
Frank Wiesbrock

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5487099/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Review on Modeling Cure Kinetics and Mechanisms of Photopolymerization. Polymers, 2022, 14, 2074.	2.0	33
2	Structural Model for the Estimation of the Equivalent Permittivity of Nanodielectrics Based on Polyethylene and Epoxy Resins. IEEE Access, 2021, 9, 123927-123938.	2.6	0
3	Expanding Monomers as Anti-Shrinkage Additives. Polymers, 2021, 13, 806.	2.0	20
4	Dielectric Properties of Shrinkage-Free Poly(2-Oxazoline) Networks from Renewable Resources. Polymers, 2021, 13, 1263.	2.0	1
5	Temperature-Triggered/Switchable Thermal Conductivity of Epoxy Resins. Polymers, 2021, 13, 65.	2.0	8
6	Dual/Bi-Stage Curing of Nanocomposites from Renewable Resources upon Volumetric Expansion. , 2020, 69, .		0
7	Bisphenol-Free Epoxy Resins Derived from Natural Resources Exhibiting High Thermal Conductivity. , 2020, 69, .		1
8	Crosslinkable/functionalizable poly(2-oxazoline)Âbased micelles. European Polymer Journal, 2019, 121, 109305.	2.6	2
9	3Dâ€Printing of Highâ€₽ Thiolâ€Ene Resins with Spiroâ€Orthoesters as Antiâ€Shrinkage Additive. Macromolecul Materials and Engineering, 2019, 304, 1900515.	ar 1.7	13
10	Dual ure Coatings: Spiroorthoesters as Volume ontrolling Additives in Thiol–Ene Reactions. Macromolecular Materials and Engineering, 2019, 304, 1800627.	1.7	6
11	Polyethylene Nanocomposites for Power Cable Insulations. Polymers, 2019, 11, 24.	2.0	78
12	Enhancement of the Insulation Properties of Poly(2â€oxazoline)â€ <i>co</i> â€Polyester Networks by the Addition of Nanofillers. Macromolecular Rapid Communications, 2018, 39, e1700681.	2.0	4
13	Heat Dissipation in Epoxy/Amine-Based Gradient Composites with Alumina Particles: A Critical Evaluation of Thermal Conductivity Measurements. Polymers, 2018, 10, 1131.	2.0	15
14	Living cationic ring-opening polymerization of 2-ethyl-2-oxazoline following sustainable concepts: microwave-assisted and droplet-based millifluidic processes in an ionic liquid medium. Polymer Chemistry, 2017, 8, 5910-5917.	1.9	11
15	UV-mediated thiol-ene click reactions for the synthesis of drug-loadable and degradable gels based on copoly(2-oxazoline)s. European Polymer Journal, 2017, 88, 701-712.	2.6	28
16	Effect of Interfacial Polarization and Water Absorption on the Dielectric Properties of Epoxy-Nanocomposites. Polymers, 2017, 9, 195.	2.0	18
17	Fifty Years of Hydrosilylation in Polymer Science: A Review of Current Trends of Low-Cost Transition-Metal and Metal-Free Catalysts, Non-Thermally Triggered Hydrosilylation Reactions, and Industrial Applications. Polymers, 2017, 9, 534.	2.0	100
18	Crosslinked Poly(2-oxazoline)s as "Green―Materials for Electronic Applications. Polymers, 2016, 8, 6.	2.0	14

