## Chang Du

## List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5487320/chang-du-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

2,782 28 83 50 h-index g-index citations papers 86 6.2 3,059 4.95 avg, IF L-index ext. citations ext. papers

| #  | Paper                                                                                                                                                                                                                                                          | IF               | Citations |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------|
| 83 | Bioactive glass nanoparticles inhibit osteoclast differentiation and osteoporotic bone loss by activating lncRNA NRON expression in the extracellular vesicles derived from bone marrow mesenchymal stem cells <i>Biomaterials</i> , <b>2022</b> , 283, 121438 | 15.6             | 2         |
| 82 | The mechanism of Megalobrama amblycephala muscle injury repair based on RNA-seq <i>Gene</i> , <b>2022</b> , 827, 146455                                                                                                                                        | 3.8              |           |
| 81 | Current Strategies for Real-Time Enzyme Activation. <i>Biomolecules</i> , <b>2022</b> , 12, 599                                                                                                                                                                | 5.9              |           |
| 80 | Biomimetic three-layered membranes comprising (poly)-Etaprolactone, collagen and mineralized collagen for guided bone regeneration. <i>International Journal of Energy Production and Management</i> , <b>2021</b> , 8, rbab065                                | 5.3              | 4         |
| 79 | Antimicrobial Peptides-Loaded Hydroxyapatite Microsphere With Different Hierarchical Structures for Enhanced Drug Loading, Sustained Release and Antibacterial Activity. <i>Frontiers in Chemistry</i> , <b>2021</b> , 9, 747665                               | 5                | 1         |
| 78 | Bifunctional scaffolds of hydroxyapatite/poly(dopamine)/carboxymethyl chitosan with osteogenesis and anti-osteosarcoma effect. <i>Biomaterials Science</i> , <b>2021</b> , 9, 3319-3333                                                                        | 7.4              | 8         |
| 77 | Enhanced osteogenesis of titanium with nano-Mg(OH) film and a mechanism study via whole genome expression analysis. <i>Bioactive Materials</i> , <b>2021</b> , 6, 2729-2741                                                                                    | 16.7             | 6         |
| 76 | Mechanistic insights into the adsorption and bioactivity of fibronectin on surfaces with varying chemistries by a combination of experimental strategies and molecular simulations. <i>Bioactive Materials</i> , <b>2021</b> , 6, 3125-3135                    | 16.7             | 5         |
| 75 | Biodegradable 3D printed HA/CMCS/PDA scaffold for repairing lacunar bone defect. <i>Materials Science and Engineering C</i> , <b>2020</b> , 116, 111148                                                                                                        | 8.3              | 13        |
| 74 | Tailorable hierarchical structures of biomimetic hydroxyapatite micro/nano particles promoting endocytosis and osteogenic differentiation of stem cells. <i>Biomaterials Science</i> , <b>2020</b> , 8, 3286-3300                                              | 7.4              | 19        |
| 73 | Detection of Circulating Tumor Cells by Fluorescence Microspheres-Mediated Amplification. <i>Analytical Chemistry</i> , <b>2020</b> , 92, 6968-6976                                                                                                            | 7.8              | 11        |
| 72 | Insight into vitronectin structural evolution on material surface chemistries: The mediation for cell adhesion. <i>Bioactive Materials</i> , <b>2020</b> , 5, 1044-1052                                                                                        | 16.7             | 12        |
| 71 | Highly efficient capture of circulating tumor cells with low background signals by using pyramidal microcavity array. <i>Analytica Chimica Acta</i> , <b>2019</b> , 1060, 133-141                                                                              | 6.6              | 8         |
