutyric acid, an intermediate from linear alkylbenzene, by Xanthobacter flavus PA1. <i>Journal of Hazardous Materials</i> , 2011 , 192, 1633-40	12.8	5
70	New Barium Vanadate BaxV2O5 (x 🛈 .16) for Fast Lithium Intercalation: Lower Symmetry for Higher Flexibility and Electrochemical Durability. <i>Small Methods</i> , 2020 , 4, 1900585	12.8	5
69	Reevaluating the efficacy of moderate annealing in nuclear waste vitrification for sustainable high-level waste management. <i>Journal of Cleaner Production</i> , 2020 , 268, 122155	10.3	5
68	Advances in magnetically recyclable remediators for elemental mercury degradation in coal combustion flue gas. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 18624-18650	13	5
67	Highly efficient catalysts of phytic acid-derivative cobalt phosphide encapsulated in N, P-codoped carbon for activation of peroxymonosulfate in norfloxacin degradation. <i>Separation and Purification Technology</i> , 2021 , 264, 118367	8.3	5
66	Formation of lead ferrites for immobilizing hazardous lead into iron-rich ceramic matrix. <i>Chemosphere</i> , 2019 , 214, 239-249	8.4	5
65	Surface water treatment benefits from the presence of algae: Influence of algae on the coagulation behavior of polytitanium chloride. <i>Frontiers of Environmental Science and Engineering</i> , 2021 , 15, 1	5.8	5
64	Mechanistic insight into the generation of high-valent iron-oxo species via peroxymonosulfate activation: An experimental and density functional theory study. <i>Chemical Engineering Journal</i> , 2021 , 420, 130477	14.7	5
63	Review on the synthesis and activity of iron-based catalyst in catalytic oxidation of refractory organic pollutants in wastewater. <i>Journal of Cleaner Production</i> , 2021 , 321, 128924	10.3	5
62	Evaluation of the effectiveness of Cd stabilization by a low-temperature sintering process with kaolinite/mullite addition. <i>Waste Management</i> , 2019 , 87, 814-824	8.6	4
61	The effect of different dopants on the performance of SnO2-based dye-sensitized solar cells. <i>Physica Status Solidi (B): Basic Research</i> , 2015 , 252, 553-557	1.3	4
60	Iron oxide/graphene composites as negative-electrode materials for lithium ion batteries [] optimum particle size for stable performance. <i>RSC Advances</i> , 2015 , 5, 91466-91471	3.7	4
59	In-situ deformation modulus of rust in concrete under different levels of confinement and rates of corrosion. <i>Construction and Building Materials</i> , 2020 , 255, 119369	6.7	4

58	Surface localization of the Er-related optical active centers in Er doped zinc oxide films. <i>Journal of Applied Physics</i> , 2017 , 121, 235701	2.5	4
57	Extracting the cation distributions in NiFe2-xAlxO4 solid solutions using magnetic Compton scattering. <i>Journal of Physics Condensed Matter</i> , 2015 , 27, 456003	1.8	4
56	Spontaneous Formation of Nano-fibrillar Boehmite and the Enhancement Effect of Polyethylene Glycol. <i>Journal of the American Ceramic Society</i> , 2011 , 94, 4435-4443	3.8	4
55	Crystal structure, thermal expansion and magnetic properties of Pr2Cu0.8Ge3 compound. <i>Materials Chemistry and Physics</i> , 2011 , 130, 1336-1340	4.4	4
54	Zinc Immobilization in Simulated Aluminum-rich Waterworks Sludge Systems. <i>Procedia Environmental Sciences</i> , 2016 , 31, 691-697		4
53	Effectively immobilizing lead through a melanotekite structure using low-temperature glass-ceramic sintering. <i>Dalton Transactions</i> , 2019 , 48, 3998-4006	4.3	4
52	Reduction of oxidized mercury over NOx selective catalytic reduction catalysts: A review. <i>Chemical Engineering Journal</i> , 2021 , 421, 127745	14.7	4
51	Light irradiation inhibits mercury adsorption by mineral sulfide sorbent. <i>Fuel</i> , 2021 , 288, 119663	7.1	4
50	High-Efficiency Capture and Recovery of Anionic Perfluoroalkyl Substances from Water Using PVA/PDDA Nanofibrous Membranes with Near-Zero Energy Consumption. <i>Environmental Science and Technology Letters</i> , 2021 , 8, 350-355	11	4
49	Synergistic effects of Ln and Fe Co-Doping on phase evolution of Ca1-Ln ZrTi2-Fe O7 (Ln La, Nd, Gd, Ho, Yb) ceramics. <i>Journal of Nuclear Materials</i> , 2018 , 511, 428-437	3.3	4
48	Preparation of hydrophilic activated carbon through alkaline hydrolysis of ester for effective water-vapor adsorption. <i>Separation Science and Technology</i> , 2016 , 51, 193-201	2.5	3
47	Effects of SiNx interlayer on characterisation of amorphous diamond-like carbon films. <i>Materials Science and Technology</i> , 2015 , 31, 703-708	1.5	3
46	Pb Stabilization by a New Chemically Durable Orthophosphate Phase: Insights into the Molecular Mechanism with X-ray Structural Analysis. <i>Environmental Science & Environmental Science & Environmenta</i>	5 ^{10.3}	3
45	The adverse effects of tungsten carbide grinding on the strength of dental zirconia. <i>Dental Materials</i> , 2020 , 36, 560-569	5.7	3
44	Thermodynamic selectivity of functional agents on zeolite for sodium dodecyl sulfate sequestration. <i>Journal of Hazardous Materials</i> , 2016 , 318, 41-47	12.8	3
43	Supported palladium nanoparticles as highly efficient catalysts for radical production: Support-dependent synergistic effects. <i>Chemosphere</i> , 2018 , 207, 27-32	8.4	3
42	Highly Specific Probe for Ferric Ions in Aqueous Solution Based on 5, 6-Dicarboxy-3H-benzoimidazol-1-ium Nitrate. <i>Zeitschrift Fur Anorganische Und Allgemeine Chemie</i> , 2014 , 640, 1494-1498	1.3	3
41	The influence of TiO\$_{2}\$ nanostructure properties on the performance of TiO\$_{2}\$-based anodes in lithium ion battery applications. <i>Turkish Journal of Physics</i> , 2014 , 38, 442-449	1.6	3