FRANK WIESBROCK

#	Article	IF	CITATIONS
19	Interdisciplinary Approaches towards Materials with Enhanced Properties for Electrical Engineering. Polymers, 2016, 8, 307.	2.0	Ο
20	Effect of water absorption on dielectric spectrum of nanocomposites. , 2016, , .		4
21	Modification Pathways for Copoly(2â€oxazoline)s Enabling Their Application as Antireflective Coatings in Photolithography. Macromolecular Rapid Communications, 2016, 37, 233-238.	2.0	7
22	Microwave-Assisted Cationic Ring-Opening Polymerization of 2-Oxazolines. Advances in Polymer Science, 2015, 274, 183-208.	0.4	23
23	Microwaveâ€Assisted Syntheses in Recyclable Ionic Liquids: Photoresists Based on Renewable Resources. ChemSusChem, 2015, 8, 3401-3404.	3.6	18
24	Poly(hydroxy alkanoate)s in Medical Applications. Chemical and Biochemical Engineering Quarterly, 2015, 29, 287-297.	0.5	71
25	The π-Electron Delocalization in 2-Oxazolines Revisited: Quantification and Comparison with Its Analogue in Esters. Materials, 2015, 8, 5385-5397.	1.3	7
26	UV-Induced Crosslinking of Poly[2-(2'-Norbornenyl)-2-Oxazoline]s. Periodica Polytechnica: Chemical Engineering, 2014, 58, 69.	0.5	2
27	RGD-Functionalization of Poly(2-oxazoline)-Based Networks for Enhanced Adhesion to Cancer Cells. Polymers, 2014, 6, 264-279.	2.0	33
28	Microwave-Assisted Synthesis of Polyesters and Polyamides by Ring-Opening Polymerization. Advances in Polymer Science, 2014, , 149-182.	0.4	5
29	Design Strategies for Functionalized Poly(2-oxazoline)s and Derived Materials. Polymers, 2013, 5, 956-1011.	2.0	130
30	Poly(2â€oxazoline)â€derived Contact Biocides: Contributions to the Understanding of Antimicrobial Activity. Macromolecular Bioscience, 2013, 13, 116-125.	2.1	30
31	Macromol. Biosci. 1/2013. Macromolecular Bioscience, 2013, 13, 140-140.	2.1	0
32	Synthesis of a poly(2-azanorbornene) with a high degree of cis-TT-stereoregularity and a regular secondary solution structure. Polymer Chemistry, 2012, 3, 2760.	1.9	7
33	Strategies for the Synthesis of Poly(2â€Oxazoline)â€Based Hydrogels. Macromolecular Rapid Communications, 2012, 33, 1632-1647.	2.0	63
34	Correlation of surface roughness and surface energy of silicon-based materials with their priming reactivity. Monatshefte FA¼r Chemie, 2012, 143, 717-722.	0.9	15
35	Waterâ€Developable Poly(2â€oxazoline)â€Based Negative Photoresists. Macromolecular Rapid Communications, 2012, 33, 396-400.	2.0	30
36	Anhydrous thallium hydrogen l-glutamate: polymer networks formed by sandwich layers of oxygen-coordinated thallium ions cores shielded by hydrogen l-glutamate counterions. Dalton Transactions, 2011, 40, 10885.	1.6	0

FRANK WIESBROCK

#	Article	IF	CITATIONS
37	Delocalized ï€â€electrons in 2â€oxazoline rings resulting in negatively charged nitrogen atoms: revealing the selectivity during the initiation of cationic ringâ€opening polymerizations. Polymer International, 2011, 60, 1173-1179.	1.6	12
38	One Decade of Microwaveâ€Assisted Polymerizations: Quo vadis?. Macromolecular Rapid Communications, 2011, 32, 254-288.	2.0	90
39	Synthesis of Poly(2â€oxazoline)â€Based Hydrogels with Tailorâ€Made Swelling Degrees Capable of Stimuliâ€Triggered Compound Release. Macromolecular Rapid Communications, 2011, 32, 1815-1819.	2.0	36
40	Think Poly: European Polymer Congress EPF'09. Macromolecular Chemistry and Physics, 2010, 211, 2260-2261.	1.1	0
41	Contact bactericides and fungicides on the basis of aminoâ€functionalized poly(norbornene)s. Journal of Polymer Science Part A, 2010, 48, 4504-4514.	2.5	24
42	Oxazoline-Based Hydro-, Amphi- and Lipogels from Microwave-Assisted Synthesis. Scientia Pharmaceutica, 2010, 78, 660-660.	0.7	0
43	UV-induced crosslinking of the biopolyester poly(3-hydroxybutyrate)-co-(3-hydroxyvalerate). Green Chemistry, 2010, 12, 1796.	4.6	19
44	Correlating the mechanical and surface properties with the composition of triblock copoly(2-oxazoline)s. Journal of Materials Chemistry, 2009, 19, 222-229.	6.7	13
45	Solutionâ€Phase Synthesis of Firstâ€Generation Tetraester Dendritic Branches Involving Microwave and/or Ultrasonic Irradiation. European Journal of Organic Chemistry, 2008, 2008, 4344-4349.	1.2	1
46	Influence of different branched alkyl side chains on the properties of imidazolium-based ionic liquids. Journal of Materials Chemistry, 2008, 18, 5267.	6.7	118
47	Kinetic Investigations on Microwave-Assisted Statistical Terpolymerizations of 2-Oxazoline Monomers. Australian Journal of Chemistry, 2007, 60, 656.	0.5	12
48	Evaporation induced micellization of poly(2-oxazoline) multiblock copolymers on surfaces. Soft Matter, 2007, 3, 79-82.	1.2	16
49	Elastic moduli for a diblock copoly(2-oxazoline) library obtained by high-throughput screening. Journal of Materials Chemistry, 2007, 17, 2713.	6.7	27
50	Synthesis and Aqueous Micellization of Amphiphilic Tetrablock Ter- and Quarterpoly(2-oxazoline)s. Macromolecules, 2007, 40, 2837-2843.	2.2	69
51	Microwave-Assisted Cationic Ring-Opening Polymerization of 2-Oxazolines:Â A Powerful Method for the Synthesis of Amphiphilic Triblock Copolymers. Macromolecules, 2006, 39, 4719-4725.	2.2	131
52	Morphologies of Spin-Coated Films of a Library of Diblock Copoly(2-oxazoline)s and Their Correlation to the Corresponding Surface Energies. Macromolecular Rapid Communications, 2006, 27, 405-411.	2.0	25
53	Microwave Accelerated Polymerization of 2-Phenyl-2-oxazoline: Microwave or Temperature Effects?. Macromolecular Rapid Communications, 2005, 26, 1773-1778.	2.0	36
54	Microwave-assisted nitroxide-mediated polymerization of alkyl acrylates. E-Polymers, 2005, 5, .	1.3	6