| 70 | Microfluidics-based approaches for separation and analysis of circulating tumor cells. <i>TrAC - Trends in Analytical Chemistry</i> , <b>2019</b> , 117, 84-100                                                                                                | 14.6             | 19        |
| 69 | Role of Ninth Type-III Domain of Fibronectin in the Mediation of Cell-Binding Domain Adsorption on Surfaces with Different Chemistries. <i>Langmuir</i> , <b>2018</b> , 34, 9847-9855                                                                          | 4                | 6         |
| 68 | Biomimetic mineralization of carboxymethyl chitosan nanofibers with improved osteogenic activity in vitro and in vivo. <i>Carbohydrate Polymers</i> , <b>2018</b> , 195, 225-234                                                                               | 10.3             | 57        |
| 67 | Macroporous poly (l-lactic acid)/chitosan nanofibrous scaffolds through cloud point thermally induced phase separation for enhanced bone regeneration. <i>European Polymer Journal</i> , <b>2018</b> , 109, 303-3                                              | 315 <sup>2</sup> | 25        |

| 66 | Synthesis of magnesium-doped calcium carbonate microcapsules through yeast-regulated mineralization. <i>Materials Letters</i> , <b>2017</b> , 193, 38-41                                                                                                | 3.3              | 5  |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----|
| 65 | The correlation between osteopontin adsorption and cell adhesion to mixed self-assembled monolayers of varying charges and wettability. <i>Biomaterials Science</i> , <b>2017</b> , 5, 800-807                                                          | 7.4              | 11 |
| 64 | Osteogenic and tenogenic induction of hBMSCs by an integrated nanofibrous scaffold with chemical and structural mimicry of the bone-ligament connection. <i>Journal of Materials Chemistry B</i> , <b>2017</b> , 5, 1015-1027                           | 7.3              | 19 |
| 63 | A tracheal scaffold of gelatin-chondroitin sulfate-hyaluronan-polyvinyl alcohol with orientated porous structure. <i>Carbohydrate Polymers</i> , <b>2017</b> , 159, 20-28                                                                               | 10.3             | 19 |
| 62 | Effect of Sn4+ doping on the photoactivity inhibition and near infrared reflectance property of mica-titania pigments for a solar reflective coating. <i>Ceramics International</i> , <b>2016</b> , 42, 17148-17153                                     | 5.1              | 12 |
| 61 | Mediating Mesenchymal Stem Cells Responses and Osteopontin Adsorption via Oligo(ethylene glycol)-amino Mixed Self-assembled Monolayers. <i>Journal of Materials Science and Technology</i> , <b>2016</b> , 32, 966-970                                  | 9.1              | 1  |
| 60 | Controlling the strontium-doping in calcium phosphate microcapsules through yeast-regulated biomimetic mineralization. <i>International Journal of Energy Production and Management</i> , <b>2016</b> , 3, 269-276                                      | 6 <sup>5·3</sup> | 4  |
| 59 | Hybrid scaffolding strategy for dermal tissue reconstruction: a bioactive glass/chitosan/silk fibroin composite. <i>RSC Advances</i> , <b>2016</b> , 6, 19887-19896                                                                                     | 3.7              | 14 |
| 58 | Influence of the seed layer on photoactivity inhibition of micalitania pigments. <i>Ceramics International</i> , <b>2016</b> , 42, 6595-6600                                                                                                            | 5.1              | 9  |
| 57 | Reactive electrospinning of composite nanofibers of carboxymethyl chitosan cross-linked by alginate dialdehyde with the aid of polyethylene oxide. <i>Carbohydrate Polymers</i> , <b>2016</b> , 148, 98-106                                             | 10.3             | 37 |
| 56 | Surface chemistry from wettability and charge for the control of mesenchymal stem cell fate through self-assembled monolayers. <i>Colloids and Surfaces B: Biointerfaces</i> , <b>2016</b> , 148, 549-556                                               | 6                | 50 |
| 55 | PLLA nanofibrous paper-based plasmonic substrate with tailored hydrophilicity for focusing SERS detection. <i>ACS Applied Materials &amp; amp; Interfaces</i> , <b>2015</b> , 7, 5391-9                                                                 | 9.5              | 93 |
