
Daniel Buchholz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5487718/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A cost and resource analysis of sodium-ion batteries. Nature Reviews Materials, 2018, 3, .	23.3	1,463
2	Hard carbons for sodium-ion batteries: Structure, analysis, sustainability, and electrochemistry. Materials Today, 2019, 23, 87-104.	8.3	537
3	Alternative binders for sustainable electrochemical energy storage – the transition to aqueous electrode processing and bio-derived polymers. Energy and Environmental Science, 2018, 11, 3096-3127.	15.6	379
4	Non-Aqueous K-Ion Battery Based on Layered K _{0.3} MnO ₂ and Hard Carbon/Carbon Black. Journal of the Electrochemical Society, 2016, 163, A1295-A1299.	1.3	349
5	Anatase TiO2 nanoparticles for high power sodium-ion anodes. Journal of Power Sources, 2014, 251, 379-385.	4.0	297
6	Unfolding the Mechanism of Sodium Insertion in Anatase TiO ₂ Nanoparticles. Advanced Energy Materials, 2015, 5, 1401142.	10.2	293
7	Life cycle assessment of sodium-ion batteries. Energy and Environmental Science, 2016, 9, 1744-1751.	15.6	224
8	Extraordinary Performance of Carbonâ€Coated Anatase TiO ₂ as Sodiumâ€lon Anode. Advanced Energy Materials, 2016, 6, 1501489.	10.2	205
9	High Performance Na _{0.5} [Ni _{0.23} Fe _{0.13} Mn _{0.63}]O ₂ Cathode for Sodiumâ€lon Batteries. Advanced Energy Materials, 2014, 4, 1400083.	10.2	204
10	Appleâ€Biowasteâ€Derived Hard Carbon as a Powerful Anode Material for Naâ€Ion Batteries. ChemElectroChem, 2016, 3, 292-298.	1.7	201
11	Toward Na-ion Batteries—Synthesis and Characterization of a Novel High Capacity Na Ion Intercalation Material. Chemistry of Materials, 2013, 25, 142-148.	3.2	192
12	A Comparative Study of Layered Transition Metal Oxide Cathodes for Application in Sodium-Ion Battery. ACS Applied Materials & Interfaces, 2015, 7, 5206-5212.	4.0	162
13	Water sensitivity of layered P2/P3-Na _x Ni _{0.22} Co _{0.11} Mn _{0.66} O ₂ cathode material. Journal of Materials Chemistry A, 2014, 2, 13415-13421.	5.2	159
14	Layered Naâ€lon Cathodes with Outstanding Performance Resulting from the Synergetic Effect of Mixed P―and Oâ€Type Phases. Advanced Energy Materials, 2016, 6, 1501555.	10.2	156
15	A sodium-ion battery exploiting layered oxide cathode, graphite anode and glyme-based electrolyte. Journal of Power Sources, 2016, 310, 26-31.	4.0	144
16	Unexpected performance of layered sodium-ion cathode material inÂionic liquid-based electrolyte. Journal of Power Sources, 2014, 247, 377-383.	4.0	125
17	Pectin, Hemicellulose, or Lignin? Impact of the Biowaste Source on the Performance of Hard Carbons for Sodiumâ€Ion Batteries. ChemSusChem, 2017, 10, 2668-2676.	3.6	125
18	Nanocrystalline TiO ₂ (B) as Anode Material for Sodium-Ion Batteries. Journal of the Electrochemical Society, 2015, 162, A3052-A3058.	1.3	108