40	The influences of microwave irradiation and polyol precursor pH on Cu/AC catalyst and its CO oxidation performance. <i>Journal of Nanoparticle Research</i> , 2012 , 14, 1	2.3	3
39	Immobilization of Lead in Cathode Ray Tube Funnel Glass with Beneficial Use of Red Mud for Potential Application in Ceramic Industry. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 14213-14	12 ⁸ 2ð	3
38	Stabilization of cadmium in industrial sludge@eneration of crystalline products 2019 , 503-524		2
37	Preparation and properties of a new ternary phase Mg3+xNi7NB2 (0.17ND.66) and its Cu-doping effect. <i>Journal of Solid State Chemistry</i> , 2015 , 226, 24-28	3.3	2
36	Effect of crystal size on zinc stabilization in aluminum-rich ceramic matrix. <i>Journal of Material Cycles and Waste Management</i> , 2018 , 20, 2110-2116	3.4	2
35	Recoverable impacts of ocean acidification on the tubeworm, : implication for biofouling in future coastal oceans. <i>Biofouling</i> , 2019 , 35, 945-957	3.3	2
34	Ultra-low remanence and weak magnetic agglomeration of superparamagnetic magnetite nanoparticles caused by high magnetic moment Tb3+ doping. <i>Journal of Materials Science: Materials in Electronics</i> , 2019 , 30, 20970-20978	2.1	2
33	Response to Comment on "Rapid Selective Circumneutral Degradation of Phenolic Pollutants Using Peroxymonosulfate-Iodide Metal-Free Oxidation: Role of Iodine Atoms". <i>Environmental Science & Environmental Science</i>	10.3	2
32	Beneficial use of aluminium and iron components of sludge incineration residues in ceramic materials. <i>HKIE Transactions</i> , 2014 , 21, 223-231	2.9	2
31	Favorably Adjusting the Pore Characteristics of Copper Sulfide by Template Regulation for Vapor-Phase Elemental Mercury Immobilization. <i>Journal of Materials Chemistry A</i> ,	13	2
30	Utilisation of incinerated sewage sludge ash as a matrix for cadmium stabilisation. <i>HKIE Transactions</i> , 2017 , 24, 35-41	2.9	1
29	Industrial sludge for ceramic products and its benefit for metal stabilization 2019 , 253-293		1
28	Crystal structure, thermal expansion and magnetic properties of Nd2Cu0.8Ge3 compound. <i>Journal of Physics and Chemistry of Solids</i> , 2012 , 73, 1191-1195	3.9	1
27	Formation of nickel and copper ferrites in ceramics: a potential reaction in the reuse of iron-rich sludge incineration ash. <i>Environmental Technology (United Kingdom)</i> , 2012 , 33, 2511-6	2.6	1
26	Impact of Bed Particle Size Distribution on the Distribution of Heavy Metal During Defluidization Process in Fluidized Bed Incinerator. <i>Combustion Science and Technology</i> , 2012 , 184, 811-828	1.5	1
25	Anti-Fouling Property of Alumina-Doped Polyvinylidene Fluoride (PVDF) Membranes. <i>Journal of Water and Environment Technology</i> , 2012 , 10, 241-252	1.1	1
24	Acceleration of traces of Fe3+-activated peroxymonosulfate by natural pyrite: A novel cocatalyst for improving Fenton-like processes. <i>Chemical Engineering Journal</i> , 2022 , 435, 134893	14.7	1
23	2012 Project Resource Recovery, Reuse, Recycling and Conversion (PR4C). <i>Journal of Solid Waste Technology and Management</i> , 2014 , 40, 1-9	1.6	1