| 54 | Citric acid modification of PLLA nano-fibrous scaffolds to enhance cellular adhesion, proliferation and osteogenic differentiation. <i>Journal of Materials Chemistry B</i> , <b>2015</b> , 3, 5291-5299                                                | 7.3              | 17 |
| 53 | Two competitive nucleation mechanisms of calcium carbonate biomineralization in response to surface functionality in low calcium ion concentration solution. <i>International Journal of Energy Production and Management</i> , <b>2015</b> , 2, 187-95 | 5.3              | 19 |
| 52 | Controlled growth of hydroxyapatite fibers precipitated by propionamide through hydrothermal synthesis. <i>Powder Technology</i> , <b>2014</b> , 253, 172-177                                                                                           | 5.2              | 27 |
| 51 | Effects of hydroxyapatite microparticle morphology on bone mesenchymal stem cell behavior.<br>Journal of Materials Chemistry B, <b>2014</b> , 2, 4703-4710                                                                                              | 7.3              | 31 |
| 50 | Structure and nanomechanics of collagen fibrils in articular cartilage at different stages of osteoarthritis. <i>RSC Advances</i> , <b>2014</b> , 4, 51165-51170                                                                                        | 3.7              | 11 |
| 49 | Nanoindentation creep behavior of enamel biological nanocomposites. <i>RSC Advances</i> , <b>2014</b> , 4, 41003-47                                                                                                                                     | 19.99            | 8  |

| 48 | In vitro effects of differentially shaped hydroxyapatite microparticles on RAW264.7 cell responses. <i>RSC Advances</i> , <b>2014</b> , 4, 28615-28622                                                                                       | 3.7 | 6  |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|
| 47 | Directing the fate of human and mouse mesenchymal stem cells by hydroxyl-methyl mixed self-assembled monolayers with varying wettability. <i>Journal of Materials Chemistry B</i> , <b>2014</b> , 2, 4794-480                                | 7.3 | 63 |
| 46 | Nanomechanical properties of poly(l-lactide) nanofibers after deformation. <i>Colloids and Surfaces B: Biointerfaces</i> , <b>2014</b> , 120, 97-101                                                                                         | 6   | 5  |
| 45 | Doping strontium in tricalcium phosphate microspheres using yeast-based biotemplate. <i>Materials Chemistry and Physics</i> , <b>2014</b> , 147, 540-544                                                                                     | 4.4 | 8  |
| 44 | Size controlling of monodisperse carboxymethyl cellulose microparticles via a microfluidic process.<br>Journal of Applied Polymer Science, <b>2014</b> , 131, n/a-n/a                                                                        | 2.9 | 7  |
| 43 | Preparation of carboxymethyl cellulose based microgels for cell encapsulation. <i>EXPRESS Polymer Letters</i> , <b>2014</b> , 8, 841-849                                                                                                     | 3.4 | 22 |
| 42 | A systematic examination of the morphology of hydroxyapatite in the presence of citrate. <i>RSC Advances</i> , <b>2013</b> , 3, 23184                                                                                                        | 3.7 | 30 |
| 41 | Hierarchical porous hydroxyapatite microsphere as drug delivery carrier. <i>CrystEngComm</i> , <b>2013</b> , 15, 5760                                                                                                                        | 3.3 | 48 |
| 40 | The growth process of regular radiated nanorod bundles hydroxyapatite formed by thermal aqueous solution approach. <i>Materials Chemistry and Physics</i> , <b>2013</b> , 141, 488-494                                                       | 4.4 | 9  |
| 39 | Construct Scaffold-like delivery system with poly (lactic-co-glycolic) microspheres on micro-arc oxidation titanium. <i>Applied Surface Science</i> , <b>2013</b> , 266, 81-88                                                               | 6.7 | 4  |
| 38 | Different fate of cancer cells on several chemical functional groups. <i>Surface and Coatings Technology</i> , <b>2013</b> , 228, S48-S54                                                                                                    | 4.4 | 10 |
