Neena Mitter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/548769/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Comprehensive High-Quality DNA and RNA Extraction Protocol for a Range of Cultivars and Tissue Types of the Woody Crop Avocado. Plants, 2022, 11, 242.	1.6	9
2	Effects of Elevated Temperature on the Susceptibility of Capsicum Plants to Capsicum Chlorosis Virus Infection. Pathogens, 2022, 11, 200.	1.2	8
3	Temporal expression of defence and susceptibility genes and tospovirus accumulation in capsicum chlorosis virus-infected capsicum. Archives of Virology, 2022, 167, 1061-1074.	0.9	0
4	Foliar application of clay-delivered RNA interference for whitefly control. Nature Plants, 2022, 8, 535-548.	4.7	65
5	RNAi as a Foliar Spray: Efficiency and Challenges to Field Applications. International Journal of Molecular Sciences, 2022, 23, 6639.	1.8	32
6	Tospoviruses Induce Small Interfering RNAs Targeting Viral Sequences and Endogenous Transcripts in Solanaceous Plants. Pathogens, 2022, 11, 745.	1.2	4
7	First report on cryopreservation of mature shoot tips of two avocado (Persea americana Mill.) rootstocks. Plant Cell, Tissue and Organ Culture, 2021, 144, 103-113.	1.2	7
8	Current scenario of <scp>RNAi</scp> â€based hemipteran control. Pest Management Science, 2021, 77, 2188-2196.	1.7	39
9	Avocado Transcriptomic Resources. , 2021, , 544-557.		1
10	Synergistic Effect of Two Nanotechnologies Enhances the Protective Capacity of the Theileria parva Sporozoite p67C Antigen in Cattle. Journal of Immunology, 2021, 206, 686-699.	0.4	10
11	Resilience achieved via multiple compensating subsystems: The immediate impacts of COVID-19 control measures on the agri-food systems of Australia and New Zealand. Agricultural Systems, 2021, 187, 103025.	3.2	40
12	Current Status and Potential of RNA Interference for the Management of Tomato Spotted Wilt Virus and Thrips Vectors. Pathogens, 2021, 10, 320.	1.2	16
13	Cryopreservation of Woody Crops: The Avocado Case. Plants, 2021, 10, 934.	1.6	14
14	Message in a Bubble: Shuttling Small RNAs and Proteins Between Cells and Interacting Organisms Using Extracellular Vesicles. Annual Review of Plant Biology, 2021, 72, 497-524.	8.6	85
15	Sheet-like clay nanoparticles deliver RNA into developing pollen to efficiently silence a target gene. Plant Physiology, 2021, 187, 886-899.	2.3	32
16	Ecoâ€friendly biomoleculeâ€nanomaterial hybrids as nextâ€generation agrochemicals for topical delivery. EcoMat, 2021, 3, e12132.	6.8	16
17	miRNA communication on another level. Nature Plants, 2021, 7, 1328-1329.	4.7	5
18	Carotenoid Profiling of Orange-Coloured Capsicums: In Search of High-Zeaxanthin Varieties for Eye Health. Proceedings (mdpi), 2021, 70, 84.	0.2	1

#	Article	IF	CITATIONS
19	Investigating New Methods to Increase Adventitious Root Formation. Proceedings (mdpi), 2020, 36, .	0.2	0
20	RNAi-Based Functional Genomics in Hemiptera. Insects, 2020, 11, 557.	1.0	25
21	Can-Seq: a PCR and DNA sequencing strategy for identifying new alleles of known and candidate genes. Plant Methods, 2020, 16, 16.	1.9	5
22	A method to increase regrowth of vitrified shoot tips of avocado (Persea americana Mill.): First critical step in developing a cryopreservation protocol. Scientia Horticulturae, 2020, 266, 109305.	1.7	8
23	A Perspective on RNAi-Based Biopesticides. Frontiers in Plant Science, 2020, 11, 51.	1.7	148
24	The Tomato spotted wilt virus (TSWV) Genome is Differentially Targeted in TSWV-Infected Tomato (Solanum lycopersicum) with or without Sw-5 Gene. Viruses, 2020, 12, 363.	1.5	9
25	Characterization of the Biodistribution of a Silica Vesicle Nanovaccine Carrying a Rhipicephalus (Boophilus) microplus Protective Antigen With in vivo Live Animal Imaging. Frontiers in Bioengineering and Biotechnology, 2020, 8, 606652.	2.0	6
26	Small RNA profiling of Cavendish banana roots inoculated with Fusarium oxysporum f. sp. cubense race 1 and tropical race 4. Phytopathology Research, 2019, 1, .	0.9	10