22	Develop spinel structure and quantify phase transformation for nickel stabilization in electroplating sludge. <i>Waste Management</i> , 2021 , 131, 286-293	8.6	1
21	Chapter 7 Stabilization of Cadmium in Waste Incineration Residues by Aluminum/Iron-Rich Materials. <i>Advances in Industrial and Hazardous Wastes Treatment Series</i> , 2016 , 239-254		1
20	Advances in Cadmium Detoxification/Stabilization by Sintering with Ceramic Matrices. <i>Handbook of Environmental Engineering</i> , 2021 , 299-323		1
19	Activation of dissolved molecular oxygen by ascorbic acid-mediated circulation of copper(II): Applications and limitations. <i>Separation and Purification Technology</i> , 2021 , 275, 119186	8.3	1
18	Topological tuning of Two-Dimensional polytriazine imides by halide anions for selective lead removal from wastewater. <i>Separation and Purification Technology</i> , 2022 , 278, 119595	8.3	1
17	Incorporation of lead into pyromorphite: Effect of anion replacement on lead stabilization <i>Waste Management</i> , 2022 , 143, 232-241	8.6	1
16	Activation of Ozone by Peroxymonosulfate for Selective Degradation of 1,4-Dioxane: Limited Water Matrices Effects. <i>Journal of Hazardous Materials</i> , 2022 , 129223	12.8	1
15	Biotechnological Initiatives in E-waste Management: Recycling and Business Opportunities 2019 , 201-	223	O
14	Enhanced cross-flow filtration with flat-sheet ceramic membranes by titanium-based coagulation for membrane fouling control. <i>Frontiers of Environmental Science and Engineering</i> , 2022 , 16, 1	5.8	0
13	Facile pathway towards crystallinity adjustment and performance enhancement of copper selenide for vapor-phase elemental mercury sequestration. <i>Chemical Engineering Journal</i> , 2022 , 430, 132811	14.7	O
12	Phosphorus and humic acid extraction from fermentation liquor of ferric phosphate sludge via layered double hydroxides: Efficiency and interaction mechanism. <i>Journal of Cleaner Production</i> , 2021 , 319, 128664	10.3	0
11	Uranium(IV) incorporation into inverse spinel magnetite ((hbox {FeFe}_{2}hbox {O}_{4})): A charge-balanced substitution case analysis 2019 , 93, 1		
10	Carbonization of sewage sludge as an adsorbent for organic pollutants 2019 , 475-501		
9	Treatment and Use of Ashes from Solid Waste Processing 2016 , 549-576		
8	Encapsulated perovskite based photovoltaics devices with high stability. MRS Advances, 2016, 1, 3191-	-319 8	
7	First Principles Study of Uranium Solubility in Gd2Zr2O7 Pyrochlore. <i>Chinese Journal of Chemical Physics</i> , 2015 , 28, 733-738	0.9	
6	Analysis and Fate of Emerging Pollutants during Water Treatment. <i>Journal of Analytical Methods in Chemistry</i> , 2013 , 2013, 256956	2	
5	Quantitative X-Ray Diffraction Technique for Waste Beneficial Use Opportunities. <i>Lecture Notes in Civil Engineering</i> , 2019 , 43-50	0.3	

LIST OF PUBLICATIONS

- Strong synergy in the activation of peroxymonosulfate with Cu-Fe spinel/EAl2O3 composites for atrazine degradation. *HKIE Transactions*, **2019**, 26, 55-62
- 2.9
- 3 Stabilization of Cadmium in Waste Incineration Residues by Aluminum/Iron-Rich Materials 2017, 239-254
- Thermal Behavior of Red Mud and Its Beneficial Use in Glass-Ceramic Production **2016**, 525-542
- Higher valency ion substitution causing different fluorite-derived structures in CaZr1-xNdxTi2-xNbxO7 (0.05 lk ll) solid solution. *Ceramics International*, **2021**, 47, 2694-2704

5.1