| 37 | Calcium carbonate crystallization controlled by functional groups: A mini-review. <i>Frontiers of Materials Science</i> , <b>2013</b> , 7, 62-68                                                                                             | 2.5 | 18 |
| 36 | Early stage structural evolution of PLLA porous scaffolds in thermally induced phase separation process and the corresponding biodegradability and biological property. <i>Polymer Degradation and Stability</i> , <b>2012</b> , 97, 955-963 | 4.7 | 37 |
| 35 | Combined effect of ion concentration and functional groups on surface chemistry modulated CaCO3 crystallization. <i>CrystEngComm</i> , <b>2012</b> , 14, 6647                                                                                | 3.3 | 25 |
| 34 | Early stage evolution of structure and nanoscale property of nanofibers in thermally induced phase separation process. <i>Reactive and Functional Polymers</i> , <b>2012</b> , 72, 765-772                                                   | 4.6 | 30 |
| 33 | Structure and surface nanomechanics of poly(l-lactide) from thermally induced phase separation process. <i>Applied Surface Science</i> , <b>2012</b> , 258, 6665-6671                                                                        | 6.7 | 27 |
| 32 | Silicon nitride films for the protective functional coating: blood compatibility and biomechanical property study. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , <b>2012</b> , 16, 9-20                                | 4.1 | 24 |
| 31 | The structure, surface topography and mechanical properties of SiŒN films fabricated by RF and DC magnetron sputtering. <i>Applied Surface Science</i> , <b>2011</b> , 258, 1328-1336                                                        | 6.7 | 29 |

## (2007-2011)

| 30 | A Biomimetic Material with a High Bio-responsibility for Bone Reconstruction and Tissue Engineering. <i>Journal of Biomaterials Science, Polymer Edition</i> , <b>2011</b> , 22, 153-63                                            | 3.5    | 9  |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----|
| 29 | Influence of Sintering Temperature on Pore Structure and Apatite Formation of a Sol <b>©</b> el-Derived Bioactive Glass. <i>Journal of the American Ceramic Society</i> , <b>2010</b> , 93, 32-35                                  | 3.8    | 21 |
| 28 | Fabrication, structure and biological properties of organic acid-derived sol-gel bioactive glasses. <i>Biomedical Materials (Bristol)</i> , <b>2010</b> , 5, 054103                                                                | 3.5    | 28 |
| 27 | In vivo and in vitro osteogenesis of stem cells induced by controlled release of drugs from microspherical scaffolds. <i>Journal of Materials Chemistry</i> , <b>2010</b> , 20, 9140                                               |        | 26 |
| 26 | Effect of frequency on the structure and cell response of Ca- and P-containing MAO films. <i>Applied Surface Science</i> , <b>2010</b> , 256, 2018-2024                                                                            | 6.7    | 35 |
| 25 | Surface nanoscale patterning of bioactive glass to support cellular growth and differentiation.<br>Journal of Biomedical Materials Research - Part A, <b>2010</b> , 94, 1091-9                                                     | 5.4    | 17 |
| 24 | PHBV microspheresPLGA matrix composite scaffold for bone tissue engineering. <i>Biomaterials</i> , <b>2010</b> , 31, 4278-85                                                                                                       | 15.6   | 88 |
| 23 | Immunogold labeling of amelogenin in developing porcine enamel revealed by field emission scanning electron microscopy. <i>Cells Tissues Organs</i> , <b>2009</b> , 189, 207-11                                                    | 2.1    | 5  |
| 22 | Preparation of PrxZn1 IkO nanopowder with UVIIisible light response. <i>Materials Letters</i> , <b>2009</b> , 63, 1781                                                                                                             | ·13/84 | 4  |
| 21 | Analysis of secondary structure and self-assembly of amelogenin by variable temperature circular dichroism and isothermal titration calorimetry. <i>Proteins: Structure, Function and Bioinformatics</i> , <b>2009</b> , 76, 560-9 | 4.2    | 47 |
| 20 | A novel PHBV/HA microsphere releasing system loaded with alendronate. <i>Materials Science and Engineering C</i> , <b>2009</b> , 29, 2221-2225                                                                                     | 8.3    | 42 |