27	Scion control of miRNA abundance and tree maturity in grafted avocado. BMC Plant Biology, 2019, 19, 382.	1.6	20
28	Juvenility and Vegetative Phase Transition in Tropical/Subtropical Tree Crops. Frontiers in Plant Science, 2019, 10, 729.	1.7	38
29	How nanocarriers delivering cargos in plants can change the GMO landscape. Nature Nanotechnology, 2019, 14, 512-514.	15.6	56
30	Moving policy and regulation forward for nanotechnology applications in agriculture. Nature Nanotechnology, 2019, 14, 508-510.	15.6	72
31	Exogenous Application of RNAi-Inducing Double-Stranded RNA Inhibits Aphid-Mediated Transmission of a Plant Virus. Frontiers in Plant Science, 2019, 10, 265.	1.7	134
32	The avocado genome informs deep angiosperm phylogeny, highlights introgressive hybridization, and reveals pathogen-influenced gene space adaptation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17081-17089.	3.3	134
33	RNAi-Mediated Management of Whitefly Bemisia tabaci by Oral Delivery of Double-stranded RNAs. Proceedings (mdpi), 2019, 36, .	0.2	0
34	Molecular characterization and analysis of conserved potyviral motifs in bean common mosaic virus (BCMV) for RNAi-mediated protection. Archives of Virology, 2019, 164, 181-194.	0.9	27
35	SCRAM: a pipeline for fast index-free small RNA read alignment and visualization. Bioinformatics, 2018, 34, 2670-2672.	1.8	11
36	Pristine mesoporous carbon hollow spheres as safe adjuvants induce excellent Th2-biased immune response. Nano Research, 2018, 11, 370-382.	5.8	14

#	Article	IF	CITATIONS
37	Nanotechnology for Plant Disease Management. Agronomy, 2018, 8, 285.	1.3	256
38	Detection and profiling of circular RNAs in uninfected and maize Iranian mosaic virus-infected maize. Plant Science, 2018, 274, 402-409.	1.7	42
39	Avocado (Persea americana Mill.). Forestry Sciences, 2018, , 305-328.	0.4	5
40	Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nature Plants, 2017, 3, 16207.	4.7	641
41	Transcriptome-wide identification of host genes targeted by tomato spotted wilt virus-derived small interfering RNAs. Virus Research, 2017, 238, 13-23.	1.1	38
42	A partially purified outer membrane protein VirB9-1 for low-cost nanovaccines against Anaplasma marginale. Vaccine, 2017, 35, 77-83.	1.7	3
43	A Genetic Screen for Impaired Systemic RNAi Highlights the Crucial Role of DICER-LIKE 2. Plant Physiology, 2017, 175, 1424-1437.	2.3	72
44	Induction of virus resistance by exogenous application of double-stranded RNA. Current Opinion in Virology, 2017, 26, 49-55.	2.6	112
45	The effects of potato virus Y-derived virus small interfering RNAs of three biologically distinct strains on potato (Solanum tuberosum) transcriptome. Virology Journal, 2017, 14, 129.	1.4	15
46	Micropropagation of Avocado (<i>Persea Americana</i> Mill.). American Journal of Plant Sciences, 2017, 08, 2898-2921.	0.3	16
47	Nanoparticle-Based Delivery of Anaplasma marginale Membrane Proteins; VirB9-1 and VirB10 Produced in the Pichia pastoris Expression System. Nanomaterials, 2016, 6, 201.	1.9	6
48	Immunogenicity of Outer Membrane Proteins VirB9-1 and VirB9-2, a Novel Nanovaccine against Anaplasma marginale. PLoS ONE, 2016, 11, e0154295.	1.1	19
49	The Tomato Spotted Wilt Virus Genome Is Processed Differentially in its Plant Host Arachis hypogaea and its Thrips Vector Frankliniella fusca. Frontiers in Plant Science, 2016, 7, 1349.	1.7	31
50	Engineering Iron Oxide Hollow Nanospheres to Enhance Antimicrobial Property: Understanding the Cytotoxic Origin in Organic Rich Environment. Advanced Functional Materials, 2016, 26, 5408-5418.	7.8	46
51	Cryopreservation of avocado (<i>Persea americana</i> Mill.) using somatic embryos. Acta Horticulturae, 2016, , 265-270.	0.1	3
52	Etiolation-mediated regulation of adventitious rooting in avocado. Acta Horticulturae, 2016, , 35-40.	0.1	0
53	Acceptance of disease-resistant GM rootstocks for non-GM fruit. Acta Horticulturae, 2016, , 91-96.	0.1	3
54	Silica Nanopollens Enhance Adhesion for Long-Term Bacterial Inhibition. Journal of the American Chemical Society, 2016, 138, 6455-6462.	6.6	219