DANIEL BUCHHOLZ

#	Article	IF	CITATIONS
19	Mg-doping for improved long-term cyclability of layered Na-ion cathode materials – The example of P2-type NaxMg0.11Mn0.89O2. Journal of Power Sources, 2015, 282, 581-585.	4.0	108
20	Non-aqueous potassium-ion batteries: a review. Current Opinion in Electrochemistry, 2018, 9, 41-48.	2.5	108
21	P2-type layered Na0.45Ni0.22Co0.11Mn0.66O2 as intercalation host material for lithium and sodium batteries. Electrochimica Acta, 2013, 110, 208-213.	2.6	87
22	Carbon coated lithium sulfide particles for lithium battery cathodes. Journal of Power Sources, 2013, 235, 220-225.	4.0	84
23	Embedding tin nanoparticles in micron-sized disordered carbon for lithium- and sodium-ion anodes. Electrochimica Acta, 2014, 128, 163-171.	2.6	84
24	Towards Highâ€Performance Aqueous Sodiumâ€Ion Batteries: Stabilizing the Solid/Liquid Interface for NASICONâ€Type Na ₂ VTi(PO ₄) ₃ using Concentrated Electrolytes. ChemSusChem, 2018, 11, 1382-1389.	3.6	75
25	Aqueous Processing of Na _{0.44} MnO ₂ Cathode Material for the Development of Greener Na-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 34891-34899.	4.0	60
26	Effects of nitrogen doping on the structure and performance of carbon coated Na3V2(PO4)3 cathodes for sodium-ion batteries. Carbon, 2017, 124, 334-341.	5.4	55
27	Xâ€ray Absorption Spectroscopy Investigation of Lithiumâ€Rich, Cobaltâ€Poor Layeredâ€Oxide Cathode Material with High Capacity. ChemElectroChem, 2015, 2, 85-97.	1.7	54
28	Exploring the Ni redox activity in polyanionic compounds as conceivable high potential cathodes for Na rechargeable batteries. NPG Asia Materials, 2017, 9, e370-e370.	3.8	52
29	Exploring the Low Voltage Behavior of V ₂ O ₅ Aerogel as Intercalation Host for Sodium Ion Battery. Journal of the Electrochemical Society, 2015, 162, A2723-A2728.	1.3	51
30	Non-aqueous semi-solid flow battery based on Na-ion chemistry. P2-type Na _x Ni _{0.22} Co _{0.11} Mn _{0.66} O ₂ –NaTi ₂ Chemical Communications, 2015, 51, 7298-7301.	sub2x2(PO<:	sub94
31	Impact of the Acid Treatment on Lignocellulosic Biomass Hard Carbon for Sodiumâ€lon Battery Anodes. ChemSusChem, 2018, 11, 3276-3285.	3.6	49
32	Influence of Salt Concentration on the Properties of Sodiumâ€Based Electrolytes. Small Methods, 2019, 3, 1800208.	4.6	36
33	Combining ionic liquid-based electrolytes and nanostructured anatase TiO2 anodes for intrinsically safer sodium-ion batteries. Electrochimica Acta, 2016, 203, 109-116.	2.6	32
34	Excellent Cycling Stability and Superior Rate Capability of Na ₃ V ₂ (PO ₄) ₃ Cathodes Enabled by Nitrogenâ€Doped Carbon Interpenetration for Sodiumâ€Ion Batteries. ChemElectroChem, 2017, 4, 1256-1263.	1.7	32
35	Addressing the energy sustainability of biowaste-derived hard carbon materials for battery electrodes. Green Chemistry, 2018, 20, 1527-1537.	4.6	32
36	Beneficial effect of boron in layered sodium-ion cathode materials–ÂThe example of Na 2/3 B 0.11 Mn 0.89 O 2. Journal of Power Sources, 2017, 364, 33-40.	4.0	28

DANIEL BUCHHOLZ

#	Article	IF	CITATIONS
37	Research Update: Hard carbon with closed pores from pectin-free apple pomace waste for Na-ion batteries. APL Materials, 2018, 6, 047501.	2.2	26
38	High-Efficiency Sodium-Ion Battery Based on NASICON Electrodes with High Power and Long Lifespan. ACS Applied Energy Materials, 2018, 1, 6425-6432.	2.5	25
39	Development and Characterization of Highâ€Performance Sodiumâ€Ion Cells based on Layered Oxide and Hard Carbon. ChemElectroChem, 2016, 3, 1124-1132.	1.7	23
40	Synthesis, Structure, and Sodium Mobility of Sodium Vanadium Nitridophosphate: A Zero-Strain and Safe High Voltage Cathode Material for Sodium-Ion Batteries. Energies, 2017, 10, 889.	1.6	22
41	In Situ Investigation of Layered Oxides with Mixed Structures for Sodiumâ€Ion Batteries. Small Methods, 2019, 3, 1900239.	4.6	20
42	Study of the Na Storage Mechanism in Silicon Oxycarbide—Evidence for Reversible Silicon Redox Activity. Small Methods, 2019, 3, 1800177.	4.6	19
43	High-Performance Na0.44MnO2 Slabs for Sodium-Ion Batteries Obtained through Urea-Based Solution Combustion Synthesis. Batteries, 2018, 4, 8.	2.1	13
44	Structural Investigation of Quaternary Layered Oxides upon Na-Ion Deinsertion. Inorganic Chemistry, 2020, 59, 7408-7414.	1.9	9
45	Monitoring the Sodiation Mechanism of Anatase TiO ₂ Nanoparticle-Based Electrodes for Sodium-Ion Batteries by <i>Operando</i> XANES Measurements. ACS Applied Energy Materials, 2021, 4, 164-175.	2.5	9
46	Development and Characterization of Highâ€Performance Sodiumâ€Ion Cells based on Layered Oxide and Hard Carbon. ChemElectroChem, 2016, 3, 1030-1030.	1.7	3
47	Local structure modification in lithium rich layered Li-Mn-O cathode material. Journal of Physics: Conference Series, 2016, 712, 012130.	0.3	2