| 19 | Acetic acid derived mesoporous bioactive glasses with an enhanced in vitro bioactivity. <i>Journal of Non-Crystalline Solids</i> , <b>2009</b> , 355, 2583-2587                                                                    | 3.9    | 28 |
| 18 | Synthesis and bioactive properties of macroporous nanoscale SiO2©aOP2O5 bioactive glass.<br>Journal of Non-Crystalline Solids, 2009, 355, 2678-2681                                                                                | 3.9    | 29 |
| 17 | In vitro study on the interaction between the 32 kDa enamelin and amelogenin. <i>Journal of Structural Biology</i> , <b>2009</b> , 166, 88-94                                                                                      | 3.4    | 35 |
| 16 | Progress in the Biomineralization Study of Bone and Enamel and Biomimetic Synthesis of Calcium Phosphate. <i>Wuji Cailiao Xuebao/Journal of Inorganic Materials</i> , <b>2009</b> , 24, 882-888                                    | 1      | 3  |
| 15 | Surface Modification of Bioglass with Phosphatidyl Cholines. <i>Wuji Cailiao Xuebao/Journal of Inorganic Materials</i> , <b>2009</b> , 24, 889-892                                                                                 | 1      |    |
| 14 | Enamel proteases reduce amelogenin-apatite binding. Journal of Dental Research, 2008, 87, 1133-7                                                                                                                                   | 8.1    | 28 |
| 13 | Amelogenin Promotes the Formation of Elongated Apatite Microstructures in a Controlled Crystallization System. <i>Journal of Physical Chemistry C</i> , <b>2007</b> , 111, 6398-6404                                               | 3.8    | 74 |

| 12 | The role of secondary structure in the entropically driven amelogenin self-assembly. <i>Biophysical Journal</i> , <b>2007</b> , 93, 3664-74                                                                       | 2.9  | 56  |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| 11 | Tooth regeneration: challenges and opportunities for biomedical material research. <i>Biomedical Materials (Bristol)</i> , <b>2006</b> , 1, R10-7                                                                 | 3.5  | 20  |
| 10 | On the formation of amelogenin microribbons. <i>European Journal of Oral Sciences</i> , <b>2006</b> , 114 Suppl 1, 289-96; discussion 327-9, 382                                                                  | 2.3  | 58  |
| 9  | Assembly and processing of an engineered amelogenin proteolytic product (rP148). <i>European Journal of Oral Sciences</i> , <b>2006</b> , 114 Suppl 1, 59-63; discussion 93-5, 379-80                             | 2.3  | 21  |
| 8  | Control of apatite crystal growth by the co-operative effect of a recombinant porcine amelogenin and fluoride. <i>European Journal of Oral Sciences</i> , <b>2006</b> , 114 Suppl 1, 304-7; discussion 327-9, 382 | 2.3  | 32  |
| 7  | Supramolecular assembly of amelogenin nanospheres into birefringent microribbons. <i>Science</i> , <b>2005</b> , 307, 1450-4                                                                                      | 33.3 | 297 |
| 6  | Apatite/amelogenin coating on titanium promotes osteogenic gene expression. <i>Journal of Dental Research</i> , <b>2005</b> , 84, 1070-4                                                                          | 8.1  | 44  |
| 5  | Biomimetic calcium phosphate coatings on Polyactive 1000/70/30. <i>Journal of Biomedical Materials Research Part B</i> , <b>2002</b> , 59, 535-46                                                                 |      | 45  |
| 4  | Bone growth in biomimetic apatite coated porous Polyactive 1000PEGT70PBT30 implants. <i>Biomaterials</i> , <b>2002</b> , 23, 4649-56                                                                              | 15.6 | 59  |
| 3  | Formation of calcium phosphate/collagen composites through mineralization of collagen matrix.<br>Journal of Biomedical Materials Research Part B, <b>2000</b> , 50, 518-27                                        |      | 241 |
| 2  | Three-dimensional nano-HAp/collagen matrix loading with osteogenic cells in organ culture.<br>Journal of Biomedical Materials Research Part B, <b>1999</b> , 44, 407-15                                           |      | 295 |
| 1  | Morphological behaviour of osteoblasts on diamond-like carbon coating and amorphous C-N film in organ culture. <i>Biomaterials</i> , <b>1998</b> , 19, 651-8                                                      | 15.6 | 109 |