#	Article	IF	CITATIONS
55	Hollow mesoporous carbon nanocarriers for vancomycin delivery: understanding the structure–release relationship for prolonged antibacterial performance. Journal of Materials Chemistry B, 2016, 4, 7014-7021.	2.9	30
56	Hollow Nanospheres: Engineering Iron Oxide Hollow Nanospheres to Enhance Antimicrobial Property: Understanding the Cytotoxic Origin in Organic Rich Environment (Adv. Funct. Mater. 30/2016). Advanced Functional Materials, 2016, 26, 5579-5579.	7.8	0
57	Cryopreservation of somatic embryos for avocado germplasm conservation. Scientia Horticulturae, 2016, 211, 328-335.	1.7	10
58	Nanotechnology promotes the R&D of new-generation micronutrient foliar fertilizers. RSC Advances, 2016, 6, 69465-69478.	1.7	23
59	Evaluation and identification of candidate genes for artificial microRNA-mediated resistance to to tomato spotted wilt virus. Virus Research, 2016, 211, 151-158.	1.1	39
60	Diet-delivered RNAi in Helicoverpa armigera – Progresses and challenges. Journal of Insect Physiology, 2016, 85, 86-93.	0.9	43
61	Bean Common Mosaic Virus and Bean Common Mosaic Necrosis Virus. Advances in Virus Research, 2015, 93, 1-46.	0.9	82
62	Genomic deletions and mutations resulting in the loss of eight genes reduce the in vivo replication capacity of Meleagrid herpesvirus 1. Virus Genes, 2015, 51, 85-95.	0.7	8
63	Shaping Nanoparticles with Hydrophilic Compositions and Hydrophobic Properties as Nanocarriers for Antibiotic Delivery. ACS Central Science, 2015, 1, 328-334.	5.3	65
64	Immunisation of Sheep with Bovine Viral Diarrhoea Virus, E2 Protein Using a Freeze-Dried Hollow Silica Mesoporous Nanoparticle Formulation. PLoS ONE, 2015, 10, e0141870.	1.1	12
65	Silica Vesicle Nanovaccine Formulations Stimulate Long-Term Immune Responses to the Bovine Viral Diarrhoea Virus E2 Protein. PLoS ONE, 2015, 10, e0143507.	1.1	16
66	Protein Therapy: Synthesis of Silica Vesicles with Controlled Entrance Size for High Loading, Sustained Release, and Cellular Delivery of Therapeutical Proteins (Small 24/2014). Small, 2014, 10, 4986-4986.	5.2	28
67	Synthesis of Silica Vesicles with Controlled Entrance Size for High Loading, Sustained Release, and Cellular Delivery of Therapeutical Proteins. Small, 2014, 10, 5068-5076.	5.2	45
68	Comparative analysis of virus-specific small RNA profiles of three biologically distinct strains of Potato virus Y in infected potato (Solanum tuberosum) cv. Russet Burbank. Virus Research, 2014, 191, 153-160.	1.1	23
69	Mutational analysis of two highly conserved motifs in the silencing suppressor encoded by tomato spotted wilt virus (genus Tospovirus, family Bunyaviridae). Archives of Virology, 2014, 159, 1499-1504.	0.9	28
70	Double stranded RNA expression and its topical application for non-transgenic resistance to plant viruses. Journal of Plant Biochemistry and Biotechnology, 2014, 23, 231-237.	0.9	30
71	Freeze-drying of ovalbumin loaded mesoporous silica nanoparticle vaccine formulation increases antigen stability under ambient conditions. International Journal of Pharmaceutics, 2014, 465, 325-332.	2.6	22
72	MicroRNAs as regulators of adventitious root development. Journal of Plant Biochemistry and Biotechnology, 2014, 23, 339-347.	0.9	21

#	Article	IF	CITATIONS
73	Enhancing somatic embryogenesis in avocado (Persea americana Mill.) using a two-step culture system and including glutamine in the culture medium. Scientia Horticulturae, 2014, 165, 44-50.	1.7	16
74	Nanoparticle vaccines. Vaccine, 2014, 32, 327-337.	1.7	737
75	In vivo delivery of bovine viral diahorrea virus, E2 protein using hollow mesoporous silica nanoparticles. Nanoscale, 2014, 6, 6617-6626.	2.8	53
76	Synthesis of SBA-15 rods with small sizes for enhanced cellular uptake. Journal of Materials Chemistry B, 2014, 2, 4929-4934.	2.9	23
77	Silica vesicles as nanocarriers and adjuvants for generating both antibody and T-cell mediated immune resposes to Bovine Viral Diarrhoea Virus E2 protein. Biomaterials, 2014, 35, 9972-9983.	5.7	37