FRANK WIESBROCK

#	Article	IF	CITATIONS
55	Accelerating the Living Polymerization of 2-Nonyl-2-oxazoline by Implementing a Microwave Synthesizer into a High-Throughput Experimentation Workflow. ACS Combinatorial Science, 2005, 7, 10-13.	3.3	73
56	Investigation of the Living Cationic Ring-Opening Polymerization of 2-Methyl-, 2-Ethyl-, 2-Nonyl-, and 2-Phenyl-2-oxazoline in a Single-Mode Microwave Reactorâ€. Macromolecules, 2005, 38, 5025-5034.	2.2	264
57	Microwave-Assisted Synthesis of a 42-Membered Library of Diblock Copoly(2-oxazoline)s and Chain-Extended Homo Poly(2-oxazoline)s and Their Thermal Characterization. Macromolecules, 2005, 38, 7957-7966.	2.2	135
58	New Challenges in Combinatorial Polymer Research: 3rd DPI Workshop on Automated Synthesis and High-Throughput Experimentation in Polymer and Materials Research at the Eindhoven University of Technology. Macromolecular Rapid Communications, 2004, 25, 1579-1582.	2.0	2
59	Microwave-Assisted Polymer Synthesis: State-of-the-Art and Future Perspectives. Macromolecular Rapid Communications, 2004, 25, 1739-1764.	2.0	451
60	Single-Mode Microwave Ovens as New Reaction Devices: Accelerating the Living Polymerization of 2-Ethyl-2-Oxazoline. Macromolecular Rapid Communications, 2004, 25, 1895-1899.	2.0	178
61	Characterization of a Poly(2-oxazoline) Library by High-Throughput, Automated Contact-Angle Measurements and Surface-Energy Calculations. Macromolecular Rapid Communications, 2004, 25, 1958-1962.	2.0	40
62	Interactions of a β-dipeptide with monovalent metal cations: crystal structures of (anthranoyl)anthranilic acid and its lithium, sodium and thallium saltsâ~†. Journal of Inorganic Biochemistry, 2004, 98, 473-484.	1.5	10
63	Gold(I) thiosulfonate complexes. Inorganica Chimica Acta, 2003, 347, 123-128.	1.2	14
64	Complexity of Coordinative Bonding in Thallium(I) Anthranilates and Salicylates. Journal of the American Chemical Society, 2003, 125, 3622-3630.	6.6	86
65	Crystal Structures of Rubidium and Cesium Anthranilates and Salicylates. Inorganic Chemistry, 2003, 42, 7283-7289.	1.9	52
66	Lithium salicylate monohydrate: A layer structure with carboxylate-bridged Δ- and ĥ-[(H2O)Li+]â^žhelices. CrystEngComm, 2003, 5, 503-505.	1.3	12
67	Lithiuml-hydrogen-α-glutamate: A layer structure with asymmetrical tunnels formed by nets with two different macrocycles. CrystEngComm, 2003, 5, 262-264.	1.3	7
68	Zinc and lithium hydrogen-β-glutamate: large-pore network layer structures. Dalton Transactions RSC, 2002, , 3201-3205.	2.3	16
69	The structural chemistry of lithium, sodium and potassium anthranilate hydrates. Dalton Transactions RSC, 2002, , 4703.	2.3	25
70	Magnesium Anthranilate Dihydrate. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2002, 57, 251-254.	0.3	16
71	Preparation and Structure of Magnesium Bis(hydrogen β-glutamate) Hexahydrate. Helvetica Chimica Acta, 2002, 85, 1151.	1.0	6