78	Mesoporous Silica Nanoparticles Act as a Selfâ€Adjuvant for Ovalbumin Model Antigen in Mice. Small, 2013, 9, 3138-3146.	5.2	128
79	Mesoporous silica nanoparticles as antigen carriers and adjuvants for vaccine delivery. Nanoscale, 2013, 5, 5167.	2.8	206
80	The Meleagrid herpesvirus 1 Genome Is Partially Resistant to Transposition. Avian Diseases, 2013, 57, 380-386.	0.4	2
81	Differential Expression of Tomato Spotted Wilt Virus-Derived Viral Small RNAs in Infected Commercial and Experimental Host Plants. PLoS ONE, 2013, 8, e76276.	1.1	66
82	Use of Hairpin RNA Constructs for Engineering Plant Virus Resistance. Methods in Molecular Biology, 2012, 894, 191-208.	0.4	12
83	Complementation between Two Tospoviruses Facilitates the Systemic Movement of a Plant Virus Silencing Suppressor in an Otherwise Restrictive Host. PLoS ONE, 2012, 7, e44803.	1.1	20
84	Freeze-Drying of Protein-Loaded Nanoparticles for Vaccine Delivery. Drug Delivery Letters, 2012, 2, 83-91.	0.2	1
85	Freeze-Drying of Protein-Loaded Nanoparticles for Vaccine Delivery. Drug Delivery Letters, 2012, 2, 83-91.	0.2	4
86	Endotoxin-free purification for the isolation of Bovine Viral Diarrhoea Virus E2 protein from insoluble inclusion body aggregates. Microbial Cell Factories, 2011, 10, 57.	1.9	24
87	Characterization of microRNAs encoded by the bovine herpesvirus 1 genome. Journal of General Virology, 2010, 91, 32-41.	1.3	44
88	Repertoire of Bovine miRNA and miRNA-Like Small Regulatory RNAs Expressed upon Viral Infection. PLoS ONE, 2009, 4, e6349.	1.1	91
89	Nuclear gene silencing directs reception of long-distance mRNA silencing in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14741-14746.	3.3	219
90	Fate of hairpin transcript components during RNA silencing and its suppression in transgenic virus-resistant tobacco. Journal of Biotechnology, 2006, 126, 115-122.	1.9	3

#	Article	IF	CITATIONS
91	Transgenic gene silencing strategies for virus control. Australasian Plant Pathology, 2006, 35, 605.	0.5	20
92	Host range, symptom expression and RNA 3 sequence analyses of six Australian strains ofCucumber mosaic virus. Australasian Plant Pathology, 2004, 33, 505.	0.5	20
93	Peanut Stripe Potyvirus Resistance in Peanut (Arachis Hypogaea L.) Plants Carrying Viral Coat Protein Gene Sequences. Transgenic Research, 2004, 13, 59-67.	1.3	40
94	Cucumber mosaic virus Infection Transiently Breaks dsRNA-Induced Transgenic Immunity to Potato virus Y in Tobacco. Molecular Plant-Microbe Interactions, 2003, 16, 936-944.	1.4	39
95	Constitutive expression of a phenylalanine ammonia-lyase gene from Stylosanthes humilis in transgenic tobacco leads to enhanced disease resistance but impaired plant growth. Physiological and Molecular Plant Pathology, 2002, 60, 275-282.	1.3	18
96	Constitutive expression of a phenylalanine ammonia-lyase gene from Stylosanthes humilis in transgenic tobacco leads to enhanced disease resistance but impaired plant growth. Physiological and Molecular Plant Pathology, 2002, 60, 275-282.	1.3	35
97	Characterization of gibberellin producing strains of Fusarium moniliforme based on DNA polymorphism. Mycopathologia, 2002, 153, 187-193.	1.3	32
98	Suppression of gene silencing: a threat to virus-resistant transgenic plants?. Trends in Plant Science, 2001, 6, 246-247.	4.3	26
99	Differentiation of Isolates of Neovossia indica by RAPD-PCR and Clustering Based on Teliospore Morphology. Acta Phytopathologica Et Entomologica Hungarica, 2001, 36, 223-236.	0.1	1
100	Systemic induction of an Arabidopsis plant defensin gene promoter by tobacco mosaic virus and jasmonic acid in transgenic tobacco. Plant Science, 1998, 136, 169-180.	1.7	22
101	Studies on resistance to dichlofluanid and other fungicides in Botrytis cinerea. Plant Pathology, 1991, 40, 554-560.	1.2	17
102	Inheritance of resistance to Botrytis cinerea Pers. in Cicer arietinum L Euphytica, 1989, 44, 61-63.	0.6	16
103	Improvements in the sequencing and assembly of plant genomes. GigaByte, 0, 2021, 1-10.	0.0	15